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Abstract. We investigate phase transition at the macroscopic level. The main novelty
of our approach is the possibility of having voids during the phase change. This aspect
is described in the model by the mass balance equation which results in a pressure
which has a paramount importance. The state variables are the temperature, the strain
tensor, and the volume fractions of the two phases (whose evolutions are described by a
vectorial equation coming from the principle of virtual power and related to microscopic
motion responsible for the phase change). The theory accounts for the main physical
phenomenons, for instance, for the cavitation phenomenon and for pressure dependance
of the phase change temperature. The scope of the predictive theory is illustrated with
uni-dimensional examples.

1. INTRODUCTION

Bubbles or voids may appear in phase change. In the ice of a frozen pond, it may be
seen very small bubbles. In cast iron voids or bubbles are present. In an ice-cream there
are also voids which may influence its quality and even its taste. We address this phase
change phenomenon at the macroscopic level and derive a predictive theory. We assume
there are two phase volume fractions β1 and β2, ~β = (β1, β2), [2, 4]. The two phases do not
fill the whole volume. As for an example, we assume that β1 is the liquid volume fraction,
water for instance, and β2 is the solid volume fraction, ice for instance. The voids volume
fraction is ε = 1 − β1 − β2.

The predictive theory is presented in paragraphs 2 and 3 describing the equations of
motion and the constitutive laws. Its properties are investigated in paragraph 4. The theory
accounts for : the cavitation phenomenon where voids appear when pressure becomes
negative in a liquid; the importance of the pressure in a mixture of solid and voids, i.e., in
a soil. Thus basic properties of soil mechanics are taken into account. In case the densities
of solid and liquid are slightly different, the theory accounts for the dependance of the
phase change temperature on the pression as it is the case for ice and water.

The last paragraph is devoted to numerical results illustrating these properties. For
the sake of stressing on the physical properties we solve 1-D problems.
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2. THE MASS BALANCE AND EQUATIONS OF MOTION

We assume, for the sake of simplicity, the same constant density ρ (i.e., the material
is incompressible) and the same velocity ~U = d~u/dt for the two phases (~u is the small
displacement of the solid phase). The mass balance is

∂

∂t
(β1 + β2) + (β1 + β2)div ~U = 0. (1)

The equations of motion result from the principle of virtual power. The power of the
interior forces is chosen to depend on the regular strain rates D(~U) (~U is the macroscopic
actual velocity and Di,j (~U) = 1/2(Ui,j +Uj ,i )), and also on d~β/dt and grad(d~β/dt).
This latter quantities are clearly related to the microscopic motions which produce the
phase change. The gradient of the volume fraction is introduced to take into account local
interactions, i.e., the influence of a material point on its neighbourhood. The virtual power
of the interior forces we choose [3], is

Pint(~V , γ) = −

∫

Ω

σ : D
(

~V
)

dΩ−

∫

Ω

(

~B · ~γ + H : grad~γ
)

dΩ,

where ~V , ~γ are macroscopic and microscopic virtual velocities accounting for microscopic
motion. Domain Ω with boundary ∂Ω is occupied by the material. Two new nonclassical
interior forces appear, ~B, the interior microscopic vector work, and H , the microscopic
work flux tensor. The tensor σ is the stress tensor. Let us note that the expression of the
volume density of virtual power gives the quantities which are to be related by constitutive
laws and to be measured in experiments. In some case, the generalized forces and the
generalized strain rates to be related are not so easy to identify and in this perspective the
choice of the power of the internal forces is an important element of the predictive theory
[4]. The virtual powers of the exterior forces is

Pext(~V , γ) =

∫

Ω

~F · ~V dΩ +

∫

∂Ω

~G · ~V dΓ,

where ~F is the macroscopic volume exterior force, ~G the macroscopic surface exterior
force. For the sake of simplicity, we assume there is no exterior source of work producing
the phase change. We assume that the evolution is quasistatic. Thus the virtual power of
acceleration forces is null. The principle of virtual power is

∀(~V , γ), Pext(~V , γ) + Pint(~V , γ) = 0.

