ON A VARIANT OF THE ASYMPTOTIC PROCEDURE (WEAKLY NONLINEAR SYSTEMS IN A SPECLAL CASES)

Nguyen Van Dinh
Institute of Mechanics

Abstract

The variant the asymptotic procedure presented in $[2,3]$ is applied to oscillating systems in a special case.

1 Introduction

The modified asymptotic procedure presented in the part I is now applied to study weakly nonlinear systems in a special case. As known, this case is characterized by the absence of a part of variables in the governing differential equations and, consequently, the determination of stationary oscillations needs higher approximations.

Malkin J. G. [3] has paid attention on special cases, using the Poincaré method [3]. The usual asymptotic procedure with full amplitude and full dephase angle as variables is not convenient: it cannot use the mentioned characteristic (the absence of a part of variables) and moreover, the equations for determining stationary oscillations in the end of the asymptotic procedure are often complicated enough.

Contrarily, with the variant of the asymptotic procedure given in the part I, regarding to the mentioned characteristic, we can determine stationary oscillation successively in each step of appoximation.

We restrict ourselves in examining a system of the form:

$$
\begin{equation*}
\ddot{x}+\omega^{2} x=\varepsilon f(x, \dot{x}, \varphi), \quad \varphi=\omega t \tag{1.1}
\end{equation*}
$$

where x is an oscillatory variable, overdots denote derivation with respect to time $t ; \omega$ is the exciting frequency; $\varepsilon>0$ is a small parameter; $f(x, \dot{x}, \varphi)$ is a function of (x, \dot{x}, φ), 2π-periodic with respect to φ. For simplicity, $f(x, \dot{x}, \varphi)$ is assumed to be a trigonometrical polynomial i.e. it can be expanded in finite Fourier series in ωt with polynomial in (x, \dot{x}) coefficients.

2 Some properties related to a special case

Let us briefly recall some properties of the function $f(x, \dot{x}, \varphi)$ in a special case.
By $f(a, \theta, \psi)$ we denote the function $f(x, \dot{x}, \varphi)$ after replacing x, \dot{x}, φ by $a \cos \psi$, $-\omega a \sin \psi, \psi-\theta$, respectively:

$$
\begin{equation*}
f(a, \theta, \psi)=f(a \cos \psi,-\omega a \sin \psi, \psi-\theta) \tag{2.1}
\end{equation*}
$$

The Fourier series of $f(a, \theta, \psi)$ is of the form:

$$
\begin{equation*}
f(a, \theta, \psi)=f_{0}(a, \theta)+\sum_{n=1}^{N}\left[S_{n}(a, \theta) \sin n \psi+C_{n}(a, \theta) \cos n \psi\right] \tag{2.2}
\end{equation*}
$$

here N is a positive integer.
Let us consider the case in which

$$
\begin{align*}
& S_{1}(a, \theta)=\frac{1}{\pi} \int_{0}^{2 \pi} f(a \cos \psi,-\omega a \sin \psi, \psi-\theta) \sin \psi d \psi \equiv S_{1}(a) \tag{2.3}\\
& C_{1}(a, \theta)=\frac{1}{\pi} \int_{0}^{2 \pi} f(a \cos \psi,-\omega a \sin \psi, \psi-\theta) \cos \psi d \psi \equiv 0 \tag{2.4}
\end{align*}
$$

i.e. the first harmonic $\cos \psi$ is absent and the coefficient of the first harmonic $\sin \psi$ depends only on a.

Differentiating (2.3), (2.4) with respect to a and θ yields:

$$
\begin{align*}
& \frac{\partial S_{1}}{\partial a}=\frac{d S_{1}}{d a}=S_{1}^{\prime}(a)=\frac{1}{\pi} \int_{0}^{2 \pi}\left(\cos \psi \cdot f_{x}-\omega \sin \psi \cdot f_{\dot{x}}\right) \sin \psi d \psi \tag{2.5}\\
& \frac{\partial C_{1}}{\partial a}=\frac{1}{\pi} \int_{0}^{2 \pi}\left(\cos \psi \cdot f_{x}-\omega \sin \psi \cdot f_{\dot{x}}\right) \cos \psi d \psi \equiv 0 \tag{2.6}\\
& \frac{\partial S_{1}}{\partial \theta}=\frac{-1}{\pi} \int_{0}^{2 \pi} f_{\varphi} \cdot \sin \psi d \psi \equiv 0 \tag{2.7}\\
& \frac{\partial C_{1}}{\partial \theta}=\frac{-1}{\pi} \int_{0}^{2 \pi} f_{\varphi} \cdot \cos \psi d \psi \equiv 0 \tag{2.8}
\end{align*}
$$

