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Abstract. In the present paper we derive improved approximations for the Rayleigh
wave velocity in the interval ν ∈ [−1, 0.5] using the method of least squares. In particular:
(i) We create approximate polynomials of order 4, 5, 6 whose maximum percentage errors
are 0.035 %, 0.015 %, 0.0083 %, respectively. (2i) Improved approximations in the form
of the inverse of polynomials of order 3, 5 are also established. They are approximations
with very high accuracy. (3i) By using the best approximate second-order polynomial of
the cubic power in the space C[0.474572, 0.912622], we derive an approximation that is
the best, so far, of the approximations obtained by approximating the secular equation.

1. INTRODUCTION

Elastic surface waves in isotropic elastic solids, discovered by Lord Rayleigh [1] more
than 120 years ago, have been studied extensively and exploited in a wide range of appli-
cations in seismology, acoustics, geophysics, telecommunications industry and materials
science, for example. It would not be far-fetched to say that Rayleigh’s study of surface
waves upon an elastic half-space has had fundamental and far-reaching effects upon mod-
ern life and many things that we take for granted today, stretching from mobile phones
through to the study of earthquakes, as noted by Samuel [2].

For the Rayleigh wave, its velocity is a fundamental quantity which is significance
in practical applications, so researchers have attempted to find its analytical approximate
expressions which are of simple forms and accurate enough for practical purposes.

Let c be the Rayleigh wave velocity in isotropic elastic solids and x(ν) = c/β, where
β is the velocity of shear waves and ν is Poisson’s ratio. The earliest known approximate
formula of x(ν) was proposed by Bergmann [3], namely:

xb(ν) =
0.87 + 1.12ν

1 + ν
, ν ∈ [0, 0.5]. (1)

Since Bergmann’s approximation has a simple form (also is very well-known ) it has a
wide range of applications. However, its accuracy is not so high, so it is very significant
to improve the accuracy of it. An empirical correction of its numerical coefficients was
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proposed by Klerk [4], but the accuracy is changed inconsiderably. Recently, Vinh &
Malischewsky [5] have found an improved approximation of Bergmann’s form, namely:

xvmb(ν) =
1.68522 + 1.27223ν

1.92899 + ν
, ν ∈ [0, 0.5], (2)

which is 10 times more accurate than xb(ν), in the sense of maximum percentage error
(defined by (15)). For the range ν ∈ [0, 0.5], some other improved approximations of the
Rayleigh wave velocity have also been established (see [6], [7]).

Materials with negative values of Poisson’s ratio, so-called auxetic materials, really
exist (see e. g. a new recent review by Yang et al. [8]), and their applications are numerous,
including their use as core material of sandwich panel, minimization of creep buckling
failure, drug-eluting stents, anti-vibration glove, textiles, ect., as noted by Lim [9]. Thus
approximations of the Rayleigh wave velocity for the range [−1, 0.5] become significant
for practical applications. The first approximation for the range [−1, 0.5] was proposed by
Malischewsky [10], namely:

xm(ν) = 0.874 + 0.196ν − 0.043ν2 − 0.055ν3 , ν ∈ [−1, 0.5], (3)

and it is shown by Vinh & Malischewsky [11] that xm(ν) can be considered as the best
approximation of the Rayleigh wave velocity x(ν) in the interval [−1, 0.5], in the sense
of least squares, with respect to the class of Taylor expansions of x(ν) up to the third
power at the values y ∈ [−1, 0.5]. An improved third-order approximate polynomial for
the interval [−1, 0.5] has been found recently by Vinh & Malischewsky [6], namely:

xvm(ν) = 0.87384 + 0.192422ν − 0.0350168ν2 − 0.0439059ν3 , ν ∈ [−1, 0.5], (4)

which is the best approximate polynomial of order 3 of the Rayleigh wave velocity x(ν) in
the interval [−1, 0.5], in the sense of least squares.

By using Lanczos’s approximation [12], Rahmann and Michelitsch [13] has obtained
the approximate formula:

xrm =

√

30.876− 14.876ν −
√

224.545376ν2 − 93.122752ν + 124.577376

26(1− ν)
, (5)

ν ∈ [−1, 0.5]. Independentlly, Vinh & Malischewsky [6] and Li [14] have obtained the
following approximation

xvml =

√

15.4− 7.4ν −
√

56.06ν2 − 22.52ν + 30.46

13(1− ν)
, ν ∈ [−1, 0.5], (6)

by using the best approximate second-order polynomials of the cubic power in the interval
[0, 1]. Using the intervals [0.47, 1] and [0.474572, 0.912622], instead of the one [0, 1], Li
[14] and Vinh & Malischewsky [6] have found, respectively, the following approximations:

xl2 =

√

28.84− 12.84ν −
√

198.89ν2 − 66.98ν + 124.1

23.18(1− ν)
, ν ∈ [−1, 0.5], (7)



Improved approximations for the Rayleigh wave velocity in [-1, 0.5] 349

and

xvm2 =

√

29.171− 13.171ν −
√

203.188ν2 − 70.194ν + 123

23.677(1− ν)
, ν ∈ [−1, 0.5]. (8)

The accuracies of the obtained approximations of the Rayleigh wave velocity in the interval
[−1, 0.5] in the sense of maximum percentage error are shown in Table 1.

Table 1. Maximum percentage error Ī of the approximations in the interval ν ∈
[−1, 0.5] : Ī = max[−1, 0.5] |1 − g(ν)/x(ν)| × 100%, g(ν) is an approximation of

x(ν).