It gives the equations of motion for the microscopic motions responsible of the
evolution of β1 and β2 and for the macroscopic motion resulting from the body and surface
exterior forces ~F and ~G

−

(

B1

B2

)

+ div

(

~H1

~H2

)

= 0, in Ω,

(

~H1

~H2

)

· ~N = 0, in ∂Ω,

divσ + ~F = 0, in Ω, σ · ~N = ~G, in ∂Ω,

where works B1, B2, work flux vectors ~H1, ~H2 and stress σ are the interior forces.
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3. THE ENERGY OR ENTROPY BALANCE

The energy balance or better the equivalent entropy balance [3] is

ds

dt
+ div ~Q = d + R, in Ω

~Q · ~N = π, in ∂Ω,

where s is the entropy, ~Q the entropy flux vector, R is the volume entropy source, π is the
entropy intake (T ~Q where T is the temperature, is the heat flux vector, TR is the volume
heat source and Tπ is the heat intake) and d is the dissipation,

d =
1

T

(

(

σ −
∂Ψ

∂ε

)

: D
(

~U
)

+

(

~B −
∂Ψ

∂β

)

·
d~β

dt
+

(

H −
∂Ψ

∂gradβ

)

: grad
d~β

dt
− ~Q · gradT

)

,

where Ψ is the free energy and ε are the small deformations.

4. THE CONSTITUTIVE LAWS

The volume free energy we choose is

Ψ(T, ε, ~β, grad~β) =

2
∑

j=1

βjΨj + IK(β) +
k

2

∣

∣

∣grad~β
∣

∣

∣

2

,

where Ψj is the free energies of phase j, IK is the indicator function [5] of the convex set
of the possible mixtures

K = {(β1, β2) |0 ≤ β1 ≤ 1, 0 ≤ β2 ≤ 1, β1 + β2 ∈ [0, 1]}.

The term IK(~β)+(k/2)
∣

∣

∣
grad~β

∣

∣

∣

2

is an interaction or mixture free energy. Parameter

k characterizes the intensity of the interaction. The effect of IK(~β) is to guarantee that
the fractions β1 and β2 take admissible physical values.

Let us note that even if the free energy of the voids phase is 0, the voids phase
has physical properties due to the mixture free energy which depends on the gradients
of β1 and of β2. The gradients are related to the interfaces properties: gradβ1 describes
properties of the voids-liquid interface and gradβ2 describes properties of the voids-solid
interface, for instance surface tension. In this setting, the voids have a role in the phase
change and make it different from a phase change without voids. The model is simple and
schematic but it may be upgraded by introducing sophisticated interaction free energies
depending on ~β and on grad~β.

Moreover, for the free energies of the phases, we consider the following simplified
expressions

Ψ1(T, ε) = −CT ln T −
L

T0

(T − T0) + L(T ),

Ψ2(T, ε) = −CT ln T +
1

2
{λe(trε)

2 + 2µeε : ε} + L(T ),
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where λe and µe are the elasticity Lamé parameters, C is the heat capacity and L is the
latent heat. The linear function L(T ) is defined by

L(T ) = CT0 ln T0 + C(1 + ln T0)(T − T0).

It has been chosen in such a way that within the small perturbation assumption when
T − T0 = θ, with θ small compared to T0, the quantity −CT lnT + L(T ) is equivalent to
its leading term

−CT ln T + L(T ) '
C

2T0

(T − T0)
2. (2)

Remark 1. The free energy of a material is defined up to a linear function of the tempera-

ture. The free energies Ψ1 and Ψ2 are the free energies of the phases of the same material.

Then they are defined up to any linear function of T but, of course, this linear function

has to the same for Ψ1 and Ψ2. This linear function, for instance L(T ), has no influence

on the thermomechanical properties of the mixture.

Thus the volume free energy is

Ψ(T, ε, ~β, grad~β) =(β1 + β2) (−CT ln T + L(T ))

−
β1L

T0

(T − T0) +
β2

2
{λe(trε)

2 + 2µeε : ε}

+ IK(~β) +
k

2

∣

∣

∣grad~β
∣

∣

∣

2

.