where $f_{x}, f_{\dot{x}}, f_{\varphi}$ are the partial derivatives of $f(x . \dot{x}, \varphi)$ with respect to x, \dot{x}, φ, respectively; $S_{1}^{\prime}(a)$ is the derivative of $S_{1}(a)$ with respect to a.

From (2.5), (2.6) it follows that the expression $\left(\cos \psi \cdot f_{x}-\omega \sin \psi f_{\dot{x}}\right)$ does not contain the first harmonic $\cos \psi$ and the coefficient of its first harmonic $\sin \psi$ depends only on a i.e. we can write:

$$
\begin{equation*}
\cos \psi \cdot f_{x}-\omega \sin \psi \cdot f_{\dot{x}}=S_{1}^{\prime}(a) \sin \psi+\langle\ldots\rangle \tag{2.9}
\end{equation*}
$$

here and below, $\langle\ldots\rangle$ represents "constant" and higher harmonic terms.
Analogously, from (2.7), (2.8), it follows:

$$
\begin{equation*}
f_{\varphi}(a \cos \psi,-\omega a \sin \psi, \psi-\theta)=\langle\ldots\rangle . \tag{2.10}
\end{equation*}
$$

With regard to (2.10), by comparing the two expressions of the first partial derivative $\frac{\partial f}{\partial \psi}$ calculated from (2.1) and (2.2), that is

$$
\begin{equation*}
\frac{\partial f}{\partial \psi}=-a \sin \psi \cdot f_{x}-\omega a \cos \psi \cdot f_{\dot{x}}+f_{\varphi}=S_{1}(a) \cos \psi+\langle\ldots\rangle \tag{2.11}
\end{equation*}
$$

we can write

$$
\begin{equation*}
f_{x} \cdot \sin \psi+\omega f_{\dot{x}} \cdot \cos \psi=-\frac{1}{a} S_{1}(a) \cos \psi+\langle\ldots\rangle . \tag{2.12}
\end{equation*}
$$

Differentiating (2.10) with respect to θ gives:

$$
\begin{equation*}
f_{\varphi^{2}}(a \cos \psi,-\omega a \sin \psi, \psi-\theta)=\langle\ldots\rangle \tag{2.13}
\end{equation*}
$$

Analogously, with regard to (2.13), by differentiating (2.10) with respect to ψ, we get:

$$
\begin{equation*}
\sin \psi \cdot f_{\varphi x}+\omega \cos \psi \cdot f_{\varphi \dot{x}}=\langle\ldots\rangle \tag{2.14}
\end{equation*}
$$

Finally, with regard to $(2.9),(2.13),(2.14)$, by comparing the two expressions of the second partial derivative $\frac{\partial^{2} f}{\partial \psi^{2}}$ calculated from (2.1) and (2.2), that is:

$$
\begin{align*}
\frac{\partial^{2} f}{\partial \psi^{2}}= & -a\left(\cos \psi \cdot f_{x}-\omega \sin \psi \cdot f_{\dot{x}}\right) \\
& +a^{2}\left(\sin ^{2} \psi \cdot f_{x^{2}}+2 \omega \sin \psi \cos \psi \cdot f_{x \dot{x}}+\omega^{2} \cos ^{2} \psi \cdot f_{\dot{x}^{2}}\right) \\
& -2 a\left(\sin \psi \cdot f_{x \varphi}+\omega \cos \varphi \cdot f_{\dot{x} \varphi}\right)+f_{\varphi^{2}}=-S_{1}(a) \sin \psi+\langle\ldots\rangle, \tag{2.15}
\end{align*}
$$

we can write:

$$
\begin{equation*}
\sin ^{2} \psi \cdot f_{x^{2}}+2 \omega \sin \psi \cos \psi \cdot f_{x x}+\omega^{2} \cos ^{2} \psi \cdot f_{\dot{x}^{2}}=\widetilde{S}_{1}(a) \sin \psi+\langle\ldots\rangle \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{S}_{1}(a)=\frac{1}{a} S_{1}^{\prime}(a)-\frac{1}{a^{2}} S_{1}(a) \tag{2.17}
\end{equation*}
$$

