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ABSTRACT. Higher order stochastic averaging method is widely used for investigating 
single-degree-of-freedom nonlinear systems subjected to white and coloured random noises. 
In this paper the method is further developed for two-degree-of-freedom systems. An appli­
cation to a system with cubic damping is considered and the second approximation solution 
to the Fokker-Planck (FP) equation is obtained. 

1 Introduction 

The stochastic averaging method was extended by Stratonovich (1963) and has a math­
ematically rigorous proof by Khasminskii (1963) . At present, the stochastic averaging 
method (SAM) is widely used in different problems of stochastic mechanics , such as vi­
bration, stability and reliability problems (see e.g. Ariaratnam and Tam , 1979; Bolot in, 
1984; Roberts and Spanos, 1986; Zhu, 1988) . It should be noted that principally only first 
order SAM has been applied in practice and usually to systems subject to white noise or 
wideband random processes. However , the effect of some nonlir.ear terms is lost during the 
first order averaging procedure. In order to overcome this insufficiency, different averaging 
procedures for obtaining approximate solutions have been developed ~see e.g. Mitropolskii 
et al, 1992; Red-Horse and Spanos, 1992; Zhu and Lin, Hl94; Zhu et al, 1997). Recently. 
a higher order averaging procedure using FP equation is developed in (Anh, 1993) and 
t hen applied to the systems having one degree of freedom under white noise and coloured 
noise excitations (Anh and Tinh, 1995; Tinh, 1999) . In t he present paper this procedure 
is further developed to lightly nonlinear systems subject to white noise excitations . An 
application to the system with cubic damping is considered. 

2 Higher approximate solutions to FP equation 

Consider the equations of motion of a mechanical system with two degrees of freedom 

xi + c11x1 + c12x2 = Efu( x, ±) + E2 h2(x, ±) + v'ccr1~(t) , 

X2 + C21X1 + C22X2 = Eh1(x, ±) + E2 h2(x, ±) + v'ccr2~(t), 
(2. 1) 

where Cij (i, j = 1, 2) , cr1 , cr2 are constants cr1 > 0, cr2 > 0, E is a small positive parameter, 
fiJ, ( i , j = 1, 2) are functions of x = (x i , x2) and i; = ( ±1, ±2) . The random excitat ion ~ ( t) 
is a Gaussian white noise process with unit intensity. 

103 



Suppose that the characteristic equation of the system (2.1) 

D(>.) = lcn - >. c12 I = O, 
C21 C22 - ).. 

has two distinct positive solutions Wf, w~, (0 < Wf < w~) . 
Now we introduce the principal coordinates u1, u2 from the primary coordinates x1, 

x2 by the relations 

where 
2 

d 
w1 - en 

1 = 
C12 

Substituting (2 .2) into (2. 1) we have 

iii+ wiu1 = c:Fn + c:2 F12 + vfcG1~(t), 

u2 + w~u2 = cF21 + c2 F22 + vfcG2~(t), 
where 

(2.2) 

(2 .3) 

(2.4) 

(j=l,2) . 

(2.5) 

According to the averaging method the state coordinates ( u 1, u2) are to be transformed 
into the variables a= (a1 , a2) and rp = (rp1,rp2) by the change 

(j=l,2) (2.6) 

By using differentiation formula [8] the system of equations (2.4) is transformed into the 
following system of equations 

. 2 r::. sin 'Pj · 
aj = c:A11(a, rp) + c: A2j(a, rp) - vcGj--~(t), 

Wj 

. 2 r::. cos lfj . 
lfj = Wj + c:B1j(a, rp) + c B2j(a , rp) - vEGj--~(t), 

ajWj 

where it is denoted 
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(2 .7) 
(j = 1, 2), 



The Fokker-Planck (FP) equation for the stationary probability density function W(a , <p) 
takes the form 

(2.9) 

where the operators [Aj , Bj]L[.], j = 1, 2 are defined as follows 

(2 .10) 

We seek the solution of (2.9) in the form 

(2.11) 

Substituting (2.11) into (2 .9) and comparing the coefficients of like powers of Ewe obtain 

(2 .12) 

(2 .13) 

(2 .14) 

From (2 .12) we get 

Wo = Wo(a) . (2.15) 

The arbitrary integration function Wo(a) must .be chosen from the condition for the func­
tion W1 (a, <p) to be periodic to <p. 