For the pseudo-potential of dissipation depending on ~gradT, ε̇ = dε/dt, d~β/dt and on pa-
rameters χ = T, β1, β2, we choose

Φ( ~gradT, ε̇,
d~β

dt
, T, β1, β2) =

(β1 + β2)λ

2T
(gradT )2 +

c

2

(

d~β

dt

)2

+
β1

2
{λv(trε̇)

2 + 2µv ε̇ : ε̇}

+ I0(
∂

∂t
(β1 + β2) + (β1 + β2) div~U), (3)

where I0 is the indicator function of the origin. The viscosity parameters of the fluid are
λv and µv . Viscosity parameter c quantifies the dissipation of the phase change phenom-
enon or of the microscopic motions involved in the phase change. The last term in (3)
is zero if mass balance (1) is satisfied and it is +∞ otherwise. In other words we may
say that the presence of the last term in (3) is due to the fact that mass balance (1)
is an internal constraint between velocities and it must be included in the expression of
the pseudo-potential of dissipation Φ. Let us recall that the pseudo-potential accounts
for the properties of the velocities. We will see that this term is related to the pressure

in the system. The constitutive laws are given by the derivative of the free energy and
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pseudo-potential of dissipation [3]

σ = β1 (λv(trε̇)1 + 2µv ε̇) + β2 (λe(trε)1 + 2µeε) − (β1 + β2) p1,

(

B1

B2

)

∈





− L
T0

(T − T0)
1

2
{λe(trε)

2 + 2µeε : ε}



+

(

−CT ln T + L(T )
−CT ln T + L(T )

)

+ ∂IK(~β) + c
d~β

dt
− p

(

1
1

)

,

~Hi = kgradβi, ~Q = −
λ (β1 + β2)

T
gradT,

s = (β1 + β2)C ln
T

T0

+
L

T0

β1,

where 1 is the identity matrix, p is the pressure defined by

−p ∈ ∂I0

( ∂

∂t
(β1 + β2) + (β1 + β2)div~U

)

= R.

Remark 2. The subdifferential set ∂IK(~β) of convex set K is the set of the vectors which

are normal to triangle K at point ~β, [5]. Note that when ~β is interior to K, the subdiffer-

ential set is (0, 0).

This constitutive law implies that the mass balance is satisfied because the subd-
ifferential set ∂I0

(

∂
∂t

(β1 + β2) + (β1 + β2) div~U
)

is not empty. The stress σ is an elastic
stress in the solid part and a viscous stress in the fluid.

The small perturbation assumption for T and β1 + β2 are: θ is small compare to
T and (β1 + β2) − (β1(0) + β2(0)) is small compare to (β1(0) + β2(0)). For the sake of
simplicity, we assume there is no voids at the initial time or that (β1(0) + β2(0)) − 1 is
small. With the small perturbation assumption, the constitutive laws are

σ = β1 (λv(trε̇)1 + 2µv ε̇) + β2 (λe(trε)1 + 2µeε) − p1,
(

B1

B2

)

∈

(

− L
T0

θ

0

)

+ ∂IK(~β) + c
d~β

dt
− p

(

1
1

)

,

~Hi = kgradβi, ~Q = −
λ

T
~gradT,

s = C(1 +
θ

T0

) +
L

T0

β1,

where the deformations ε and temperatures θ at the power 2 have been neglected in
agreement with the small deformation assumption.

Remark 3. An other way to have simple constitutive laws is to assume that the voids are

filled with vapor with heat capacity C and thermal conductivity λ. The functions Ψ and Φ
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become

Ψ(T, ε, ~β, grad~β) = − CT lnT −
β1L

T0

(T − T0) +
β2

2
{λe(trε)

2 + 2µeε : ε}

+ IK(~β) +
k

2

∣

∣

∣grad~β
∣

∣

∣

2

,

Φ( ~gradT, ε̇,
d~β

dt
, T, β1, β2) =

λ

2T
( ~gradT )2 +

c

2

(

d~β

dt

)2

+
β1

2
{λv(trε̇)

2 + 2µv ε̇ : ε̇}

+ I0(
∂

∂t
(β1 + β2) + (β1 + β2) div~U).