3 Stationary oscillation from the usual asymptotic procedure

For comparison, we briefly recall the usual asymptotic procedure. Following asymptotic expansions will be used

$$
\begin{align*}
x & =a \cos \psi+\varepsilon u_{1}(a, \theta, \psi)+\varepsilon^{2} u_{2}(a, \theta, \psi)+\ldots, \quad \psi=\varphi-\theta=\omega t-\theta, \tag{3.1}\\
\dot{a} & =\varepsilon A_{1}(a, \theta)+\varepsilon^{2} A_{2}(a, \theta)+\ldots, \tag{3.2}\\
\dot{\theta} & =\varepsilon B_{1}(a, \theta)+\varepsilon^{2} B_{2}(a, \theta)+\ldots, \tag{3.3}
\end{align*}
$$

where a and θ are the full amplitude and the full dephase angle of the first harmonic; $A_{i}, B_{i}(i=1,2, \ldots)$ are functions of $(a, \theta) ; u_{i}(i=1,2, \ldots)$ are functions of (a, θ, ψ), 2π-periodic with respect to ψ, do not containing the first harmonics.

Substituting (3.1) into (1.1), using (3.2), (3.3), expanding $f(x, \dot{x}, \varphi)$ in Taylor series of ε, then equating the terms of like powers of ε yield in the first approximation:

$$
\begin{equation*}
-2 \omega A_{1} \sin \psi-2 \omega a B_{1} \cos \psi+\omega^{2}\left(\frac{\partial^{2} u_{1}}{\partial \psi^{2}}+u_{1}\right)=f(a \cos \psi,-\omega a \sin \psi, \psi-\theta) \tag{3.4}
\end{equation*}
$$

Using (2.2), (2.3), (2.4), equating the terms of like harmonics, from (3.4) it follows:

$$
\begin{align*}
& A_{1}(a, \theta)=A_{1}(a)=-\frac{1}{2 \omega} S_{1}(a) \tag{3.5}\\
& B_{1}(a, \theta)=-\frac{1}{2 \omega a} C_{1}(a, \theta)=0 \tag{3.6}\\
& \omega^{2}\left(\frac{\partial^{2} u_{1}}{\partial \psi^{2}}+u_{1}\right)=f_{0}(a, \theta)+\sum_{n=2}^{N}\left[S_{n}(a, \theta) \sin n \psi+C_{n}(a, \theta) \cos n \psi\right] \tag{3.7}\\
& u_{1}=\frac{1}{\omega^{2}}\left\{f_{0}(a, \theta)-\sum_{n=2}^{N} \frac{1}{n^{2}-1}\left[S_{n}(a, \theta) \sin n \psi+C_{n}(a, \theta) \cos n \psi\right]\right\} \tag{3.8}
\end{align*}
$$

The same procedure gives successively $A_{i}(a, \theta), B_{i}(a, \theta)(i=2,3, \ldots)$ in which both variables a and θ are present.

In the n-th approximation, to determine the full amplitude a_{*} and the full dephase angle θ_{*} of stationary oscillation, we use the stationarity conditions which are expressed as two equations

$$
\begin{align*}
& A(a, \theta)=\varepsilon A_{1}(a)+\varepsilon^{2} A_{2}(a, \theta)+\cdots+\varepsilon^{n}(a, \theta)=0 \tag{3.9}\\
& B(a, \theta)=\varepsilon^{2} B_{2}(a, \theta)+\cdots+\varepsilon^{n} B_{n}(a, \theta)=0
\end{align*}
$$

Stability conditions are two inequalities

$$
\begin{equation*}
\left(\frac{\partial A}{\partial a}+\frac{\partial B}{\partial \theta}\right)_{*}<0, \quad\left(\frac{\partial A}{\partial a} \frac{\partial B}{\partial \theta}-\frac{\partial A}{\partial \theta} \frac{\partial B}{\partial a}\right)_{*}>0 . \tag{3.10}
\end{equation*}
$$

Note that no information is given in intermediate step and (a_{*}, θ_{*}) can only be determined at the end of the asymptotic procedure.

