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CAN DISLOCATIONS ACCELERATE THROUGH THE
SHEAR-WAVE SPEED "BARRIER”?
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Abstract. The question of whether a dislocation can accelerate through the shear-wave
speed “barrier” is addressed by analyzing the transient motion of a Volterra dislocation at
the instant when the velocity equals the shear-wave speed in the presence of acceleration,
which requires an asymptotic analysis at a double root (—at the transition from subsonic
to supersonic a pair of complex conjugate roots becomes a double real —). The stresses
carried by the forming Mach wave fronts depend on the acceleration at this instant and
are found to be O( In r /r'/?) singular for a Volterra dislocation both screw and edge.
The energy required to push the dislocation through the shear-wave speed “barrier” is
determined by means of the “contour-independent” dynamic J integral which defines the
self-force on a moving defect, and is obtained as a function of the acceleration as it crosses
the “barrier”. While for a Volterra dislocation the energy-rate is singular at this instant,
for a more physically realistic ramp-core “smeared” dislocation model, approximating the
Volterra dislocation by a delta sequence, this energy rate is obtained by convolution and
is finite, with the same result obtained by the theory of distributions. Thus, crossing
the “barrier” is theoretically possible as recent experimental evidence in the literature
suggests. A “cut-off” constant that remains undetermined will be found in a multiscale
analysis by the matching of the self-force based on atomistic calculations modeling the
core to the continuum far-field one obtained here. For decelerating motion through the
shear-wave speed “barrier” this energy is released as dissipation.

1. INTRODUCTION

The question of whether dislocations under shock loading in metals at low tem-
peratures and in tectonic faults can cross the shear-wave speed barrier ¢ has been open
for over fifty years, and it was considered until recently prohibitive. However, new results
show convincingly that indeed transient supersonic motion is possible and dislocations do
accelerate through the shear-wave speed “barrier” both in metals and in geophysics. Then,
the questions arise of determining the energy rate required to accelerate the dislocation
through the shear-wave speed “barrier” and of the stress carried by the Mach supershear
fronts, the shape of which also depends on the acceleration of the dislocation. Gumbsch
and Gao [1] showed by molecular simulation that in tungsten dislocation motion faster
than the speed of sound is possible if generated as such, while in Al, Ni and Al/Mg alloys,
Olmsted et.al. [2] shown by numerical simulation that dislocations do accelerate through
the shear-wave speed “barrier” after which they become unstable and dissociate into par-
tials. Further evidence for transient supersonic dislocation motion in metals is presented in
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[3,4,5], while evidence of supershear dislocation motion in earthquakes has been reported
and is now considered established [6,7,8,9]. The physical observations reported above show
that the physical phenomena are transient in nature, which necessitates accelerating dislo-
cation motion analysis of the radiated fields and the corresponding energetics .We present
here the results of the transient analysis as the dislocation is accelerating/decelerating
through the shear-wave speed “barrier” for the stress carried by the forming Mach front,
and the corresponding energy-rate required to generate it. While for a Volterra dislocation
the stresses are O (Inr/r'/?) singular, for a smeared out core they are regularized and
singular. To the leading order the result agrees with the one obtained by the theory of
distributions, and it provides the far field to match atomistic calculations of the core in a
multiscale analysis.

2. FORMATION OF THE MACH ENVELOPE AT THE INSTANT OF
THE DISLOCATION CROSSING THE SHEAR-WAVE SPEED
“BARRIER”

The classical works of Weertman [10, 11, 12] present the analysis of the stress field
and the energetics of the steady state supersonic motion. While crossing of the barrier

has been assumed prohibitive due to the (c% —[? (t)>_2 “relativistic” singularity which

appears in the steady-state analysis, the present analysis aims at addressing the energetics
of crossing the barrier by means of the transient analysis of a screw/edge dislocation in a
general motion z = [ (t) , evaluated at the instant when the velocity [ (t)equals the shear-
wave speed in the presence of acceleration [ (t), and the evaluation of the self-force at this
instant both for a Volterra and ramp-core model. In the transient analysis to the second-

order terms (that account for the acceleration), the term (c% — i2> is not zero any longer,

but depends on the acceleration l(t) at this instant. At this transition to supersonic, a
pair of complex conjugate roots becomes a double real splitting subsequently into two real
ones. The asymptotic analysis is performed at this double root.