They give the following constitutive laws

σ = β1 (λv(trε̇)1 + 2µv ε̇) + β2 (λe(trε)1 + 2µeε) − (β1 + β2) p1,

B ∈

(

− L
T0

(T − T0)
1

2
{λe(trε)

2 + 2µeε : ε}

)

+ ∂IK(~β) + c
d~β

dt
− p

(

1
1

)

,

~Hi = kgradβi, ~Q = −
λ

T
~gradT,

s = C(1 + lnT ) +
L

T0

β1.

5. THE PREDICTIVE THEORY

The equations of the predictive theory result from the equations of motion, the
entropy balance and the constitutive laws. They are

C

T0

∂θ

∂t
+

L

T0

∂β1

∂t
−

λ

T0

∆θ = R, in Ω,

c
∂~β

∂t
− k∆~β + ∂IK(~β) +

(

− L
T0

θ

0

)

− p

(

1
1

)

3 0, in Ω, (4)

div

(

β1

(

λv(trε(
d~u

dt
))1 + 2µvε(

d~u

dt
)

)

+ β2 (λetrε(~u)1 + 2µeε(~u))

)

− ~gradp + ~F = 0, in Ω, (5)

∂

∂t
(β1 + β2) + div

∂~u

∂t
= 0, in Ω, (6)

λ
∂θ

∂N
= T0π, k

∂~β

∂N
= 0, σ ~N = ~G, in ∂Ω,

θ(x, 0) = θ0(x), ~β(x, 0) = ~β0(x), ~u(x, 0) = ~u0(x), in Ω.

Let us note that the pressure intervene in both equations for macroscopic and microscopic
motions which are coupled. Mathematical results may be found in [1].
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5.1. Properties of the predictive theory: the cavitation phenomenon
Let us assume that there are only water and voids, 0 < β1 < 1, β2 = 0 and interpret

equation (4) assuming an homogeneous state. We have

∂IK(β1, 0) =

(

0
-Q

)

,

with Q ≥ 0. Equation (4) is

c

(

∂β1

∂t
0

)

+

(

0
−Q

)

+





−
L

T0

θ

0



− p

(

1
1

)

3 0.

It results

p = −Q < 0,

c
∂β1

∂t
= p +

L

T0

θ.

The pressure is negative in the water. If p + (L/T0)θ < 0,

∂β1

∂t
< 0.

The voids volume fraction increases and from the mass balance we get

div~U > 0.

This is the cavitation phenomenon which results from the pressure becoming negative.
Let us also note that if

p +
L

T0

θ ≥ 0, θ ≥ 0,

we may have only liquid at an equilibrium: β1 = 1 and (∂β1/∂t) = 0. Thus large temper-
ature and large pressure make the liquid to be the only phase present at an equilibrium.

5.2. Properties of the predictive theory: soil mechanics
In case there is only solid and voids, β1 = 0, 0 < β2 < 1, the equation (4) becomes

c

(

0
∂β2

∂t

)

+

(

−P
0

)

+

(

− L
T0

θ

0

)

− p

(

1
1

)

3 0.

We get that the voids volume fraction either increases or decreases if the pressure is either
low or large. This is a property of soils mechanics.

Let us also note that if

p ≥ 0, θ ≤ 0,

we may have only solid at an equilibrium: β2 = 1 and (∂β2/∂t) = 0. Thus positive pressure
and negative temperature make the solid to be the only phase present at an equilibrium.

We conclude that the pressure p is the main practical tool to govern the voids volume
fraction and that the temperature T is the main practical tool to govern the phase change.
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Remark 4. In case we assume the densities of the liquid and solid to be constant but

slightly different, the mass balance becomes with ρ0 = ρ1β1(0) + ρ2β2(0)

∂

∂t
(ρ1β1 + ρ2β2) + ρ0div~U = 0.

In case we have no voids and a mixture of ice and water, β1 + β2 = 1, at an equilibrium,

we have

∂IK(β1, β2) =

(

P
P

)

,

with P ≥ 0. It results that

(

P
P

)

+





−
L

T0

θ

0



− p





ρ1

ρ0

ρ2

ρ0



 3 0,

or

−
L

T0

θ − p(
ρ1 − ρ2

ρ0
) = 0, p ≥ 0. (7)

In this situation the phase change temperature depends on the pressure. It is known that this

is the case for the ice-water phase change. Because ρ1 > ρ2 the phase change temperature

decreases when the pressure increases. A consequence of this property is that the ice melts

at the bottom of a glacier and lubricates the rock ice contact surface allowing the downhill

motion of the glacier.