Thus, we get from (2 .13) 

(2.16) 
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where (.) is the averaging operator with respect to <p 

1 { 27r {27r 
( .) = (27r)2 lo lo .( .)dr.p1d<p2. (2.17) 

Substituting (2 .10) into (2.16) yields 

2 a . G] o2Wo(a) 
~ {aaj ( (A1j )Wo(a)) - 4wJ oa] } = 0. (2 .18) 

The second term W1(a, r.p) in (2.11) is determined from (2 .13) , using Fourier expansion 

[A1 , B1]L[Wo(a)] = Wo(a) LL ck1k2 (a) exp[i (k1<p1 + k2<p2)], (2.19) 
k1 k2 

where 

Ckok1 (a) = (
2

7r ) 2~0 ( a) fo2
7r fo2

7r [A1 , B1]L[Wo( a)] exp[-i(ko<po + kl <p1)]dr.pod<p1. (2 .20) 

Sustituting (2.19) into (2 .13) yields 

where 

(2.22) 

The arbitrary integration function W10(a) must be chosen from the condition for the 
function W2 (a, <p) to be periodic to <p. Similarly, we can find the third term W2 (a , <p) in 
(2 .11) . 

3 Application 

In order to illustrate the procedure proposed we consider the system with cubic damping 
whose equation of motion takes the form 

X1 + C11X1 - C22X2 = -2c-(h11±1 - hi2±2) - c2{3±r + .JE(71~(t), 

x2 - c22X1 + C22X2 = - 2ch12(±2 - ±1) + VE(72e(t) . 
(3.1) 

The physical model of this system is represented in Fig. l. Where kn , ki2, hn, hi2 , /3, (71 , 
(72 are positive constants, m1 = m2 = 1 and 

2 2 r:. . 
Ri = -c- {3±1 + yc(71~(t) , 

(3.2) 
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Fig. 1 

In this case we have 

fn = - 2h11 ±1 + 2h12±2, fi2 = - /3±{, 
h1 = 2h21±1 - 2h12±2, h 2 = 0, 

w2 _ en+ e22 =t= J(en - e22) 2 + 4e§2 
1,2 - 2 ' 

d _ en - e22 ± .JE . 
1,2 - 2 2 ' en e22 

VE d1 - d2 = - , 6 =(en - e22 )2 + 4e~2 . 
e22 

Substituting (3 .3) into (2.5) yields 

where 

- 2h12(l + d2) 
P12 = d d , 

1 - 2 

d2 /3 
Pl3 = d d , 

1 - 2 

2(d1h11 + h12) 
P21 = d d , 

1 - 2 

2h12(l + d2) d1 /3 
P22 = d d , P23 = - d d ' 

1 - 2 1 - 2 

From (2.8), using (2.2), (2.6) and (3.4), after calculations we obtain 
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(3.3) 

(3.4) 

(3.5) 

(3 .6) 

(3.7) 



Substit uting (3 .6) into (2 .18) we have 

(3 .8) 

The parameters in the expression of Wo(a) must satisfy the inequalities 

(3.9) 

Substituting (3.8) into (2.13), using (2.6), (2.8) and (3.5), after some calculations we 
obtain 

where 

2w1w2[ 2 2 
s12 = G2G2 G2(P11 + d1P12)(p11 + d2P12) + G1(P21 + d1p22)(P21 + d2P22) 

1 2 

- 2w1w2(P11 + d1P12)(P21 + d2P22)] . (3 .11) 

Substituting (3 .8) and (3.11) into (2.14) we have the equation for the arbitrary function 
W10 (a) in the form 

