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ABSTRACT. The design of active TMD for multi-degree-of-freedom systems subjected 
to second order coloured noise excitation is considered using the linear quadratic optimal 
theory. A detailed numerical study is carried out for a 2-DOF system. It is shown that the 
effectiveness of active TMD is better than the one of passive TMD. 

1 Introduction 

Under environmental loading structures and machines may produce large undesired vibra­
tions, which can reflect into their quality and durability. The use of tuned mass dampers 
(TMDs) helps to reduce the undesired vibrations in the primary systems. The passive 
TMDs [1-6] can only store or dissipate vibration energy, hence their application to the 
reduction of undesired vibrations is limited. This disadvantage of passive TMDs can be 
improved by applying to the passive TMDs an actuator force. In this case passive TMD 
becomes active TMD [7-11], which can change the system energy. In the paper [6] the 
design of optimal passive TMD for MDOF systems subjected to the second order coloured 
noise excitation has been investigated in order to minimize the sum of response mean 
square components of the primary system with a given ranking priority. In this paper an 
active TMD is considered based on the designed passive TMD. The main problem is to 
determine the optimal control force applied to the passive TMD. 

2 Second order coloured noise excitation 

The second order coloured noise process p(t) is considered as a stationary response of the 
following filter of white '. noise 

v(t) + 2hp(t) + n 2v(t) = O"~(t), (2 .1) 

where h, fl,(]" are positive constants, ~(t) is the stationary Gaussian white noise process 
with unit intensity. The spectral density function of p(t) is defined as 

(]"2 
S (w) - (2 .2) 

P - 2n [4h2w2 + (02 - w2) 2 J 

It is shown in [6] that the class of second order coloured noise processes (2.1) contains the 
white noise as well as narrow band processes. 
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3 Optimal active TMD 

The primary system consists of n mass m 1 , m 2 , .. . , mn put succeed one to another, 
each has its stiffness and damping coefficients denoted subsequently as k1 , k2 , . . . , kn; 

c1 , c2 , . . . , Cn. The system is subjected to a ground excitation modeled by a second order 
coloured noise p(t) , (2.1) . To suppress undesired large vibrations of the primary system, 
an optimal TMD of mass mo is connected to the mass mn (see Fig. l). Suppose that the 
optimal values ko , co of the TMD are known according to the selection procedure proposed 
in [6]. 

(l'MD) 
........ --..--r 

ko 

C3 Xz 

,;_ Y(t) = p(t) 
x, 

Fig. 1. System with active TMD 

The passive TMD will become an active TMD if a control actuator force u(t) based on 
the mass mn is applied to the passive TMD . The design problem of optimal active TMD 
is how to determine the optimal control force u(t) . 

The equations of motion for the system with active TMD are described in the system 
of linear differential equations as follow 

M X(t) + CX(t) + KX(t) = F(t) + Eu(t), (3.1) 

where 

X(t) = (x1(t) , x2(t), . . ., Xn(t) , xo(t) f , (3.2) 

mi 0 0 0 
0 m2 0 0 

M = 
0 0 mn 0 
0 0 0 mo 
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C1 + C2 - c2 0 0 0 0 
- c2 C2 + C3 -C3 0 0 0 

0 -C3 C3 + C4 0 0 0 

C = 
0 0 0 Cn-1 + Cn - Cn 0 
0 0 0 -Cn Cn +Co - co 
0 0 0 0 - co co 

ki + k2 - k2 0 0 0 0 
-k2 k2 + k3 -k3 0 0 0 

0 -k3 k3 + k4 0 0 0 

K= 
0 0 0 kn-l +kn -kn 0 
0 0 0 -kn kn+ ko - ko 
0 0 0 0 -ko ko 

The base excitation force vector is 

F(t) = (p(t)m1 , p(t)m2, .. . ,p(t)mn,p(t)mo)T. (3.3) 

The gain vector of control force is 

E= (o,o, .. . , 1,-1)r. (3.4) 

Introduce the vector of state variables 

z(t) = (x1(t) , x2(t) , . . . , Xn(t) , xo(t), ±1(t), ±2(t) , ... , ±n(t), ±o(t))T. (3.5) 

The equation of motion (3 .1) can be rewritten in state variables as following 

i = Az + Bu(t) + HF(t), (3 .6) 

where the matrices A(2n+2) x(2n+2) ' H (2n+2) x(n+1) , vector B(2n+2)xl take the form 

where 

I= diagonal(l, 1, . .. , 1), i = O(l)n. 

Here, wi, ~i are the natural frequency, damping ratio of the separate mass mi , respectively. 
The effectiveness of TMD again undesired vibrations can be improved by an adequate 
control force acting on the TMD . The objective of the study is how to define the optimal 
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control force u(t), which depends on the chosen control objectives. In the paper the 
following performance index of control is minimized 

(3.8) 

where tn is control time, Q is a semi-positive weighting matrix, (3 is a non-negative value. 
To solve the optimal control problem (3 .8) subjected to the constrains represented by (3.6) 
one introduces firstly the Hamilton function with Lagrangian multiplier vector .\(t) 

1 1 
H = 2zr(t)Qz(t) + 2(3u2 (t) + .\T(Az +Bu+ HF - z) . 

