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ABSTRACT. The dynamic analysis of mechanisms with joints friction is complex since 
the frictional force depends nonlinearly on the resultant reactive force between the two 
mating surfaces of the joint. In this paper a non-iterative approximate method is used for 
determining the joint reaction forces and the driving torque of mechanisms is considered. By 
using the computing program MATLAB the dynamic forces of a six-link planar mechanism 
are cakulated with this method. 

1 Introduction 

Improvements in the mechanical characteristics of machines consist typically of trends 
to enhance their productivity by increasing the operational speed. In mechanism that 
operates at high speeds , dynamic forces are often greater than static or other externally 
applied forces and play an important role in the design, sizing of links and bearings. 

The dynamic analysis of a mechanism reveals all the joint reaction forces, including 
the driving torque required to generate a prescribed steady state motion. It is well known 
that by application of D ' Alembert 's principle, a dynamic problem can be converted into a 
static problem. So, every member of a mechanism can be considered to be in equilibrium 
under the combined effect of all the externally applied forces , the joint reaction forces and 
its own resultant inertia force and moment . By neglecting frictional forces at the joints, 
the joint reaction forces can be easily calculated from the dynamic equilibrium equations, 
which are linear algebraic equations [1, 2, 5]. 

The dynamic analysis of mechanisms with friction at the joints is complex since the 
frictional force depends nonlinearly on the resultant reactive force between the two mating 
surfaces of the joint . These joint reaction forces depend again on the external loading and 
on the motion of the mechanism. A solution with reasonable accuracy can be obtained and 
undue complications is avoided by using a non-iterative approximate method developed 
by Funk and Kong [3]. In this paper , the non-iterative method is applied to determine the 
joint reaction forces and the driving torque of a six-link planar mechanism with friction. 
A specialized code has been developed in the high-level programming language MATLAB 
for this study. 
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2 Mathematical model and calculating method 

In hinged joints, the friction occurs between the pin and the inside cylindrical surface of 
the hole in the connected link. The frictional force acts in a direction perpendicular to 
the normal contact force and will apply a frictional torque to t he joint [4]: 

MR . ( . . ) , GR 
(i,j) =sign 'Pi - l./) j r(i ,j)µ(i,j) (i,j)' (2 .1 ) 

where Ma,j) is the frictional torque acting at the joint (i,j) between i-th and j -th links, 
r(i ,j) is the pin radius of the joint , cpi and c{;j are the angular velocities of the i-th and j-th 
links respectively. The coefficient of friction µ 'c .. ) is normally larger than the dynamic 

i ,J 

coefficient of the sliding friction µ (i,j)' which can be experimentally determined as (see 
[3]) : 

µ (i,j) ::::::; (1, .. ., l. 57)µ(i,j) · (2.2) 

G~,j) denotes the joint reaction force exerted on the i-t h link by the j-th link and may be 
resolved into x- and y-components: 

GR( . . ) = (GR(. ') )2 +(GR(. ') )2 . i,J i,J x i ,J y (2.3) 

Substituting (2 .3) in (2.1), the frictional torque can be expressed in terms of G~,j)x and 

GR( . . ) as 
i,J y 

M R · ( · · ) I (i,j) = sign 'Pi - l./)j r(i,j)µ(i ,j) (GR( . . ) )2 +(GR(. ') )2 . 2J x 2J y (2.4) 

From (2.4), it is seen that the set of equilibrium equations for calculating the joint reaction 
forces includes nonlinear terms due to the effect of friction. This set of equations can 
be solved iteratively using the numerical method. However , a complex mechanism with 
numerous links may involve a large number of equations that requfre a very large number 
of iterative calculations until the solution converges. For such cases, it is important to 
find a solution procedure which is based on non-iterative approximations. 

Using the Taylor series expansion the first-order approximation of GR( . . ) from (2 .3) is 
i ,J 

defined by the terms of its Taylor series up to the first derivative as follows 

GR(.') = i ,J (GR )2 (GR )2 ~ G (GR G ) G(i,j)x 
(i ,j)x + (i ,j)y ~ (i ,j) + (i,j)x - (i,j)x ~(· .) 

t,J 

(GR G )G(i,j)y ~ 1 (G GR G GR ) + (i,j)y - (i,j)y ~ ~ ~ (i,j)x (i, j) x + (i ,j)y (i ,j)y ' 
(i ,J) (i ,J) 

(2.5) 

where G(i ,j) is the joint reaction force when the mechanism is assumed to be free from 
friction: 

(2.6) 
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Substituting (2.5) in (2.1), the expression for M (R .) can be written in the form 
i,J 

