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STATIONARY VALUES OF THE TRANSMISSION
RATIO OF THE PLANAR FOURBAR
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Abstract. The transmission ratio of the planar fourbar, i.e. the ratio of the angular
velocities of input link and output link, is a function of the input angle. Freudenstein
[1] showed how to calculate stationary values of the transmission ratio. In the present
paper a new method is described. Like Freudenstein’s method it results in a sixth-order
polynomial equation.

1. INTRODUCTION

The planar fourbar is composed of four links, namely the fixed link of length ¢,
the input link of length 71, the output link of length ro and the coupler of length a
(see the fourbar AgABB( in Fig. 1). The angles of rotation of input link and of output
link relative to the fixed link, both positive counter-clockwise, are denoted ¢ and %,
respectively. The transfer function determines 1 as function of . The time derivative
of this function yields an expression for the transmission ratio i = <,0/¢ as function
of ¢. Subject of investigation are stationary values of i(y) . In ref.[1] Freudenstein gave
a sixth-order polynomial equation for a certain geometrical variable. The roots of this
equation determine the input angles at which i(y) is stationary. In the present paper
a new sixth-order polynomial equation with cos¢ as variable is formulated. It is shown
that the coefficients of this polynomial are invariant with respect to an interchange of ¢
and r1. From this it follows that two fourbars with interchanged link lengths ¢ and 7
have stationary transmission ratios 4max and imin , respectively, at identical input angles
. Under certain conditions on the link lengths the polynomial is of fifth or of third or
of second order. It is not shown in the present paper that also Freudenstein’s equation
can be written in a symmetrical form and that it leads, under the same conditions on link
lengths, to fifth-, third- and second-order equations’.

LFor relationships to Freudenstein’s method see the monograph Wittenburg: Kinematics (to appear)
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2. TRANSFER FUNCTION
In the x, y-system shown in Fig. 1 the end points A and B of input link and output

link have the coordinates

TA =T71COSp , xp =L+ 1r9cCc087 (1)
ya =rising, yg =  rsing.

fourbar F

Fig. 1. Fourbar F and the associated fourbar F* with link lengths r; and ¢ interchanged

The constant length a of the coupler requires that (zg — z4)? + (yg — ya)? = a?.

This results in the transfer function f(p,9)=0:
f=2ry(f —rycosg)costh — 2rirasingsing — 20rycosp+ri + 2 +1r2—a? =0 (2)
or
f = 20rycostp — 20ry cos @ — 2ryrgcos(p — ) + 18 + 02 415 —a? =0. (3)
Equation (2) has the form
A(p) costp + B(e) sing = C(¢) (4)
with coefficients

A=2ry(l —ricosp), B=—2rirosing, C =2rlcosg— (ri+02+r5—a?) . (5)
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For every angle ¢ there exist two solutions 1; and . They are determined through
their sines and cosines:

AC ¥ BVAZ { B2 _ (2

o812 = A2 B2
6
. BC 4+ AV A? + B2 — C? (©)
sinty o = ey .

These expressions depend on three parameters only, namely on r1/¢, ro/¢ and a/f.
Equations (5) yield

A% 4 B% = 4r3(02 +r3 — 2rLcosp) = —4r3(C +ri —d?) (7)
A? 4+ B?—C? =4r2a® — (C +2r3)? = —[C + 2ry(a +1r)][C — 2ra(a—1r2)]  (8)

= —[2rilcosp — (ri 4+ 02 + (ry + a)?][2r1ilcoso — (12 + 03 + (1, — a)?] . (9)

The angles 11 and o are real for all angles ¢ satisfying the condition A>+B%—-C? > 0.
Let ¢ denote all angles ¢ for which the equality sign is valid. From Eq.(9) the cosines of
these angles are obtained:

r2 4+ 02 — (ro F a)?
2r1 /4 '