4 Stationary oscillation from a variant of the asymptotic procedure

The variant of the asymptotic procedure presented in part I allows us to determine stationary oscillation successively in each step of approximation.

First, the same expansions (3.1), (3.2), (3.3) are used but a and θ are now the amplitude and the dephase angle of order ε^{0} of the first harmonic; consequently, $u_{i}(a, \theta, \psi)$ contain the first harmonics $a_{i} \cos \psi+b_{i} \sin \psi$.

In the first approximation, from (3.5), using the stationarity condition

$$
\begin{equation*}
A_{1}(a, \theta)=A_{1}(a)=-\frac{1}{2 \omega} S_{1}(a)=0 \tag{4.1}
\end{equation*}
$$

we obtain immediately a_{0} - the stationary amplitude of order ε^{0} of the first harmonic.
The stationary dephase angle θ_{0} remains undeterminate; this means that in the first approximation, there exists a family of stationary oscillations with amplitude a_{0} but with arbitrary dephase angle (although the system is non-autonomous).

The expression (3.8) of u_{1} is replaced by

$$
\begin{align*}
u_{1}=\frac{1}{\omega^{2}}\left\{f_{0}(a, \theta)\right. & \left.-\sum_{n=2}^{N} \frac{1}{n^{2}-1}\left[S_{n}(a, \theta) \sin n \theta+C_{n}(a, \theta) \cos n \theta\right]\right\} \\
& +a_{1} \cos \psi+b_{1} \sin \psi \tag{4.2}
\end{align*}
$$

where a_{1}, b_{1} are two constants to be chosen, N is a positive integer.
Let us move to the second and third approximation. We have

$$
\begin{align*}
& -2 \omega A_{2} \sin \psi-2 \omega a B_{2} \cos \psi+\omega^{2}\left(\frac{\partial^{2} u_{2}}{\partial \psi^{2}}+u_{2}\right) \\
& =-A_{1} \frac{\partial A_{1}}{\partial a} \cos \psi-2 \omega A_{1} \frac{\partial^{2} u_{1}}{\partial \psi \partial a}+u_{1} f_{x}(a \cos \psi,-\omega a \sin \psi, \psi-\theta) \\
& +\left(A_{1} \cos \psi+\omega \frac{\partial u_{1}}{\partial \psi}\right) f_{\dot{x}}(a \cos \psi,-\omega a \sin \psi, \psi-\theta) \tag{4.3}\\
& -2 \omega A_{3} \sin \psi-2 \omega a B_{3} \cos \psi+\omega^{2}\left(\frac{\partial^{2} u_{3}}{\partial \psi^{2}}+u_{3}\right)=-A_{2} \frac{\partial A_{1}}{\partial a} \cos \psi+2 A_{1} B_{2} \sin \psi \\
& -2 \omega A_{2} \frac{\partial^{2} u_{1}}{\partial \psi \partial a}-2 \omega B_{2} \frac{\partial^{2} u_{1}}{\partial \psi \partial \theta}-2 \omega B_{2} \frac{\partial^{2} u_{1}}{\partial \psi^{2}}-A_{1} \frac{\partial A_{2}}{\partial a} \cos \psi+A_{1} \frac{\partial B_{2}}{\partial a} \sin \psi \\
& -A_{1}^{2} \frac{\partial^{2} u_{1}}{\partial a^{2}}-A_{1} \frac{\partial A_{1}}{\partial a} \frac{\partial u_{1}}{\partial a}+u_{2} f_{x}+\left(A_{1} \frac{\partial u_{1}}{\partial a}+\omega \frac{\partial u_{2}}{\partial \psi}\right) f_{\dot{x}}+\frac{1}{2} u_{1}^{2} f_{x^{2}} \\
& +u_{1}\left(A_{1} \cos \psi+\omega \frac{\partial u_{1}}{\partial \psi}\right) f_{x \dot{x}}+\frac{1}{2}\left(A_{1} \cos \psi+\omega \frac{\partial u_{1}}{\partial \psi}\right)^{2} f_{\dot{x}^{2}} . \tag{4.4}
\end{align*}
$$