MR ~ . ( . . . ·) r(i,j) µ (i ,j) (Q QR Q QR ) 
(i,j) ~sign 'Pi - 'PJ Q ( .. ) (i ,j) x (i,j)x + (i,j)y (i,j)y 

i,J 

;:::::; (\i ,j)xG0,j)x + O(i ,j)yG0,j)y ' (2.7) 

where 8(i ,j)x and 8(i ,j)y are expressed in terms of the joint reaction force Q(i,j)x and Q(i,j)y 

as 

Q( .. ) s: - • ( . • ) 'Y i ,J x 
u(i ,j)x - sign VJi - l{Jj r(i ,j) µ(i ,j) 

2 2
, 

J(Q(i ,j)x) + (Q(i ,j)y) 

(2 .8) 

G(· .) s: - . ( • . . ) 'Y i,J y 
u(i,j )y - sign VJi - 'Pj r(i,j)µ(i,j) 

2 2 
· 

J(c(i ,j)x) + (G(i ,j)y ) 

(2.9) 

Note that Q(i ,j)x and G(i ,j)y can be determined from the dynamic equilibrium equations 
of the mechanism without friction at the joints and then, 8(i ,j)x and 8(i,j)y can be easily 
calculated by using equations (2 .8) and (2.9). When the values of o(i ,j)x and 8(i ,j )y are 
known, the frictional torque M(R .) and the components QR( . . ) , QR( . . ) of the joint reaction i,J i ,J x i ,J y 
force have a linear relation in (2. 7) with one another. Finally, the equilibrium equations for 
joint reaction forces with friction become linear algebraic equations. Hence, t his solution 
procedure can be well called as the non-iterative approximate method. 

The nonlinear terms truncated for equation (2 .5) will determine the accuracy of the 
solution. A thorough discussion of the truncation error is given in section 4. 

3 Dynamic force analysis of a six-link planar mechanism 

Consider a six-link planar mechanism shown in Fig. 1. Seven revolute pairs are required to 
connect the six links. The crank is termed as link 2 which is hinged to the ground link 1. 

1]5 

Fig. 1. Kinematic diagram of the six-link planar mechanism 
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First , by kinematic analysis , we determine the angular accelerations of the links and 

the linear accelerations of the center of mass Si (i = 2, .. . , 6). The configuration of the 
crank is also prescribed by the angle <p2 and we have to determine the configuration of 
the other four link expressed by the rotating angles <p3, <p4, <ps and <p5 . The kinematic 
rela tionships for the links of the mechanism can be expressed in the form 

l2 cos <p2 + l3 cos <p3 - l4 cos <p4 - li = 0, 

l2sin <p2 + l3sin <p3 - l4sin <p4 = 0, (3.1) 

l2 cos <p2 + l3s cos( <p3 + (Js) +ls cos <ps - l5 cos <p5 - li - l15 cos f31 = 0, 

l2 sin <p2 + l3s sin ( <p3 + (33) +ls sin <ps - l5 sin <p5 - l15 sin !31 = 0, 

where li denotes the length of the i-th link. By differentiating (3.1) with respect to time, 
t he relationships for tPi ( i = 2, . . . , 6) can be written in matrix form as 

[-13~~~!~ p3
) ~;,s~:;. -ls ~n ~5 l, ,! ~6 l [~:] = [~:2:~~~2] tP2 · (3. 2) 

l3scos(<p3 +(33 ) 0 lscos<ps - l5cos cp5 cp5 - l2cos cp2 -

Different iating (3.2) again with respect to time, the relationships for <Pi (i = 2, ... , 6) take 
the form 

[_j~~~!~ Ps) ~~.'~:;, --lJn ~5 16 ,L ] [~:] - (3·3) 

l3s cos( <p3 + (33) 0 ls cos <ps -l5 cos <p5 <P6 

[ 

l2</52 sin cp2 + l2 cp~ cos <p2 + l3cp§ cos <p3 - l4cp~ cos <p4 l 
-l2</52 cos <p2 + l2cp~ sin <p2 + l3cp§ sin <p3 - l4cp~ sin <p4 

l2cp·2 sin <p2 + l2cp~ cos <p2 + l3s tP§ cos( <p3 + (33) + ls cp§ cos <ps - l5cpg cos <p5 · 
-l2cf;"2 cos <p2 + l2cp~ sin <p2 + l3stP§ sin( <p3 + (33) + ls cp§ sin <ps - l5cpg cos <p5 

Thus , the rotating angles, angular velocities and angular accelerations of the links can be 
calculated from equations (3.1) , (3.2) and (3.3). The position of the center of mass Si in 
the fixed coordinate frame { x, y} is given by 