The analysis performed evaluates the stress on the forming Mach cone, which is the
envelope of the wavelets emitted by the dislocation during the motion (Figure 1). General
accelerating motion of dislocations has been analyzed by Eshelby [13,14,15,16,17], also [18]
(for complete early references, see [12]). However, crossing the shear wave speed barrier
has not been analyzed as to the present time.

For a Volterra dislocation of Burgers vector Aumoving along the z axis according
to x = [I(t), in a wave-front asymptotic analysis of the transient (rather than steady-state)
radiated fields at the Mach cone, the stress on the Mach cone (z, z,t*)is found to be a
delta function, following an analysis as in [19, 20]:

(a) for screw dislocation:
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Fig. 1. Forming Mach cone for a dislocation accelerating through the shear wave
speed barrier. Att = 0.3 for dislocation motion [ (t) = 2t2, the motion becomes
supersonic at ¢t = 0.25; the quantities are dimensionless and the speed c; is nor-
malized to 1 for all figures

(b) for edge dislocation [21]:
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where b denotes the shear-wave slowness, b = 1/co > 1/i(t) for supersonic motion; 7* is
the time of emission of a wavelet contributing to the Mach cone. The Mach cone is the
envelope of these wavelets, and satisfyies the following two equations:

f(T*):t*—T*—b\/($—l(7*))2+z2:0,

% (t* —T—b\/($—l(7))2+Z2>

This envelope starts forming at the instant when [ (t) = ¢s; for subsonic motion the
roots of equation (3a) are complex conjugate, which coalesce into a double real 7% at the
instant of the dislocation motion becoming supersonic, and split into two real ones (79, 71)

after it crosses co(Figure 2b). The function f (7) =t —7 — b\/(:n —1(7)* + 22 =0 with ¢
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Fig. 2a. Mach wave front at ¢ = 1 for the mo- Fig. 2b. f (1) =t —7 — b\/(z — 1 (7))” + 22,

tion [ (t) = 2t2; the motion is supersonic and I(r) = qr%/2; with ¢ = 4, b = 1, z = 0.5,
the envelope grows out of the circle with ra- z=0.1
dius r =1

as a parameter t exhibits imaginary or real roots; the real roots relate to the wave fronts
AB (maximum of f (7)), and BC (minimum of f (7)) in Figure 2a. The minimum of f (7)
gives no delta function contribution to the stress at the front, as shown in [19], so that the
stress field is continuous as we approach the front BCD (Figure 2a). The limit 79, 7y — 7*
is taken as the maximum of f(7) is approached, and the two real roots coincide to a
double real one £*. This again corresponds to the Mach front AB (Figure 2a) crossing the
field point near the current position of the dislocation, i.e. x — [ (7).

While expressions (1) and (2) give the stress on the Mach cone for [ () > co, an
analysis at the instant when [ (t) = ¢y is required. At this point, i.e. [ (£) = ¢3, a wave-front
asymptotic analysis to the second order [20] I (t) =1 (1) + (t — 7)1 (1) + 3 (t — () +
o(t— T)ziS performed and the coefficients of the delta function of the stress on the forming
Mach cone in expressions (1) and (2) are now depending on the acceleration [ (t):

(a) for screw dislocation [20] :
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(b) for edge dislocation [21]:
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where, again, (79, 71) is the interval of emission of wavelets that contribute to the forming
Mach cone (Figure 2b) , at an angle m = z/ (x — [ (7*)). The singularity in the coefficient
of the delta function for the stress on the forming Mach cone in expressions (4) and (5)
is eliminated by applying a more physically realistic ramp-core model [12,20]. While for
a Volterra dislocation the volume integral is singular, for a ramp-core model where the
displacement is modeled by an arctan(z/e) function rather than a step function H (z)on
the slip-plane z = 0; i.e.

H.(z) = H (x) %ezjzz == (%) arctan (£) + %, the singularity is smoothed out by
convolution. The constant epsilon remains undetermined and will be found by matching
this continuum far field to the one from atomistic calculations at the core. Thus, the stress
at the forming Mach cone, as it accelerates through the shear-wave speed barrier, is finite
[20], although near about 1/30 the theoretical strength of the material, as estimated in [23].
The conclusion is that the ramp-core dislocation can accelerate through the shear-wave
speed barrier.