Denoting the right hand side of (4.3) by $f^{(2)}(a, \theta, \psi)$ we expand it in Fourier series

$$
\begin{equation*}
f^{(2)}(a, \theta, \psi)=f_{0}^{(2)}(a, \theta)+\sum_{n=1}^{M}\left[S_{n}^{(2)}(a, \theta) \sin n \psi+C_{n}^{(2)}(a, \theta) \cos n \psi\right] \tag{4.5}
\end{equation*}
$$

where M is a positive integer.
Note that a_{1}, b_{1} are present only in the sum $u_{1} f_{x}+\omega \frac{\partial u_{1}}{\partial \psi} f_{\dot{x}}$ and the latter can be written as:

$$
\begin{equation*}
u_{1} f_{x}+\omega \frac{\partial u_{1}}{\partial \psi} f_{\dot{x}}=a_{1}\left(\cos \psi \cdot f_{x}-\omega \sin \psi \cdot f_{\dot{x}}\right)+b_{1}\left(\sin \psi \cdot f_{x}+\omega \cos \psi \cdot f_{\dot{x}}+\ldots\right. \tag{4.6}
\end{equation*}
$$

or with regard to (2.9), (2.12):

$$
\begin{equation*}
u_{1} f_{x}+\omega \frac{\partial u_{1}}{\partial \psi} f_{\dot{x}}=a_{1} S_{1}^{\prime}(a) \sin \psi-\frac{1}{a} b_{1} S_{1}(a) \cos \psi+\ldots \tag{4.7}
\end{equation*}
$$

where non-written terms do not contain a_{1} and b_{1}.
Therefore, $S_{1}^{(2)}$ and $C_{1}^{(2)}$ are of the form:

$$
\begin{equation*}
S_{1}^{(2)}(a, \theta)=a_{1} S_{1}^{\prime}(a)+S_{1}^{(2)}(a, \theta), \quad C_{1}^{(2)}(a, \theta)=-\frac{b_{1}}{a} S_{1}(a)+\bar{C}_{1}^{(2)}(a, \theta) \tag{4.8}
\end{equation*}
$$

Equating the terms of like harmonics yields:

$$
\begin{gather*}
A_{2}(a, \theta)=-\frac{1}{2 \omega}\left\{a_{1} S_{1}^{\prime}(a)+\bar{A}_{1}^{(2)}(a, \theta)\right\}, \tag{4.9}\\
B_{2}(a, \theta)=\frac{-1}{2 \omega a}\left\{-\frac{b_{1}}{a} S_{1}(a)+\bar{C}_{1}^{(2)}(a, \theta)\right\}, \tag{4.10}\\
u_{2}=\frac{1}{\omega^{2}}\left\{f_{0}^{(2)}(a, \theta)-\sum_{n=2}^{M} \frac{1}{n^{2}-1}\left[S_{n}^{(2)}(a, \theta) \sin n \psi+C_{n}^{(2)}(a, \theta) \cos n \psi\right]\right\} \\
+a_{2} \cos \psi+b_{2} \sin \psi \tag{4.11}
\end{gather*}
$$

where a_{2}, b_{2} are two constants which are still undeterminate.
We impose on $A_{2}(a, \theta)$ and $B_{2}(a, \theta)$ the stationarity conditions:

$$
\begin{align*}
& A_{2}\left(a_{0}, \theta_{0}\right)=0 \quad \text { or } \quad a_{1} S_{1}\left(a_{0}\right)+\bar{S}_{1}^{(2)}\left(a_{0}, \theta_{0}\right)=0 \tag{4.12}\\
& B_{2}\left(a_{0}, \theta_{0}\right)=0 \quad \text { or } \quad \bar{C}_{1}^{(2)}\left(a_{0}, \theta_{0}\right)=0 . \tag{4.13}
\end{align*}
$$