[XSi] = [XQi] + A i [~Si] , 
YSi Yoi r/Si 

(3.4) 

where ~Si, r/Si are coordinates of Si in t he moving coordinate frame {~i, r}i} as shown in 
Fig. 1: 

~Si= lsi cos ai, r/Si = lsi sin ai, (i = 2, ... , 6), (3.5) 

and xoi, Yoi are coordinates of the origin of the frame { ~i, r}i} in the fixed frame { x, y}. 
The matrix A i is defined by 

[
co. s 'Pi 

A i = 
Slll<pi 
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Hence, the components of the acceleration of Si can be derived by the second derivative 
of equation (3.4) with respect to time (see also [6]): 

[~Si] = [~Oi] +(<Pi I - <Pr E)Ai [~Si ] ' (i = 2, ... '6) , 
y~ x~ ~~ 

(3.7) 

where 

[o -1] 
I= I 0 ' E= [~ ~] · (3.8) 

The next step will be the formulation of the dynamic equilibrium equations for the 
i-th link of the mechanism. The link is subjected to its gravitational force Pi· The inertia 
force and the inertia torque are known as follow 

M qt - J .. 
i - Sil.pi, (3.9) 

where m i is the mass of the i-th link and Jsi represents the moment of inertia of the link 
about the axis passing through the center of mass Si and perpendicular to the plane of 
motion. Fig. 2 shows an exploded view of the mechanism with the free-body diagrams of 
each links, where cR(. ') = cR(. ')' M(R ') = M (R ') • A driving torque Md applied on the crank i ,J J,i i ,J J,i . 
2 and a loading torque M6 acts on the output link 6. 

M(R ') l ,J 

(2,1) (6,1) 

Fig. 2. Free-body diagrams for links 2, 3 and 6 

By using D' Alembert 's principle, dynamic equilibrium equations for each link are 
established. Combining these equations yields 
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G~, l)x + G~,3)x - Fi! = 0, 

G~, l)y + G~, 3)y - Fii - P2 = 0, 

- G~, 3)xl2 sin rp2 + G~,3)y l2 cos rp2 - M~, i ) - M~,3) - M:p 

+ F:J!ls2 sin ( rp2 + a2) - F:j:ls2 cos( rp2 + a2) - P2ls2 cos( rp2 + a2) + Md = 0, 

G~,4)x + G~,5)x - G~,2)x - Ff! = 0, 

GR GR GR Fqt P o (3,4)y + (3,5)y - (3,2)y - 3y - 3 = ' 

- G~,4)x l3 sin rp3 + G~,4))2 cos cp3 - G~,S)x l35 sin( rp3 + f33) · 

+ G~,s)yl35 cos(rp3 + f33) + Ma,2) - Ma,4) - M a,s) - Mft 

+ Ff!ls3 sin( rp3 + a3) - Ff:ls3 cos( cp3 + a3) - P3ls3 cos( cp3 + a3) = 0, 

GR GR Fqt - o (4,l)x - (4,3)x - 4x - ' 

G~, l)y - G~,3)y - Ft: - P4 = 0, 

G~,3)x l4 sin rp4 - G~,3 )yl4 cos rp4 - M~, l ) + M~,3 ) - Mt 

+ FJ;ls4 sin( rp4 + a4) - FJils4 cos( rp4 + a4) - P4ls4 cos( rp4 + a4) = 0, 

GR GR Fqt - o (5,6)x - (5 ,3)x - 5x - ' 

Gn,6)y - Gn,3)y - Fii - Ps = 0, 

- Gn,6)x ls sin rps + Gn,6)yls cos rps + M a.3) - M a.6) - Mlt 

+ Fi!zss sin( rps+ as) - Fi:zss cos( rps + as) - Pslss cos( rps+ as) = 0, 

GR GR Fqt - 0 (6, l)x - (6,5)x - 6x - ' 

G~, l)y - G~,s)y - F3: - P5 = 0, 

G~,s)x l5sinrp5 -- G~,s)y_ l5cosrp5 + Ma,s) - Ma,i ) - Mgt 

+ F3!ls6 sin( rp5 + a5) - F3:ls6 cos( rp5 + a5) - P5ls5 cos( rp5 + a5) = 0, 

(3 .10) 

(3.11) 

(3 .12) 

(3 .13) 

(3 .14) 

(3.15) 

(3 .16) 

(3.17) 

(3 .18) 

(3. 19) 

(3 .20) 

(3.21) 

(3.22) 

(3 .23) 

(3.24) 