These angles are limit angles of fourbars in which the input link cannot rotate full circle.
The limit positions are characterized by collinearity of output link and coupler.

cos P12 = (10)

3. INTERCHANGE OF INPUT LINK AND FIXED LINK

In Fig. 1 the fourbar AjABBg with link lengths £,71,a,re is called fourbar F.
Broken lines parallel to the fixed link and to the input link define the point P. The
quadrilateral BoPAB is drawn one more time in dotted lines. The dotted quadrilateral
is called fourbar F*. Its fixed link has length r; and its input link has length ¢. Both
fourbars have the same coupler and the same output link. If F is a foldable fourbar then
also F* is foldable. If F is a double-rocker of first kind (of second kind) then also F* is
a double-rocker of first kind (of second kind). If F is a double-crank then F* is either a
double-crank or a crank-rocker. If F is a crank-rocker then F* is either a double-crank
(if fixed link and crank are interchanged) or a crank-rocker (if fixed link and rocker are
interchanged).

In Fig. 1 F and F* have one and the same input angle . The relation between
the output angles 1 and * is seen to be

Y+Y =p+T. (11)
For a given angle ¢ Eqs.(6) determine in the fourbar F two angles 17 and 1, and in
the fourbar F* with coefficients A* = 2ry(ry — Lcosy), B* = —20rysing, C* = C two
angles 9] and 3. The coordination of these pairs of angles is as follows: 11 +935 = p+7.
This is verified by substituting A, B,C' and A*, B*, C* into the equation cos cosy3 —
sin sinys = —cosp.
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4. TRANSMISSION RATIO

The angular velocity ratio i = ¢/ 4 is called transmission ratio of the fourbar. An
analytical expression for the ratio 1/¢ is found by differentiating the transfer function
f(p,1) =0 with respect to time:

f of _

Lt (12)
This yields )
1y of of
i gl ow 1)
Equation (3) yields
of . . of . .
—— = 20rysing + 2ryrosin(e — ) , —— = —2lrgsiny — 2riresin(p — ),  (14)
Oy o
whence follows
1 T1
Lo (15)
(singp 4 rysin(p — ) 71 £sing + ra(sing costp — cos @ sin))
(sintg + rysin(e —¥) 1o €sint + r1(sin g costh — cos @ sin )
and with Egs.(6)
1 n
i= (16)
((A% + B?)singp + 1o [(Asimp — Bcosp)C F (Bsing + Acos w)m}
X

Z(BC:I:A A? 4+ B? — 02) +71 [(Asimp — Bcosp)C F (Bsing + Acos p)vV A2 + B2 — CQ} '
From Egs.(5) it follows that

Asing — Bcosp = 2rylsing ,

Bsingp 4+ Acosp = 2ry(fcosp —11) (17)
B+ ri(Asinp — Bcosp) =0.

These equations in combination with Eqgs.(7) and (8) yield the final formula

2 (cosp —p1) /A2 — (cosp —pa)? £ (cosp — p3)sing (18)
L (COSSD—pz)\//\z — (cos ¢ — pq)?
with dimensionless constants

Troa 1 r2 4 (2 r2 — a2 r2 + a2
1 2 2

A:— == — = = _— pr— _—
Tlgv b1 7 b2 20 y P3 = D2 Y y D4 = P2

These constants are related as follows:

p3—1=(p1—p2)*, (pa—12)® = A = (ps — p2)” . (20)
From the first relation in combination with the definition of ps it follows that py > 1.
The equality sign applies if and only if r1 = ¢ and with this p; = po = 1. This, in turn,
has the consequence that the denominator expression cosy — py in Eq.(18) is zero only
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if the two conditions ¢ = 0 and r; = ¢ are satisfied which implies that also 72 = a . This
indicates the folding position of a rhomboid fourbar. The square root in the denominator
of Eq.(18) is zero only if ¢ is one of the limit angles ¢; 2 of the input link which must
then be a rocker (see Eq.(10)).