The previous relationship shows that the pressure is 0, when the phase change occurs

at temperature 0◦C. Thus p is the pressure with respect to the atmospheric pressure. This

phenomenon is investigated in the following section where the macroscopic equation of

motion is not as sophisticated as it is in this one.

6. SOME EVOLUTIONS

We investigate the evolution of a one-dimensional continuous body occupying do-
main (−h/2, h/2). We denote w(z, t), the vertical displacement; θ(z, t) = T (z, t) − T0,
the difference between the absolute temperature and phase change temperature (one may
think of the Celsius temperature); βi(z, t) the phase volume fractions, with i = 1 for liquid
phase volume fraction and i = 2 for solid phase volume fraction; p(z, t), the pressure. The
exterior forces applied to the structure are F (z, t), the vertical body force and G(t), the
surface traction on the top of the structure; R(z, t), is the volume entropy source and
π(z = ±h/2, t), are the surface entropy flows. Quantities R(z, t)T0 and π(z = ±h/2, t)T0

are the volume and surface heat sources. We assume the solid is fixed on its bottom face.
The equations of the predictive theory have the following explicit form:

C
∂θ

∂t
+ L

∂β1

∂t
− λ

∂θ2

∂z2
= RT0 (8)

c
∂β1

∂t
− k

∂2β1

∂z2
−

L

T0

θ + ∂Ik(β1, β2)1 − p = 0 (9)

c
∂β2

∂t
− k

∂2β2

∂z2
+ ∂Ik(β1, β2)2 − p = 0 (10)
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β0
1

∂2w

∂t∂z
(λv + 2µv) + β0

2

∂w

∂z
(λe + 2µe) − (β0

1 + β0
2)p = H(z) (11)

(β1 + β2) + (β0
1 + β0

2)
∂w

∂z
= (β0

1 + β0
2)(1 +

∂w0

∂z
) (12)

where ∂Ik(β1, β2)1 and ∂Ik(β1, β2)2 are the components of elements of the subdifferential
set of the indicator function of convex set: K = {(β1, β2) ∈ R2 : 0 ≤ β1 ≤ 1, 0 ≤ β2 ≤
1, β1, β2 − 1 ≥ 0}, to which the pair (β1, β2) must belong (Figure 2).

Fig. 1. Convex set K.

Equation (12) results from integration with respect to time of equation (6), while
equation (11) results from integration with respect to z of equation of motion (5). Quantity
H(z) is

H(z, t) = G(t) +

∫ z

h

2

F (ζ, t)dζ.

The set of partial differential equations is completed by:
the boundary conditions at the bottom z = −h/2,

λ
∂θ

∂z
= −T0πl, k

∂β1

∂z
= 0, k

∂β2

∂z
= 0, w = 0;

the boundary conditions at the top z = h/2,

λ
∂θ

∂z
= T0πr, k

∂β1

∂z
= 0, k

∂β2

∂z
= 0, σzz = G;

and by the initial condition

θ(z, 0) = θ0(z), β1(z, 0) = β0
1(z), β2(z, 0) = β0

2(z), w(z, 0) = w0(z),
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where θ0, β0
1, β0

2 and w0 are functions of z.
The evolution problem corresponding to equations (8-12) and the corresponding boundary
and initial conditions, is discretized with finite differences. The discredized non linear
problem is solved by an iterative method involving a projection on convex set K [2].

We investigate the influence of the physical parameters which intervene in phase
change phenomenon: in example 1, the influence of the external load when cavitation
occurs; in examples 2 and 3, the effect of microscopic motion parameter k which accounts
for spatial interactions; in examples 4 and 5, the influence of the other microscopic motion
parameter, c which accounts for the dissipative effects; finally, in example 6, the influence
of pressure p.

For all the aforementioned examples we assume the following values of the boundary
conditions:
Boundary condition (bottom z = −h

2
)

λ
∂θ

∂z
= 0, k

∂β1

∂z
= 0, k

∂β2

∂z
= 0, w = 0,

Boundary condition (top z = h
2
)

λ
∂θ

∂z
= T0πl, k

∂β1

∂z
= 0, k

∂β2

∂z
= 0, σzz = G.