By solving these fifteen equations, we can determine the driving torque Md and fourteen 
components of t he joint reaction forces. With t he help of equation (2. 7) , the equilibrium 
equations for t he complete mechanism can be written in the form 

D·g=b, (.3 .25) 

where 
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1 0 1 0 0 0 0 

0 1 0 1 0 0 0 

-(\2,l)x -6(2 ,l )y - y2 - 6(2,3)x X2 - J (2 ,3)y 0 0 0 

0 0 - 1 0 1 0 1 

0 0 0 -1 0 1 0 

0 0 6(3, 2)x 6 (3,2)y - y 3 - 6 (3 ,4)y x3 - 6(4,3)y Y35 - 6(3,5Jx 

0 0 0 0 -1 0 0 

D = 0 0 0 0 0 - 1 0 

0 0 0 0 Y4 + 6(4,3)x X4 + 6(4,3)y 0 

0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 

0 0 0 0 0 0 6 (5,3)x 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 ·o 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

X35 - 6(3 ,5)y 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 - 6 (4,l )x - 6(4, l )y 0 0 0 0 0 

0 0 0 1 0 0 0 0 

- 1 0 0 0 1 0 0 - 0 

6 (5,3) y 0 0 -y5 - 6(5,6)x X5 - 6(5,6)y 0 0 0 

0 0 0 -1 0 1 0 0 

0 0 0 0 - 1 0 1 0 

0 0 0 Y6 + 6 (6 ,5)x - X5 + 6 (6,5)y - 6 (6, l )x -6(6,l )y 0 
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c~,l)x 
c~,1)y 
c~,2)x 
c~,2)y 
c~,4)x 
c~,4)y 
G~,5)x 

g= c~,5)y 
c~, l)x 
G }t,1)y 

c~,6)x 
c~,6)y 
c~,l)x 
G (6,1)y 

Md 

where 

h = 

Eqt 
2x 

Eii + P2 
M:},t - Ei,!Zs2 sin( <p2 + a2) + (Fi,i + P2)ls2 cos( <p2 + a2) 

Fqt 
3x 

Fji + P3 
Mjt - Fj!ls3 sin(cp3 + a3) + (Fji + P3)ls3 cos(cp3 + a3) 

Fqt 
4x 

FJi + P4 
Mlt - FJ;ls4sin(cp4 + a4) + (FJi + P4)ls4cos(cp4 + a4) 

r;iqt 
r5x 

Fi~+ Ps 
Mlt - Fl;ls5 sin(cp5 + a5) + (Fli + P5)ls5 cos(cp5 + a5) 

F.qt 
6x 

F3i + P5 
M5 + Mlt - Fl!Zs6 sin( 'P6 + a6) + (Fli + P6)ls6 cos( 'P6 + a5) 

Xi=licos<pi, Yi = lisin<pi, (i=2, ... ,6) 

X35 = l35 cos(cp3 + (33), Y35 = [35 sin(cp3 + (33). 

The values of 8(i, j) x and 8(i ,j)y are determined by using (2 .8) and (2.9) , then all the 
required quantities can now easily calculated from (3.25) . 

4 Numerical results and discussion 

The main results of this study can be observed with a specific six-link mechanism. The 
linkage kinematic and dynamic parameters are given in Table 1. The coefficient of friction 
µ(i ,j) = 0.15 and the pin radius r( i, j) = 25 mm are chosen for all the joints. 

Table 1. Parameters of the six-link mechanism 

Link i li(mm) f3i(grad) lsi(mm) ai(grad) mi(kg) Jsi(kgmm'l.) 

1 308 18.2 
2 143 54 12.8 34 36070 
3 251 10.6 164 5.3 45 120340 
4 315 98 12.0 14 15420 
5 420 321 4.3 13 22760 
6 270 130 10.2 22 23560 

For comparison between the calculating results with friction and without friction we 
consider three cases: The crank rotates at constant speeds of 600 rotations-per-minute 

72 



(rpm)·, 3000 rpm and 4500 rpm. Fig. 3 and Fig. 4 show some results obtained for the case 
of high speed (case 2). The resultant reaction forces at joint (1 , 2) between the ground link 
and the crank and joint ( 4, 1) of the mechanism without and with friction are displayed 
in Fig. 3. The driving torque is shown in Fig. 4. 

