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A NUMERICAL ANALYSIS FOR SOME NON-LINEAR 
CONSTITUTIVE PROBLEMS IN SOLID MECHANICS 
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ABSTRACT. The paper deals with the application FEM for solving nonlinear constitutive 
problems in solid mechanics. The basis equations and algorithms of iterative processing are 
presented. Some programs written by languages Gibian and special operators in Castem 
2000 are established. The problem for the spherical shell made of elasto-plastic "material 
subjected to monotone increasing pressures is solved and calculated results are compared 
with the theoretical solution and give a good agreement. The influence of the pressure 
values on the plastic regions of sphere is investigated. The stress , displacement and plastic 
deformation states for spherical shell and plate with hollow acted on by complex cyclic loads 
are considered. These given programs can be applied in other problem with more complex 
geometry, load and material conditions. 

1 The finite-element formulation 

The governing equation of the finite-element method for small-deformation analysis is 
represented as [1 J: 

or 

l[B]T{a}dV =ls {N}T {T}ds + l {N}T{q}dV, 

l[BJT{a}dV = {R} , 

(1.1) 

(1.2) 

where {T} and {q} are surface and body forces, {R} is the equivalent external force 
acting on the nodal point, [BJ is the strain-displacement matrix and [NJ is the matrix of 
the displacement interpolation function . 

In an elastic-plastic problem, the constitutive relation depends on deformation history, 
an incremental analysis should be used and the total load { R} acting on a structure is 
added in increments step by step. To solve (1.2) for displacements {U} corresponding to 
a given set of external forces the iterative methods are usually employed. 

1.1 Equilibrium iterative methods 

The load at the (m + 1)-th step can be expressed as m+l{R} = m{R} + m+l{~R} then 
equation (1.2) becomes the equilibrium of the internal force m+1{F} with the external 
force m+1{R}: 

(1.3) 
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where 

The equation (1.3) can be rewritten as: 

(1.4) 

This equation can be solved on the basis of the N ewton-Raphson and Quasi-Newton meth­
ods. Assuming the solution at the (i -1)-th approximation m+l{U}i-l is known, expand­
ing 'ljJ(m+l{U}) into Taylor series at m+1{U}i- l and neglecting all high-oder terms, we 
received [1]: 

(1.5) 

where 

m+l{K}(i- 1) - [)FI - r [B]T[cepl I [B]dV 
- [)U m+l{U}Ci - 1) - lv m+l{U}(i - 1) 

(1.5a) 

is the tangent stiffne~s matrix. 
Assuming the solution at the (i - 1)-th approximation m+l{U}i-l is known, the dis­

. placement at i-th iteration will be: 

where {.6.U} (i) is defined from equation (1.5): 

(1.6) 

The force quantity { 'ljJ }i caculated at the i-iteration can be interpreted as an unbalanced 
residual force. The iteration continues until convergence criterion for example ll 'ljli II :S c is 
satisfied. 

Note that m+l{K}(i- l) is evaluated and factorized at each iteration step and therefore 
one ussually uses the Quasi-Newton method, it employs a lower-rank matrix and the initial 
stiffness matrix of the structure can be used for all incremental steps [1]: 

where 

[A](i- l) = [I ]+ {V}(i- l){W}(i-l)T, [I] is a unit matrix, 

{V}(i) = {R}(i) - (1 + c(il ){R}(i- 1), c(i) = G(b~(o~(l)' 

and 

At the present time, it is a best algorithm available. 
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1.2 Numerical implementation of the elastic-plastic incremental 
constitutive relation 

The strain-stress relations for an elastic-perfectly plastic material are expressed as [1]: 

(1.7) 
or 

where dcjj = Dijkzdcrkz is an elastic strain increment, and dcfj = d>.( of/ ocrij) is a plastic 
strain increment, which is obtained from the flow rule f , d>.. is a positive scalar factor of 
proportionality, which is non zero only when plastic deformations occur. The factor d>. is 
determined by substituting the incremental stress-strain relation: 

into consistency condition df = ::j dcrij = 0, so we have [I ]: 

(1.8) 

Then stress increment can be determined uniquely by the yield function f ( crij) and 
the strain increments dEij as: 

(1.9) 

where 

[ 

of of l Cijmn _>:i __ -;;;-Cpqkl 
ucrmn ucrpq 

cijkz - of of 
-;;;-Crstu~ 
ucrrs uEtu 

represents the elastic-plastic tensor of tangent modules for an elastic-perfectly plastic 
material. Cijkl is the tensor of elastic modulus. 