For what concern the initial conditions, we assume, for all examples, the following values,
except in the example 1 (Cavitation) where the volume fraction β1 and β2 have the values
inverted.
Initial condition

θ(z, 0) = 0, β1(z, 0) = 0.0, β2(z, 0) = 1.0, w(z, 0) = 0.

Finally, all other above introduced data assume the values as summarized in table 1.
Table 1. Other common data
geometrical data external loads mechanical data
h = 1.0 m πl = −0.5 W

m2 k
C = 4186000 J

kg k

tf = 8000 s πl = −0.5 W
m2 k

T0 = 273.15 k

πr = 0.05 W
m2 k

λ = 2.23 J
s k m

F = −9180 Pa c = variable
G = variable k = variable

L = 335000000 J
m3

µv = 1.827 10−3 Pa s
λv = 1.00 109 Pa s
µe = 3.9 109 Pa
λe = 10.4 109 Pa

Furthermore the time of observation, tf , has a different value, 800000 s only in examples
1 and 5.
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6.1. Example 1: the cavitation phenomenon
In this subsection we investigate the cavitation phenomenon. It is characterized by

an increase of voids volume fraction and a consequent decrease of the water volume fraction
due to a low pressure resulting from a tension applied at the top of the structure. The
variable parameters G, c and k assume the following values, respectively: +101000 Pa, (G
is a tension) 107 J/m, 107 (J s)/m3.
The numerical results are reported in figures 2 a-e. In the figures it is shown the evolution
of θ, β1, β2, v, w and p.

e

Fig. 2. Example 1 The cavitation phenomenon is due to low pressure p (figure (e))
resulting in creation of voids (figure (b)). Temperature θ, water volume fraction
β1, displacement w are shown in figures (a), (c) and (d).

As expected (see figures 2) in the cavitation phenomenon solid volume fraction
remains null. In order to underline the entity of the current phase change, are reported
below the values of the voids and water volume fractions at the ends of the structure in
correspondence of the final time observation (for all the examples proposed), tf = 800000s:
at bottom z = −h

2
, β1 = 0.721362, ε = 0.278283, and at top z = +h

2
, β1 = 0.588632 and
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ε = 0.411954.
For the sake of simplicity, and because they are the most relevant quantities to describe
phase change, only volume fraction β1 and β2 are shown in the next examples.

6.2. Example 2: the non dissipative spatial interaction is important
In order to see the effect of the interaction parameter k, we choose extreme values

for this parameter. In this paragraph it is very large, almost equal to 1020 (J s)/m3).
The other two variable data, c and Gz assume the following values, respectively: 107 J/m,
-101000 Pa.
As already said, we show only volume fractions β1 and β2 in Fig. 3 a-b).

Fig. 3. Example 2 In case there is an important spatial interaction in the phase
change, the whole structure is instantaneously affected by the boundary actions.
Water volume fraction β1 and ice volume fraction β2 are shown in figures (3 a)
and (3 b).

As shown in the figures, when k has a large value, functions z −→ β(z) become constant.
For instance, at the both ends of the structure the two volume fractions have the same
values:
at bottom z = −h

2
, β1 = 0.003632 and β2 = 0.9963 and at top z = +h

2
, β1 = 0.003728 and

β2 = 0.996296.
A large spatial interaction parameter makes the evolution of the β’s very dependant of
the neighbourhood. On the contrary a very low interaction parameter makes the evolution
decooupled and independent of the neighbourhood, as shown in the following paragraph.

6.3. Example 3: no spatial interaction
In opposition to previous example 2, parameter k is now almost null: 10−20 (J s)/m3.

The other data are those of the previous example. It results that the evolution of the β’s
are independent of their neighbourhood. Because temperature θ governing the evolution
of the β’s, is smooth with respect to space, the β’s are also smooth with respect to space.
Water and ice volume fractions are shown in figures 4 a-b.
At the two ends of the structure, the volume fractions have independent values:
at bottom z = −h

2
, β1 = 0.278283 and β2 = 0.721362, and at top z = +h

2
, β1 = 0.411954
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Fig. 4. Example 3 In case there is no spatial interaction in the phase change, the
whole structure is not instantaneously affected by the boundary actions. Water
volume fraction β1 and ice volume fraction β2 are shown in figures (4 a) and (4

b).

and β2 = 0.588632.