The necessary conditions for optimality are determined by the following equations 

with boundary condition 

oH 
au= o, 

·r oH >- =-­oz ' 

.\(T) = 0. 

Substituting (3.9) into (3 .10) yields to differential equations 

_\(t) =-AT .\(t) - Qz (t) 

(3 .9) 

(3.10) 

(3.11) 

(3 .12) 

and the relation between the optimal control force and Lagrangian multiplier vector 

1 
u(t) = - fJBT .\(t). (3 .13) 

Using the feedback information on the system response 

>-(t) = Sz(t) , (3 .14) 

one can express the control force u(t) in terms of system response 

(3.15) 

where the matrix S ( t) satisfies the Ricca ti equation 

(3.16) 

Hence, the required control force u(t) is determined by (3.15) . The control system response 
is to be found from the systems of differential equations 

(3 .17) 
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4 Example of 2 DOF system 

In this section we investigate in more detail the effectiveness of active TMD for two-degree­
of-freedom systems using numerical method. A model of 2-DOF system with active TMD 
is considered in Fig. 2. The active tuned mass damper mo here is connected to mass m 2 
by a spring ko , a damper co and an applied control force u(t). 

The corresponding system of motion is given as follows 

where 

Xi = Yi, 

Yi = 9i , 

p= q , 

q = - 2hq - 0 2p + a~(t) , 

i = 1(1)2, 

2 2 1 
go= w0x2 - w0xo + 2wo~oY2 - 2wo~oYo - - u(t) + p(t) , 

mo 
91 = ( - wi - µ2wi) x1 + µ2wix2 + ( - 2w16 - 2µ26w2)Y1 + 2µ26w2y2 + p(t), 

2 ( 2 µo 2) µo 2 c 92 = W2X1 + - W2 - - Wo X2 + - WoXo + 2.,,2W2Y1 
µ2 µ2 

( 4. 1) 

+ ( - 26w2 - 2µ0 fowo)Y2 + 2µ0 fowoyo + J__u(t) + p(t) . (4.2) 
µ2 µ 2 m 2 

Fig. 2. Model of 2-DOF system with active TMD 

For numerical study the following values of system parameters are considered 

w1 = 40 , w2 = 50, 6 = 0.25, 6 = 0.1 , µ2 = 0.3, mi = 1 (4.3) 

and t he excitation parameters as 

h = 2, n = 30, a = 1. (4.4) 

Given values ( 4.3) and ( 4.4) the following parameters of passive TMD can be found using 
the selection procedure proposed in [6]: 

µo = 0.04, w0 = 29.25 , fo = 0.026 . ( 4.5) 
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Determine now the optimal control force u(t). For that purpose one solves the Riccati 
equation (3.16) where 

0 0 0 1 0 0 0 
0 0 0 0 1 0 0 

A = 
0 0 0 0 0 1 0 

- 2350 750 0 - 23 3 0 
, B= 

0 
2500 - 2614.075 114.075 10 - 10.2028 0.2028 3.333333 

0 855.5625 - 855 .5625 0 1.521 - 1.521 - 25 

(4.6) 

1 0 0 0 0 0 
0 1 0 0 0 0 

/3 = 10-6 ' Q= 
0 0 0 0 0 0 
0 0 0 0 0 0 

(4 .7) 

0 0 0 0 0 0 
0 0 0 0 0 0 

4. 1 Numerical calculation 

Using Matlab R12 one has 

0.03184132444405 0.00097724714208 0.00050570471817 
0. 00097724 714208 0.01971750713149 - 0.00005171977745 

S= 
0.00050570471817 - 0.00005171977745 0.00006762830833 
0.00040555100811 - 0. 00006183295253 0.00001957380918 
0.00018990837907 0.00007189707920 0.00001554588380 
0.00001698304480 - 0.00001868091846 0.00000207278451 

0.00040555100811 0.00018990837907 0.00001698304480 

-0. 00006183295253 0.00007189707920 -0. 00001868091846 

0.00001957380918 0.00001554588380 0.00000207278451 

0.00002086465134 0.00000933367 450 0.00000149107150 
0.00000933367 450 0.00000902250590 0.00000102948081 
0.00000149107150 0.00000102948081 0.00000021630954 

G = 102 [2.08451810241633 7.06679921167735 - 0.00000000005156 

- 0.06164539266206 0.04337999496807 - 0.01976135826795] ' ( 4.8) 

where S is Riccati matrix, G is gain matrix. 