The dephase angle θ_{0} of order ε^{0} is obtained by solving the equation

$$
\begin{equation*}
\bar{C}_{1}^{(2)}\left(a_{0}, \theta_{0}\right)=0 . \tag{4.14}
\end{equation*}
$$

Then, with the assumption $S_{1}^{\prime}\left(a_{0}\right) \neq 0$, the constant a_{1} is chosen such that

$$
\begin{equation*}
a_{1} S_{1}^{\prime}\left(a_{0}\right)+\bar{S}_{1}^{(2)}\left(a_{0}, \theta_{0}\right)=0 \quad \text { or } \quad a_{1}=a_{10}=-\bar{A}_{1}^{(2)}\left(a_{0}, \theta_{0}\right) / S_{1}^{\prime}\left(a_{0}\right) \tag{4.15}
\end{equation*}
$$

To determine b_{1} we have to examine the right hand side of the equation (4.4), whose Fourier expansion is of the form:

$$
\begin{equation*}
f^{(3)}(a, \theta, m \psi)=f_{0}^{(3)}(a, \theta)+\sum_{n=1}^{k}\left[S_{n}^{(3)}(a, \theta) \sin n \psi+C_{n}^{(3)}(a, \theta) \cos n \psi\right] \tag{4.16}
\end{equation*}
$$

where K is a positive integer.
It is not difficult to show that $C_{1}^{(3)}$ is of the form:

$$
\begin{equation*}
C_{1}^{(3)}(a, \theta)=\frac{-1}{a} b_{2} S_{1}(a)+b_{1} \widetilde{C}_{1}^{(3)}(a, \theta)+\bar{C}_{1}^{(3)}(a, \theta) . \tag{4.17}
\end{equation*}
$$

Indeed:

- The absence of a_{2} and the presence of b_{2} in (4.17) result from the structure of the sum

$$
\begin{align*}
u_{2} f_{x}+\omega \frac{\partial u_{2}}{\partial \psi} & =a_{2}\left(\cos \psi \cdot f_{x}-\omega \sin \psi \cdot f_{\dot{x}}\right)+b_{2}\left(\sin \psi \cdot f_{x}+\omega \cos \psi f_{\dot{x}}\right)+\ldots \\
& =a_{2} S_{1}^{\prime}(a) \sin \psi-\frac{1}{a} b_{2} S_{1}(a) \cos \psi+\ldots \tag{4.18}
\end{align*}
$$

where non-written terms do not contain a_{2} and b_{2}

- With regard to (2.6), the absence of b_{1}^{2} in (4.17) results from the structure of the sum:

$$
\begin{align*}
& \frac{1}{2} u_{1}^{2} f_{x^{2}}+u_{1}\left(A_{1} \cos \psi+\omega \frac{\partial u_{1}}{\partial \psi}\right) f_{x \dot{x}}+\frac{1}{2}\left(A_{1} \cos \psi+\omega \frac{\partial u_{1}}{\partial \psi}\right)^{2} f_{\dot{x}^{2}} \\
& =\frac{1}{2} b_{1}^{2}\left(\sin ^{2} \psi \cdot f_{x^{2}}+2 \omega \sin \psi \cos \psi \cdot f_{x \dot{x}}+\omega^{2} \cos ^{2} \psi \cdot f_{\dot{x}^{2}}\right)+\ldots \\
& =\frac{1}{2} b_{1}^{2} \widetilde{S}_{1}(a) \sin \psi+\ldots \tag{4.19}
\end{align*}
$$

where non written terms do not contain b_{1}^{2}.
Assuming that $\widetilde{C}_{1}^{(3)}\left(a_{0}, \theta_{0}\right) \neq 0$, the constant b_{1} is chosen as

$$
\begin{equation*}
b_{1}=b_{10}=-\bar{C}_{1}^{(3)}\left(a_{0}, \theta_{0}\right) / \widetilde{C}_{1}^{(3)}\left(a_{0}, \theta_{0}\right) \tag{4.20}
\end{equation*}
$$