Gc2,1) 
R [NJ 

Gc2.1) 

Gc4,l) 
[N] 

G~, 1) 

4 --- ---- -+------

' 
' ' 

- - _1_ - - - - - - - - ._ - - - - - -

' ' 
' 2 ________ , ___ _ _ 

' ' 
' ' 

0'-----.l....----'----'----'----'-------1_J 
0 6 2 
x 10 

4 6 8 10 12 

6.-------.---...,..,------.---...---~--~~ 

4 --------+------ -~ 
' 
' 

' ' 
' 2 ---- ----7-----

2 4 

' ' -- -- -.-- - ------.- -------

6 

' 
' 

8 10 12 
without friction, with friction 

<p2 [rad] 

Fig. 3. Reaction forces at joint (1, 2) and joint (4 , 1) at constant speed of 3000 (rpm) 

Md [Nm] 600000 

400000 

200000 

0 

-200000 

-400000 

••••••••T•••••• 

- - - - - - - - - r - - - - - - - - I"' - - - - - - - - - - - - - - -1- -

' 
' 
' - - - - - - - - r- - - - - - - - - I"' - - - - - - - - - - - - - - - -·- -

--------+--------~- - ----~--------~--------~-- -
I t I I 1 

' ' ' ' 
--------+--------~- - ----~--------~--------~--

' ' 

-600000'-----~--~--~~--~--~--~~ 
0 2 4 6 8 10 12 <p2 [rad] 

without friction, ---with friction 

Fig. 4. Driving torque Md at constant speed of 3000 (rpm) 

In order to evaluate influences of friction on the driving torque, the root-mean~square 
value (RMS-value) of this quantity is used. The difference between RMS-value of driving 
torques Md for the mechanism without friction and with friction increases proportionally 
with the increase of operational speed as shown in Table 2. For example, at the speed of 
3000 rpm, the driving torques calculated under consideration of friction is 12.83 greater 
than one for the mechanism which is assumed to be free from friction . Therefore, the 

73 



influences of friction at the joints of the mechanism may be very important for determining 
t he driving torque required to generate a prescribed steady state motion at high speeds. 

Table 2. RMS-value of the driving torque at various speeds of the crank 

Rotating speed (rpm) 600 3000 4500 
RMS-value wit hout friction (kNm) 6.4 159.48 359 .25 
RMS-value with friction (kNm) 7.2 179.89 405.19 

As indicated in section 2, the method used for the calculation in this example provides 
an approximation to the solution rather t han . the t rue value . The Taylor series of GfR .) 

i,J 
was truncated to the second term. Therefore, t he truncation error E is introduced. he 
expression for the t hird term can be written in the form 

p = ~{ (G~,j)x - G(i,j)x)
2 + (G~,j)y - G (i,j)y)

2 

2 . G(i,j) 

_ [(G0,j)x - G(i,j)x)G(i ,j)x + (G0,j)y - G (i,j) y)G(i,j)y r} 
(G(i,j))3 . 

( 4.1) 

Note that t he value of p is smaller than the second term in equation (2.5). In addition , 
the coefficient of M(R .) in equations (3.12), (3.15), (3.18), (3.21), (3 .24) can be evaluated 

i,J 

as 1/ Zi. From equation (2.1), the coefficient of G0,j) is r (i,j) µ Ci,j/k In engineering, the 

value of µ '{i, j) is normally smaller than 0,3 and r(i ,j)/l i < 0.5 . Hence, the truncation error 
E is smaller 0.15p. So, it can be concluded t hat t he non-iterative approximate method 
provides a solution with sufficient accuracy for t his problem. 

5 Conclusions 

The obtained results show that the friction at t he joints has a great influence on the 
driving torque required for a prescribed steady state motion at high operational speeds of 
mechanisms. In addition, a significant difference between t he curves of t he joint reaction 
force without friction and ones with friction at high speed can be clearly observed . So," 
it can be seen that the frictional effect at the joints in such cases may be of considerable 
magnitude. 

This publication is completed with the financial support from The Council for Natural 
Science of Vietnam. 
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A ;' "' ,,./ /' A .j. 

PHAN TICH DONG LVC HOC CO CAU SAU KHAU PHANG 
,J ,,./ ,.. ,.. I' 

KHI KE DEN MA SAT TAI CAC KHOP 

Phan tich d(mg h,rc h9C cila ca cau phiing khi ke den ma sat t0i cac kh&p la bai toan 
phuc t0P do h,rc ma sat phv thu(>c phi tuyen vao thanh phan phan h,rc tong hqp giua 
hai be m~t tiep xuc cila kh&p. Trong bai bao nay, m(>t phuang phap xap xi khong l~p 
da duqc de C~p tai de xac dlnh cac phc\n h!C khap Va momen phat d(mg CUa cac ca cau 
phiing. Nha phuang phap nay, cac phan ll!C d(mg h,rc cila CO' cau sau khau phiing da duqc 
tfnh toan bang h$ chuang trl.nh tfnh MATLAB. 
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