With the exception of p; all constants in Eqs.(19) are invariant with respect to
an interchange of base length ¢ and input link length 7. Because of the first Eq.(20)
this is true also for (p; — p2)?. A relation between the ratios 1/i and 1/i* of the two
fourbars with interchanged link lengths is obtained by differentiating the identity Eq.(11)
with respect to time:

+;;1. (21)

5. STATIONARY VALUES OF TRANSMISSION RATIO

Let P; be the center of rotation of the output link relative to the input link, and
let P, be the center of rotation of the coupler relative to the fixed link. The former is
the point of intersection of coupler and fixed link (also referred to as base line), and the
latter is the point of intersection of output link and input link. Freudenstein [1] discovered
that a stationary value of the transmission ratio occurs in positions in which the line
PP, is orthogonal to the coupler. Based on this general rule Freudenstein developed an
analytical method for the determination of the associated angles ¢. In the present paper
Freudenstein’s rule is applied only to the special case that a stationary value occurs at
@ =0o0rat ¢ = 7. In these cases, P; and Ps are located on the base line, and the coupler
is orthogonal to the base line. Then, the parameters satisfy the condition
(22)

2

stationary value at ¢ =0 : (€ —7r1)?+a®=rs
stationary value at ¢ = : (l+r)?+a?=r3.

The new method is based on Eq.(18). With the abbreviation 2 = cos ¢ this equation
is written in the form

2 _(—p)P*(z—p3)Q
i(x) (z —p2)P ’

The stationarity condition d(1/i)/dz =0 has the form (the prime denotes the derivative
with respect to x)

F(p1 — p2)P? = (p3 — p2) PQ + (x — p2)(z — p3) (PQ — QP') . (24)

Now, P/ = —(x — p4)/P and Q' = —x/Q are substituted. The resulting equation is
multiplied by PQ . This eliminates the case sing = 0. Whether this is a solution is
checked with Eq.(22). After this multiplication the equation has the form

+ (p1— p2)[(x — pa)® = NV (2% — D[(z — pa)? — ]
= (p3 — p2)(a® — 1)[(z — pa)® — N?] (25)
— (z — pa2)(z — p3)[pa(1 + 2°) + x(A* — p] — 1)].

P =/ —(x—p4)?, Q=v1—-22. (23)




364 J. Wittenburg

The special case 71 = £ is characterized by p; = po = 1 and, therefore, by the
third-order equation

(p3 = DL+ 2)[N° = (2 = pa)’] + (& = p3)[pa(l + 2°) + 2(\? —pf —1)] =0.  (26)

The equation is quadratic if, in addition, also a = £.

In the general case 1 # ¢ Eq.(25) is squared. The squared equation is invariant
with respect to the interchange of r; and ¢ (see the comments following Eqs.(19) and
(20)). Because of the sign + no extraneous roots are introduced by squaring. Equation
(25) with the positive sign has the meaningless root x = py > 1. This is verified with the
help of Egs.(20). From this it follows that the squared equation is divisible by (z — p2)2.
Following this division it is a sixth-order equation. The division is performed in two steps.
Squaring results in the equation

(2 = D[(z — pa)? = X1 {(p1 — p2)*[(x — pa)® = N*] = (p3 — p2)*(z® — 1)}

= (z—p2)F(2){(z = p2)F(x) = 2(p3 — p2)(a® — 1)[(x — ps)® = A*]} (27)
with the third-order polynomial
F(z) = (z = p3)[pa(1 + 2%) + (2> — pf = 1)] . (28)

Taking into account Eqs.(20) the expression in curled brackets on the left-hand side is
written in the form (x — p2)(Ax + B) with constants

A= (p1—p2)®— (ps —p2)°, B =pyA —2p4(p1 — p2)° . (29)
Thus, division of Eq.(27) by (z — p2) produces the equation
(2% = D)[(z — pa)® = N|{[(z — pa)?® = N*|(Az + B) + 2(p3 — p2) F(2)}
= (z — po) F*(x).