Continuing the procedure presented, the result in higher approximation is obtained.
With regard that in the second approximation

$$
\begin{aligned}
& A(a, \theta)=\varepsilon A_{1}(a)+\varepsilon^{2} A_{2}(a, \theta) \\
& B(a, \theta)=\varepsilon^{2} B_{2}(a, \theta)
\end{aligned}
$$

The first stability condition (by neglecting the terms of order ε^{2}) is

$$
\begin{equation*}
\left(\frac{\partial A_{1}}{\partial a}\right)_{0}<0 \quad \text { or } \quad S_{1}^{\prime}\left(a_{0}\right)>0 \tag{4.21}
\end{equation*}
$$

and by neglecting the terms of order ε^{4}, the second stability is:

$$
\begin{equation*}
\frac{\partial B_{2}\left(a_{0}, \theta_{0}\right)}{\partial \theta}<0 \tag{4.22}
\end{equation*}
$$

5 Example

As an illustration, consider a self-excited system subjected to an external excitation in exact subharmonic resonance of order $1 / 3$:

$$
\ddot{x}+x=\varepsilon\left\{h\left(1-x^{2}\right) \dot{x}+e \cos 3 t\right\},
$$

where 1 is the own-frequency; $h>0$ is intensity of the self-excitation; $e>0$ and 3 are intensity and frequency of the external excitation.

In the first approximation:

$$
\begin{gathered}
f(a, \theta, \psi)=h\left(1-a^{2} \cos ^{2} \psi\right)(-a \sin \psi)+e \cos (3 \psi-3 \theta) \\
=-h a\left(1-\frac{a^{2}}{4}\right) \sin \psi+\frac{1}{4} h a^{3} \sin 3 \psi+e \cos (3 \psi-3 \theta), \\
S_{1}=-h a\left(1-\frac{a^{2}}{4}\right), \quad A_{1}=-\frac{h a}{2}\left(1-\frac{a^{2}}{4}\right), \quad C_{1}=0, \quad B_{1}=\frac{-1}{2 a} C_{1}=0, \\
u_{1}=-\frac{h a^{3}}{32} \sin 3 \psi-\frac{e}{8} \cos (3 \psi-3 \theta)+a_{1} \cos \psi+b_{1} \sin \psi, \quad a_{0}=2
\end{gathered}
$$

In the second approximation:

$$
\begin{aligned}
& f^{(2)}(a, \theta, \psi)= S_{1}^{(2)} \sin \psi+C^{(2)} \cos \psi+\frac{3}{4} h a^{2} a_{1} \sin 3 \psi-\frac{3}{4} h a^{2} b_{1} \cos 3 \psi \\
&-\frac{h^{2} a^{3}}{32}\left(3-2 a^{2}\right) \cos 3 \psi+\frac{5 h a^{2}}{16} A_{1} \cos 3 \psi \\
&+\frac{3 h e}{8}\left(1-\frac{a^{2}}{2}\right) \sin (3 \psi-\theta)+\frac{3 h^{2} a^{5}}{128} \cos 5 \psi-\frac{5 h e a^{2}}{32} \sin (5 \psi-3 \theta), \\
& S_{1}^{(2)}=-h\left(1-\frac{3 a^{2}}{4}\right) a_{1}-\frac{h e a^{2}}{32} \cos 3 \theta, \quad A_{2}=-\frac{1}{2} S_{1}^{(2)}, \quad B_{2}=-\frac{1}{2 a} C_{1}^{(2)}, \\
& C_{1}^{(2)}= \frac{h e a^{2}}{32} \sin 3 \theta+\frac{h^{2} a^{5}}{128}-A_{1} \frac{\partial A_{1}}{\partial a}+h A_{1}\left(1-\frac{3 a^{2}}{4}\right)+h b_{1}\left(1-\frac{a^{2}}{4}\right), \\
& \sin 3 \theta_{0}=-\frac{h^{2} a_{0}^{5}}{128} / \frac{h e a_{0}^{2}}{32}=-\frac{2 h}{e}, \quad a_{10}=-\frac{h e a_{0}^{2}}{32} \cos 3 \theta_{0} / h\left(1-\frac{3 a_{0}^{2}}{4}\right)=\frac{e \cos 3 \theta_{0}}{16} \\
& u_{2}=-\frac{3 h a^{2} a_{10}}{32} \sin 3 \psi+\frac{3 h a^{2} b_{1}}{32} \cos 3 \psi+\frac{h^{2} a^{3}\left(3-2 a^{2}\right)}{256} \cos 3 \psi-\frac{5 h a^{2}}{128} A_{1} \cos 3 \psi, \\
&-\frac{3 h e}{64}\left(1-\frac{a^{2}}{2}\right) \sin (3 \psi-3 \theta)-\frac{3 h^{2} a^{5}}{3072} \cos 5 \psi \\
&+ \frac{5 h e a^{2}}{768} \sin (5 \psi-3 \theta)+a_{2} \cos \psi+b_{2} \sin \psi .
\end{aligned}
$$