Thus in finite-element application, the constitutive relation of a material is reflected 
by this material stiffness matrix C:Jkl> which is used in forming the tangent stiffness (1.5a) 
and in the .relation between stress and strain increments (1.9). 

1.3 Some flow rules 

Some flow rules are used in this work: 

a. Flow Rule associated with Von Mis es yield function 
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To take the Von Mises yield function: 

(1.10) 

as the plastic potential, then the flow rule has the form: 

p - af -de . - d>.-- - d)..sij 
' 1 OO'i j ' 

where h = SijSij/2, Sij is the deviatoric stress tensor Sij = O'ij - p6ij, p = O'kk/3, k is the 
elastic yield stress in pure shear, k = 1J'o/V3, O'Q is the yield stress in simple tension and 

d).. 
{

= 0 wherever h < k2 or J2 = k2 , but 
> 0 wherever J2 = k2 and dh = 0. 

b. Flow Rule associated with Tresca yield function 
The yield function or plastic potential function has the form: 

f = 0'1 - 0'3 - 2k = 0, 

dh < 0, 

(1.11) 

where k = IJ'o / 2. According to the associated flow rule, the pricipal plastic strain incre­
ments satisfy the following ·relation: 

(def , de~ , de~) = d>.(1, 0, -1), d>. 2: 0. 

These flow rules are used in numerical examples in this work. 

1.4 The algorithm of resolution for mechanical elasto-plasticity 
problems 

• Initial displacement and load increments are given: 

b.U(O) = 0, 'l/J(O) = b.R. 

• For each iteration step i, the displacement, strain increments and the stress state are 
calculated: 

J\U(i) -- Ki- 1 . "1,(i - 1) f (1 6) u 'f/ rom . , 

u (i) = u (i- l ) + b.U(i) , 

b.e(i) = B · b.U(i) . 

For a given strain increment b.e(i) , before calculating the corresponding stress in­
crement b.IJ'~i) one must check first whether the material is in a plastic loading state 
corresponding to the given strain increment b.e(i) or not. 

• If f is a constitutive rule (for example (1.10) or (1.11)) and f( {o-i}) < 0 (u1 is stress 

state reached on the previous load step) the process is elastic and b.u~i) = C i jkzb.e(i). If 
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f ( { CJ1}) 2:: 0 the corresponding elastoplastic stress increment is computed by expression 
A ,.,. (i) _ cep A c-(i) 
L.l.v 2 - ij kl u ,_, · 

• The stress corresponding to U(i) is calculated as: CJ~i) = CJI + .6.CJ~i) . 
• Calculate the equivalent force of stress acting on the nodal points F2 and unbalanced 

force residual 7/J : 

F ii) = in B T CJ~i) dO, 

'lj;(i) = R(i) + .6.R - FJi) . 

If 117/J(i) II < c =? stop 

11'1/J(i) II 2:: c t hen 

i = i+ l. 

The algorithm in eastern 2000 is based on the mentioned above methods [2]. As 
illustrations for this algorithm, some programs are written by languages Gibian, using 
special operators in .eastern 2000 to solve elasto-plastic problems for the sphere and the 
plate with hollow subjected to different loads. The calculating results are presented in the 
next part . 

2 Numerical analysis for elasto-plastic sphere and plate with 
hollow subjected to different loads 

2.1 The spherical shell with increasing pressure 

Consider the problem of finding radial displacement field of t hick-walled spherical shell. 
The internal and external radii of the sphere are 0.01m and.0.02 m respectively. The sphere 
is made of Tresca elastoplastic material with following characteristics E = 2 · 105 MPa, 
v = 0.3 and limit elastic is Y = 300 MPa. The pression is distributed uniformly over 
the inner surface. This pression p is a function of time and varies from 100 MPa at t he 
moment t = 0 s to 358.9 MPa at t = 1000 s. This varying of pression conducts the perfectly 
elasto-plastic behaviour at R = 0.015 m. 