The expression in curled brackets is a third-order polynomial K323 + Kox? + Kz + K
with coefficients

K3 = A+ 2ps(ps —p2) ,
Ky =B —2psA+2(ps —p2) (A2 —p7 — 1 — p3pa) , (31)
Ky = —2p4B + A(p5 — X*) + 2(p3 — p2)[psa — p3(A\* — p — 1)] .

Division by (x —p2) produces the second-order polynomial K3x?+ (x+ pg)(Kao+p2K3) +
K7 . With this expression Eq.(30) yields the desired sixth-order equation

(22 = D)[(z — pa)? = N [K32? + (x4 p2) (Ko + poK3) + Ki] — F*(z) = 0. (32)

The coefficient of z6 is

(30)

2 _ 02)(a2 — 12
K —pi = (p1 —p2)2 — (p3 —p2 —294)2 = < (Tié)g ) . (33)

From this it follows that the equation is of fifth order if @ = ¢ and/or a = r;. Only real
roots |z| <1 are significant. For every such root it is checked to which sign in Eq.(25) the
root belongs. With the same sign Eqs.(23) and (6) determine the corresponding stationary
value of 1/i and the angle 1 . Like Freudenstein’s method also this method does not make
any statement about the number of stationary values.
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Ezample: A fourbar with parameters ¢ =3, r1 =5, a =7 and 7710 =6 isa
double-crank, and a fourbar with parameters ¢ =5, 1 =3, a=7 and 719 =6

(¢ and 7 interchanged) is a crank-rocker. With both sets of parameters Eq.(32) has
the four real roots x = cos¢ ~ —0.084, 0.9882, 1.11 and 4.02. The first two roots
determine the angles ¢ ~ 94.8° and ¢ ~ 8.8°, respectively (arbitrarily positive, because
to every position (¢, 1) exists the symmetric position (—¢, —)). For the double-crank
Eq.(25) is satisfied with the lower sign for = ~ —0.084 and with the upper sign for
x ~ 0.9882 . From this it follows that the double-crank has the two positions of stationarity
(¢ ~ 94.8°, 9y ~ 195.5°) with (1/i)mm ~ 0.42 and (¢ ~ 8.8°,1; ~ —88.6°) with
(1/%)max = 2.7 . For the crank-rocker the two positions of stationarity are (¢ ~ 94.8°, 1 ~
79.3°) with (1/8)max &~ 1 — 0.42 = 0.58 and (p ~ 8.8°, ¥y ~ —82.5°) with (1/i)mim ~
1 —2.7= —1.7. It may be checked that in all four positions the line PP, is orthogonal
to the coupler. End of example.

Summary: The inverse of the transmission ratio ¢ = <,0/¢ of the planar fourbar is
formulated as function of x = cosp. The stationarity condition d(1/i)/dx = 0 is a
sixth-order polynomial equation. Its roots are invariant with respect to an interchange
of the link lengths ¢ (fixed link) and 7; (input link). This has the consequence that
two fourbars with interchanged link lengths ¢ and r; have stationary transmission ratios
istat and 1%, at identical input angles ¢ . Moreover, the relationship between the two is
1/istat + 1/iga =1
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CAC GIA TRI DUNG CUA TY SO TRUYEN DONG CUA
HE BON THANH PHANG

Ty s6 truyen dong ctia hé bon thanh phing, tic 1a ty sd clia cac van tdc goc giita
cac lien két dau vao v dau ra, 1a mot ham ciia géc dau vao. Ong Freudenstein [1] da
chi ra cach tinh cac gia tri dimg ciia ty s6 truyén dong. Trong bai bao nay mot phuong
phap méi sé duge trinh bay. Cling giéng phuong phap ctia Freudenstein, né dua dén mot
phuong trinh da thiic bac 6.