Substituting $a=a_{0}=2, \theta=\theta_{0}, a_{1}=a_{10}$ into $f^{(3)}(a, \theta, \psi)$ and retaining only the first harmonic $\cos \psi$ we obtain the equation determining b_{10} :

$$
-\frac{7}{2} h a_{10} b_{1}-\frac{9 h^{2}}{8} a_{10}=0 \quad \text { or } \quad b_{1}=b_{10}=-\frac{q h}{2 e}
$$

The first stability condition is satisfied: $S_{1}^{\prime}\left(a_{0}\right)=2 h>0$.
The second stability condition

$$
\frac{\partial B_{2}\left(a_{0}, \theta_{0}\right)}{\partial \theta}=\frac{-1}{2 a_{0}} \frac{3 h e a_{0}^{2}}{32} \cos 3 \theta_{0}=-\frac{3 h e}{2} a_{10}<0 \quad \text { or } \quad a_{10}>0
$$

Thus, stationary oscillation with large amplitude $\sqrt{\left(a_{0}+\varepsilon a_{10}^{+}\right)^{2}+\left(\varepsilon b_{10}\right)^{2}}$, $a_{10}^{+}=+\frac{e}{16} \sqrt{1-\frac{4 h^{2}}{e^{2}}}$ is stable; that with small amplitude namely, that corresponding to $a_{10}^{-}=-\frac{e}{16} \sqrt{1-\frac{4 h^{2}}{3^{2}}}$, is unstable.

6 Conclusion

The variant of the asymptotic procedure presented in $[2,3]$ can be used to examine oscillating systems in a special case. The structures of the equations of stationary oscillation in the first three approximations have been analyzed. The solution of order $0(\varepsilon)$ and $0\left(\varepsilon^{2}\right)$ are obtained in the second and third approximation, respectively. The stability conditions are simple enough.

This publication is completed with the financial support from The Council for Natural Science of Vietnam.

References

1. Mitropolskii Yu. A., Nguyen Van Dao, Applied asymptotic method in nonlinear oscillations, Kluwer Academic Publishers, 1997.
2. Nguyen Van Dinh, On a variant of the asymptotic procedure (for weakly nonlinear autonomous systems), Vietnam Journal of Mechanics, NCST of Vietnam 25(2003).
3. Malkin J. G., Some problems in the theory of nonlinear oscillation, Gostekhizdat, Moscow, 1956.

Received June 1, 2003

VỀ MỘT BIẾN THỂ CỬA TRÌNH TỰ TIỆM CẬN (TRƯỜNG HỢP ĐẶC BIỆT)

Biến thể của tr` inh tutiệm cận trình bày ở $[2,3]$ được áp dụng để khảo sát hệ dao động đ̛̉ trường hợp đặc biệt. Cấu trúc các phương trình dao động dừng được phân tích. Nghiệm sai kém $0(\varepsilon)$ và $0\left(\varepsilon^{2}\right)$ được tương ứng xác định ở xấp xỉ thứ hai và thứ ba. Các diều kiện ổn định khá đơn giản.