6.4. Example 4: dissipative phase change
In these next two subsections we want to investigate the effect of the dissipative

microscopic motion parameter c. It controls the velocity of the phase change. For this pur-
pose, we assume firstly it has a very large value: 1020 J/m. The other two variable data,
k and G have the following values, respectively: k = 107 (J s)/m3 and Gz = −101000Pa.
Volume fractions β1 and β2 are shown in figures 5 a-b.

Fig. 5. Example 4 A dissipative phase change is slow. Water volume fraction β1

and ice volume fraction β2 are shown in figures (5 a) and (5 b).

As expected, functions t −→ β(t) are constant. For instance, we have:
at bottom z = −h/2, β1 = 0.00154885, β2 = 0.998433, and at top z = h/2, β1 =
0.00711434, β2 = 0.992941.

6.5. Example 5: non dissipative phase change
Contrary to the previous case, we choose c to be almost null with value 10−20 J

m
,

and keep the values of k and G as in example 4. In agreement with the predictive theory,
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phase change is almost instantaneous as seen in figures (6 a-b). The corresponding volume
fractions β1 and β2 are: at bottom z = −h/2, β1 = 0.278283, β2 = 0.721362, and at top
z = h/2, β1 = 0.411954, β2 = 0.588632.

Fig. 6. Example 5 Phase change is rapid in case it is not dissipative. Water volume
fraction β1 and ice volume fraction β2 are shown in figures (a) and (b).

As c decreases, the velocity of the phase change increases.

6.6. Example 6: effects of the pressure
In this last example, we investigate the effect of the pressure p on the phase change

phenomenon. We assume parameters c and k have the following values, respectively:
107 J/m and 107 (J s)/m3. We apply a very large compression at the top of the structure
with value G = −1010000Pa.

Fig. 7. Example 6 High pressure prevents phase change. Water volume fraction
β1 and ice volume fraction β2 are shown in figures (a) and (b).

In agreement with the predictive theory, very high pressure prevents phase change as
shown in figures (7 a-b). The volume fractions have the following values at the ends of
the structure of figure 5: at bottom z = −h/2, β1 = 0.001500, β2 = 0.998433, and at top
z = h/2, β1 = 0.007114, β2 = 0.992941.
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7. CONCLUSIONS

The numerical experiments show that the predictive theory describes the evolution
of the different physical quantities in agreement with physics: the pressure has a paramount
importance whereas it does not intervene when voids are not taken into account. When
the pressure is low cavitation occurs and when it is large it prevents the phase change.

Let us note that the numerical method is effective. The predictive theory which
spares the number of parameters to be measured with experiments, has a scope large
enough to account for the basic physical features of phase changes involving voids. Of
course there are many possible upgrading sophistications in order to give a finer prediction
of some aspects of the phenomenons.
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SỰ BIẾN ĐỔI PHA TRONG CÁC MÔI TRƯỜNG
CÓ CHÂN KHÔNG VÀ BONG BÓNG

Chúng tôi khảo sát sự chuyển pha tại giai đoạn chuyển tiếp ở mức độ vĩ mô. Cái
mới của phương pháp tiếp cận là khả năng có chân không trong giai đoạn biến đổi pha.
Điều này được mô phỏng bằng phương trình cân bằng khối lượng mà áp suất có tầm quan
trọng tối thượng. Các biến trạng thái là nhiệt độ, các tensor biến dạng, và các tỷ lệ khối
của hai pha (các khai triển của nó được mô tả bằng một phương trình véc tơ thu được từ
các nguyên tắc công khả dĩ và liên quan đến chuyển động vi mô tương ứng với sự thay đổi
pha. Lý thuyết giải thích các hiện tượng vật lý chính, chẳng hạn: hiện tượng lỗ trống và
sự phụ thuộc áp suất của nhiệt độ làm thay đổi pha. Phạm vi của lý thuyết dự báo được
minh họa với các ví dụ một chiều.