2 a c2 a2 2 a L {-a . [(A1j )Wo(a)W1o(a)] - --; a 2 [Wo(a)W1o(a)l} = - L ~[< A2j > Wo(a)] . 
j=l a1 4wj aj j=l a1 

(3 .12) 

From (3. 12), using (3 .6) and (3.7) we have 

W1o(a) = a 1ai + a2a§ + a12aia§ + anai + a22at (3.13) 

where 

3wid1~ 3w~d2~ 
a1 - - a2 - -

- 2(d1 - d2h1 ' - 2(d1 - d2h2' 

3w[d2(d1 - d2)~ . 3wid1(d1 - d2)~ 
an = 8(0-2 - d20-1) 2 ' a 22 = - 8(0-2 - dio-1) 2 ' 

(3.14) 

3wiw~~(d2Gh1 - d1Gi"f2) 
a12 = · 

2GyG§('y1+112) 

Thus, the second order approximate solution of the FP equation (2.9) for the system (3 .1) 
takes the form 

W(a, rp) = Wo(a){l + c: [Ww(a) + Wn(a, rp)]} . (3.15) 
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where Wo(a), Wn(a) and Wio(a) are defined in (3.8), (3.10) and (3.13), respectively. It is 
seen from (3.13) and (3.1) that the effect of the nonlinear term c2{3±3 is shown in (3.13) 
and (3.14). 

The approximate mean squares E[xiJ and E[x§] are to be found 

E[xlJ = lo2

7r lo2

7r 1= 1= xlW(a, c.p)da ida2d<pid<p2, (i=l,2) . 

Substituting (3.15) and Xi in (2.2), (2.6) into (3.16), after calculations we have 

[ 2] 'Yi + /'2 2 [ 3 3 E Xi = - + E33 ann2 + a2'Yi /'2 - 3ai2'Yn2hi + 1'2) 
'Yi /'2 'Yi 'Y2 

+ 2an('Yr + 'Yh2 - 2'Yn~ - 61'~) + 2a22h~ + 'Yhi - 2'Y2'Yf - 6'Yt)J, 

[ 2] dh2 + dhi 2 2 3 2 3 2 2 
E x2 = - + E 33 [ ai di 'Yi 'Y2 + a2d2'Yi /'2 - 3aini /'2 (di 'Yi + d21'2) 

~ - /'1/'2 'Yi 'Y2 

+ 2an(dhr + di!'h2 - 2dhn~ - 6dh~) 

+ 2a22(di1'~ + dhhi - 2dhni - 6dhr)J. 

In the case /3 = 0 (linear system) we have 

4 Conclusion 

E[::riJ = - 'Yi + /'2, 
'Yl/'2 

(3.16) 

(3 .17) 

(3. 18) 

For many years the stochastic averaging method has been a very useful tool for investigat­
ing non-linear vibration systems subject to white noise and coloured noise excitations. In 
this paper, the higher order stochastic averaging method is applied to non-linear systems 
with two degrees of freedom subject to white noise excitations. The application to the 
system with cubic damping is considered and shows the effect of the non-linear term to 
the mean square response of the system. 
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PHUONG PHAP TRUNG BiNH NG.Au NHIEN BAc cAo 
DOI v6"I Hit HAI BAc TV DO 

Phmmg phap trung bl.nh ngau nhien b~c cao da dm;rc ap d\mg r<)ng rai doi v&i cac h~ 
dao d<)ng phi tuyen m<)t b~c tv do ch!u kich d<)ng ngau nhien d~ng on trang va on mau. 
Trong bai bao nay, phmmg phap tiep t\lC dm;rc trlnh bay doi v&i cac h~ phi tuyen yeu hai 
b~c tv do ch!u kich d<)ng ngau nhien d~ng on triing. Sau do phmmg phap dm;rc ap d\mg 
de xac d!nh nghi~m xap xi b~c hai cua phmmg trlnh Fokker-Planck doi v&i h~ co can phi 
tuyen b~c ba. 
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