a. The analytical solution 
As the pressure is increased from zero the shell is first stressed elastically. The elastic 

Lame solution for radial displacement is [4]: 

!!_{(1-2v)r+ (l+v)b5} 
u = E 2r2 (2. 1) 

(:~ - 1) 
0 

where a0 and bo are the initial values of t he radii. 
With increasing pressure a plastic region spreads into t he shell. The plastic boundary 

is spherical surface of radius c. The displacement then is: 

Yao [ c
3 

2 c
3 

c J u(ao) = - (1-v)---(1 - 2v)(l - - ) - 2(1-2v)ln(-) . 
E a3 3 b3 ao 0 0 

(2.2) 
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The radius c can be defined from equation 

(c·) 2Y( c3
) p = 2Y ln ~ + 3 1 - b~ . (2.3) 

b. The numerical results in comparing with analytical solutions 
The numerical model for 1/4 above mentioned sphere uses 224 quadratic elements 

and 255 nodes (Fig. 1). The symmetry condit ions of the sphere lead to displacements at 
t he boundary radii Li : U Z = 0, L2 : UR = 0. The calculation has been realized with 
program written by languages Gibian, using operators of Castem 2000. The given values of 
radial displacement UR of the sphere at point A(l · 10- 2 , 0) are compared with analytical 
solut ion (2.1) at the moment t = 0 s and the solution (2.2) at the moment t = 1000 s in 
the following table . 

Table 1 

At the moment The calculated t he analytical UR Error 3 
(s) UR (Micron.) (Micron.) 

t=O 3.9821 4 0.44712 
t = 1000 27.403 28.3 3.1706 

Where micron= 10- 6 m and the error is enough small , it shows a good agreement of 
calculated results with theoretical ones . 

The maximum Tresca stress is 303 MPa at the internal boundary of the sphere and 
the plastic region is showed in the Fig. 1. The deformation of the shell at the moment of 
maximum load is presented in the Fig. 2. 

Fig. 1. The plastic region Fig. 2. The deformation of t he sphere 

The shadow region 0.015 m 2: R is plastic. 
c. The influence of the internal pressure changes on the displacements, m aximum stresses 
and plasticity regions of sphere 
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Consider the cases , when internal pression is function of time and increases from p = 
100 MPa at the moments t = 0 s to p = 150, 180, 200, 250, 400 and 450 MPa at t he 
t = 1000 s. The calculated results are given in the Table 1 with denoting: U AM, C, E:P, 

CJ M are t he radial displacement at the moment maximum load, radius of plastic region, 
maximum plastic deformation and maximum Tresca stress respectively. 

Table 2 

PMax(MPa) U AM (Micron) CJM(MPa) E:p C(mm) 
150 5.9732 250 - -

180 7.1678 300 1.45 x 10- 7 10.2 
200 8.0825 300 2.58 x 10- 4 10.4 
250 11.218 305 . 1.07 x 10- 3 11.5 

389.5 27.403 303 4.04 x 10- 3 15 
400 44.299 303 8.12 x 10- 3 17 
420 69.277 305 1.31 x 10- 2 20 

The Table 2 shows that when p 2: 180 MPa in the shell the plastic region appears and 
whole shell is in plastic state when p ~ 420 MPa. 

2.2 Response of a spherical she ll subject ed to a cyclic loading 

Consider t he sphere with the same characteristics but the pressure changes as a cyclic 
funct ion: the pressure increases monotonically from lOOMPa (t = Os) to 358.9MPa at 
the moment t = 1000 s and after that decreases to 100 MP a ( t = 2000 s) and this process 
repeats until t = 4000 s. 
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Fig. 3. Variation of force with time Fig. 4. The plastic deformat ion E:P 

The time interval [O, 4000] is discretized in subinterval t i = 250 s (Fig. 3 ) , we can receive 
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responses of the sphere at each interval ( i-step) . The Table 3 shows some corresponding 
results: 

Table 3 

Moment ti 2 4 6 8 10 12 14 16 

O"M x 108 (MPa) 3 3.01 2.34 1.68 2.34 3.01 2.34 1.68 
Max r:;P x 10- 3 0.705 4.64 4.64 4.64 4.64 4.64 4.64 4.64 

U AM (Micron) 9.79 27.407 22.254 17.099 22.254 22.409 22.256 17.1 

Note that the given stress and displacement results are changed as cyclic loading. In the 
Fig. 4 the maximum plastic deformation reaches at the boundary region, where 12 mm 
;::: R ;::: 10 mm and it is constant at all steps i ;::: 2. 