3. SELF - FORCE AND THE ENERGETICS OF A DISLOCATION AS IT
ACCELERATES / DECELERATES THROUGH THE SHEAR - WAVE
SPEED "BARRIER”

The required driving force, or self-force, needed to effectuate such motion is obtained
by dynamic J integral (e.g. [17]), based on Noether’s theorem expressing the requirement
of invariance of the Lagrangian W-T functional under an infinitestimal translation of the
defect. The self-force is given by the contour independent expression

a ., .
= / & [puiu“] dV + / [(W — T) 5lj — u“aij]de (6)
1% S

where V is a volume integral and S a surface integral surrounding the moving dislocation.
This expression for the self-force for moving cracks coincides with the energy-release rate
[24], [25], while for a general defect is interpreted (Markensoff, 2006) as the difference
of the work of the tractions in the celebrated Eshelby thought experiment to produce a
translation of the defect by § [ , when comparing two motions differing by § [ for all times.
The self-force is related to the energy-release rate £ by F = E/I (t). For subsonic motion
it has been computed by regularizing the integrals in the in the sense of distributions and
by smearing the core, both agreeing to the leading (logarithmic) order.

Here, expression (6) is evaluated at the instant of the acceleration through the
shear-wave speed barrier, and the self-force Fat the instant of crossing the shear-wave
speed barrier for a screw dislocation is a delta function in time :
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Fig. 3. Detachment of the Mach cone from the decelerating dislocation
The dark point refers to the current position of the dislocation moving with x = 2t% at time t=3

where A is defined in equation (4) for screw dislocation. The self-force given by equation
(7) is equal to the energy-release-rate F required to be externally supplied in order to
move the dislocation by 6 | as it accelerates with [ (¢) at the instant when the dislocation
velocity I (£) = ¢3. The constant epsilon will have to be determined by matching the far
fields/self-forces in a multiscale analysis where the core is modeled atomistically.

The analysis is also performed in case of a motion decelerating through the shear-
wave speed into the subsonic regime. Now, the dislocation detaches from the Mach front
(Figure 3), with a positive self-force associated with the release of an energy rate E = F q (of
the same magnitude as in the accelerating case above, but with a negative value of the
acceleration [ (t)) which is now dissipated into the material, rather than required to be
externally supplied [27].
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CAC LECH MANG CO THE TANG TOC VUGT QUA GIOI HAN
VAN TOC CUA SONG TRUQT?

Van dé lieu céc lech mang c6 thé ting tdc vugt qua gidi han van tbéc ciia séng
truot hay khong dugc dé cap bang cach phan tich chuyén dong chuyén tiép ctia lech mang
Volterra & thai diém khi téc do bang téc do song trugt va cé gia tdc, ma doi héi phan tich
tiem can & nghiém kép (tir toc do dudi ngudng t6i sieu am cap nghiem phiic lien hgp tré
thanh nghiém thyc kép). ting xuit gay ra bdi song Mach phu thudc gia téc & thsi diém
d6 va c6 do ky di 0 (Inr/r/2) cho lech mang Volterra cA xodn va canh. Nang luong cin
thiét dé day lech mang qua gidi han van téc séng truct dude xac dinh bdi tich phan dong
lye J (khong phu thude duong lay tich phan) xac dinh lyc ty than lén khuyét tat chuyen
dong, va dugc nhan nhu 14 ham gia téc khi né vigt qua gisi han. Trong khi d6i véi lech
mang Volterra do ting ning lugng 13 ky di 6 thai diém nay, cho mot mo hinh léch mang
hién thyc hon, xap xi léech mang Volterra béi chudi delta, do tang nang luogng nay dudc
nhan 13 hitu han véi két qud tuong tu nhu 1y thuyét phan b6é. Nhu thé vigt qua ngudng
vé Iy thuyét 1a c¢6 thé ciing nhu bang chiing thuc nghiém tit cac tai lieu da chi ra. Hing
s6 cat chua biét sé duge tim qua phan tich da cap tuwong thich lyc tir than trén co sé mo
hinh nguyén tit cho viing tam véi mo hinh lién tuc cho ving xa tam nhan duge 6 day. Vi
chuyén dong cham dan qua ngudng van téc séng trugt ning lugng nay dude gidi phéng
dué6i dang hao tan.