(4 .9) 

T he control force is 

u = -Gz, (4 .10) 

6 



where z = [x1 x2 xo Y1 Y2 Yo]· , 
To estimate the effectiveness of passive and active TMD one can use ratios kp and kA 

defined as 

k \x~il 
Ai= T2J , 

\XOi 
(i = 1(1)2) ' (4.11) 

where \x6i), \x~il' \x~il are the mean squares of Xi (i = 1(1)2) in three cases: without 
TMD, with passive TMD and with active TMD, respectively. These mean squares can be 
obtained by using equation system (4.1) to form following moment equations [4] 

~ [! acp) ; acp )] ; acp) ; 2 acp) 1 2;a
2
cp) ~ \YiOXi +\9i( ... )0Yi +\qap +\(-2hq-D p)aq +20" \()2q =0 , (4.12) 

where ( ... ) is the mathematical expectation and the functions are selected as follow 

'Po = x6, cp1 =xi, - 2 'P2 - X2, cp3 = y5 , cp4 = Yf , cp5 =Yi, 
'P6 = XoX1, cp7 = XoX2 , cps= xoyo , cpg = xoy1, 'PlO = XoY2, cp11 = xop, 
cp12 = xoq, 'Pl3 = X1X2, cp14 = X1Yo , cp15 = x1y1, 'Pl6 = X1Y2, l{J17 = x1p , 

(4 .13) 
'Pl8 = X1q, cp19 = x2yo , cp20 = X2Y1, cp21 = x2y2 , 'P22 = X2p , cp23 = x2q, 
cp24 = YoY1, cp25 = YoY2, 'P26 = YoP, cp27 = Yoq, cp2s = Y1Y2, cp29 = Y1P, 
cp30 = y1q, cp31 = Y2P, cp32 = Y2P, cp33 = P2, cp34 = q

2
' cp35 = pq. 

Numerical calculated results are put into Table 1. The mean squares of x 1 , x2 , control 
force u(t) and base excitation force p(t) are calculated in three cases: without TMD, 
passive TMD and active TMD. The effectiveness of active TMD is much better than the 
one of passive TMD and the control force is smaller than base excitation force . 

State- Space 1 

\flJ'ithout TMD 

x=P<x+Bu 
.---------. y = Cx+ Du t---------, 

lril Outl 1--+----...-i x = P<x+B u r-------.----, 
y= Cx+Du 

B and-Limited Filter State-Sp a ce2 
White Noise With optimum passh1e TMD 

x=.Ax+Bu 
~---- t----~ y= C>..'+Du 

State- Sp a ce4 
With optimum active TMD 

Fig. 3. Model Simulink 
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Mean Without Passive Active kp ka 
squares TMD TMD TMD 

(xz ) 0.4900e-9 O.l 700e-9 0.10061e-9 0.35 0.21 

(x~ ) 0.14381e-8 0.95402e-9 0.20115e-9 0.66 0. 14 
(u 2) 0 0.15452e-4 
(p 2) 0.13889e-3 

Table. 1. Mean squares of < xi >, < x~ >, < u2 > and < p2 > 

In order to illust rate t he above calculated results , t he vibration of t he system is simu­
lat ed using software SIMULINK in t hree cases: No TMD ; Opt imum passive TMD ; Opti­
mum active TMD . The simulink diagram is described in F ig. 3 and F ig. 4. The simulation 
diagrams are shown in Fig. 5 and Fig. 6. 
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Fig. 4. Model Simulink- Filter 
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Fig. 5. Displacement of mass m1 when system is without TMD, 
with optimum passive TMD and with opt imum active TMD 
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Fig. 6. Displacement of mass m2 when system is without TMD, 
with optimum passive TMD and with optimum active TMD 
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From Fig. 5, Fig. 6, we can see that with optimum passive TMD, the displacements of 
mass mi (i = 1(1)2) are decreased approximately 40%. However when optimum active 
TMD is used these displacements are decreased about 80%. Therefore the application of 
active TMD here is better than the previous passive TMD [6] . 

5 Canel usion 

To reduce undesired vibration which can cause damage to machines, vehicles, structures 
one can use passive or active TMD. The design of active TMD has attracted a great 
attentions in recent years because it can change the system energy by producing actuator 
force. The paper presents a design of active TMD for a multi-degree-of-freedom system 
subjected to base excitation which is modeled as a second coloured noise process. Upon 
feedback control theory, one can carry out the necessary conditions for the optimum control 
force . Then numerical calculations such as simulation and solving the moment equations 
are investigated to an example of 2-DOF system which applied the control force to a given 
passive TMD. The result show that the effective of active TMD is better than passive 
TMD. The result can be applied to other multi-degree-of-freedom systems subjected to 
different excitations. 
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LlJC DIEU KHIEN TOI UU TAC Dl)NG LEN TMD 
,!, ..... \... ,.... 

LAP CHO H~ NHIEU BA.C Tl)' DO 

Bai bao trlnh bay phucmg phap thiet ke b9 TMD tf ch eve cho h~ nhieu b~c tv do dva 
tren ly thuyet toi U'U bl.nh phuang tuyen tinh . Da xet tinh toan so chi tiet cho h~ ca h9C 
2 b~c tv do . Ket qua cho thay hi~u qua cua b9 TMD tfch eve tot han b9 TMD thv d9ng. 
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