2.3 Response of a plate with hollow subjected to a sinusoidal loading 

Consider a quarter of rectangular plate. Its width and length are: a = 30 mm, b = 
100 mm (Fig. 5) , the radius of circular hollow is r = 10 mm. The plate is subjected to a 
cyclic sinusoidal loading (Fig. 6) on the line £67· On the L13: Uy =O, L24: Ux = 0 which 
satisfy symmetry geometrical condition. On the L45 the displacement values are given and 
equal to 0.06 mm. The plate is made of Von-Mises elastoplastic material with following 
characteristics E = 2.105 MPa, v = 0.3 and limit elastic is Y = 300 MPa. 

The model consists of 486 elements and 270 nodes. The mesh is divided as in the 
Fig. 5, the place near to hollow has smallest mesh density. 
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Fig. 5. The deformation of plate Fig. 6. Cyclic sinusoidal load 

The numerical results let us to know the stress , displacement and deformation states 
(Fig. 5). The diagram of various deformations and stresses, depending on the time are 
represented in the Fig. 7 and Fig. 8, the plasticity region in the Fig. 9 and the relation of 
deformation and stresses in the Fig. 10. 
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Fig. 'l. Variation of deformations with time 

I·~ l /\ n 
·~ I ; \ I \ 

I " 

[ ! I ! I 

I I 

I I r; 
II 
JI 

I 

~ 
I' 

r 

I I 
I I 
iJ 
I' 

1/ 

i 
\ 

I\ 
I \ I , 
I 

I 
I 

I I 

' i j 
I' 

Ii 
l 

I 

I ' j 

I\ 
I \ 

\ 
I 

Fig. 8. Variation of stresses with time 
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Fig. 9.The plasticity region Fig. 10. Relation of inelastic deformations 
and stresses 

The Fig. 10 shows that after a certain number of cycles , the response of the structure 
becomes periodic. This implies that c:P tend toward periodical fields and the structure 
reacheases plastic shakedown [5]. 

3 Conclusion 

In this work some elasto-plastic constitutive problems for sphere and plate under monotone 
increasing pressures and cyclic loading are solved. In the simple case, the solution is verified 
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with theoret ical solution and given errors are enough small. The calculated program results 
show that the algorithm and corresponding program written by languages Gibian and the 
special operators in Castem 2000 can give the displacement , stress and plastic deformation 
states of the structures in the more complex cases. 

This work is completed with financial support of the Council for Natural Science of 
Vietnam. 
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PHAN Tic H so MOT s6 BAI TOAN c6 UNG xu PHI TUYEN 
TRONG co HOC v AT RAN 

Bai bao de c~p den ling dvng phmmg phap phan tu hfru hi;m trong vi~c gi<h so cac 
bai toan v~t ran c6 lu~t ling Xlr phi tuyen. Cac phucmg trlnh ca bh va thu~t toan ciia 
qua trlnh l~p da duqc trlnh bay. M9t so chmmg trlnh da duqc thiet l~p bang ngon ngfr 
Gibian va cac toan t U- cua phan mem Castem 2000 de giai cac bai toan ban VO. Bai toan 
dan deo cho VO cau chtu ap trong tang clan da duqc giai so va so sanh phu hqp v&i nghi~m 
giai tich. Anh hm'.mg cua ap Ive den ban kinh vung deo cling duqc nghien cliu. Tmcmg 
ung suat bien di,mg, bien d0ng deo cua VO cau va ban c6 10 khoet ch!u tai tn;mg l~p theo 
chu t rlnh ciing da duqc tfnh toan. Cac chmmg trlnh nh~n duqc c6 the tfnh cho nhieu 
tmang hqp hlnh hQC, tai va V~t li~u phlic t~p khac. 
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