Appr. Ī(%) Appr. Ī(%) Appr. Ī(%)
xrm 0.418 xvml 0.312 xl2 0.16
xm 0.4111 xvm 0.21 xvm2 0.09

It is shown, from Table 1, that among existing approximations for the range [−1, 0.5],
the approximation xvm2(ν) is the best. However, its accuracy is not so high. As stressed
by Nesvijski [15], nondestructive testing of composites is a complex problem because com-
ponents of materials may have very similar physical-mechanical properties. In order to
distinguish one component from another we need highly accurate approximations of the
Rayleigh wave velocity. Some recent experimental results cannot be explained unambigu-
ously by existing approximate formulas. This motivates the authors to improve previously
proposed approximations for the values ν ∈ [−1, 0.5]. In particular: (i) We obtain approx-
imate polynomials of order 4, 5, 6 which are 2.57 times, 6 times, 10.8 times more accurate
than xvm2(ν), respectively. (2i) Improved approximations in the form of the inverse of
polynomials of order 3, 5 are also established. They are 1.8 times, 15.5 times, respectively,
better than the approximation xvm2(ν). (3i) By replacing the cubic power by its best
approximate second-order polynomial in the space C[0.474572, 0.912622], we derive an
approximation that is the best, so far, of the approximations obtained by approximating
the secular equation.

2. APPROACH OF LEAST SQUARES

In order to obtain the improved approximations of the Rayleigh wave velocity we
will use the least-square method which was presented in detail in [6]. Here we recall it
shortly.

Let V be a subset of the space L2[a, b] (that consists of all functions measurable in
(a, b), whose squared values are integrable on [a, b] in the sense of Lebesgue), and f is a
given function of L2[a, b]. A function g ∈ V is called the best approximation of f with
respect to V , in the sense of least squares, if it satisfies the equation

∫ b

a

[f(ν)− g(ν)]2dν = min
h∈V

I(h), (9)

where

I(h) =

∫ b

a

[f(ν) − h(ν)]2dν. (10)
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If V is a finite dimensional linear subspace (a compact set) of L2[a, b], then the problem
(9) has a unique solution (a solution) (see [16]).

Since polynomials are considered as the simplest functions, V is normally taken as
the set of polynomials of order not bigger than n, denoted by Pn+1, which is a linear
subspace of L2[a, b], has dimension n + 1, and its basic functions can be chosen as:

1, ν, ..., νn. (11)

For this case, in order to solve problem (9) we represent h(ν) as a linear combination of
1, ν, ..., νn:

h(ν) =

n
∑

i=0

aiν
i. (12)

Then the functional I(h) becomes a function of the n + 1 variables a0, a1, ..., an, and from
the conditions: ∂I/∂ai = 0, i = 0, 1, ..., n, problem (9) is leaded to a system of n + 1
linear equations for a0, a1, ..., an:



















∑n
i=0(1/(i + 1))(bi+1 − ai+1)ai = b0

∑n
i=0(1/(i + 2))(bi+2 − ai+2)ai = b1

................................................
∑n

i=0(1/(i + 1 + n))(bi+1+n − ai+1+n)ai = bn

(13)

which has a unique solution, where:

bi =

∫ b

a

νif(ν)dν, i = 0, 1, ..., n. (14)

In order to evaluate an approximation’s accuracy we use the maximum percentage
(relative) error Ī defined as follows:

Ī = max
[a, b]

|1 − g(ν)/f(ν)| × 100% , (15)

where g(ν) is an approximation of f(ν) in the interval [a, b].

3. HIGHLY ACCURATE POLYNOMIAL APPROXIMATIONS

Now we find the best approximate polynomial of order 5 of x(ν) in the interval
[−1, 0.5] in the sense of least squares. That means we have to solve problem (9) in which
a = −1, b = 0.5, h(ν) is presented by (12) with n = 5, f(ν) = x(ν) and x(ν) is given by
(see [17]):

x(ν) = c/β =
√

x̄(ν), x̄(ν) =
2

3

[

4 − 3
√

h3(γ) +
2(1− 6γ)

3
√

h3(γ)

]

, (16)

where:

γ =
1 − 2ν

2(1 − ν)
= (β/α)2, (17)

and:
h1(γ) = 3

√

33 − 186γ + 321γ2 − 192γ3, h3(γ) = 17− 45γ + h1(γ). (18)



Improved approximations for the Rayleigh wave velocity in [-1, 0.5] 351

Here α is the velocity of longitudinal waves, and the main values of the cubic roots are
to be used in (16). The problem is then leaded to the system (13), (14) with n = 5, a =
−1, b = 0.5, f(ν) = x(ν), whose unique solution is:

a0 = 0.873985, a1 = 0.19489, a2 = −0.038276, a3 = −0.059703,

a4 = 0.004023, a5 = 0.01586. (19)

Thus, the desired polynomial is:

p5(ν) = 0.873985 + 0.19489ν − 0.038276ν2 − 0.059703ν3 + 0.004023ν4 + 0.01586ν5, (20)

whose the maximum percentage error is 0.03% (see Fig. 1).
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Fig. 1. Percentage error of approximations: p5(ν) (dashed line), p5∗(ν) (solid line).

It is shown, from Fig. 1, that the percentage error of p5(ν) is small at every value of
ν of the interval [−1, 0.5] except the values belong to a very small neighbourhood of −1
and 0.5, and it very quickly increases when ν tends to these values. Egorov’s theorem [18]
suggests that, in order to decrease the percentage error of p5(ν) in the interval [−1, 0.5] we
should find the best approximate polynomial of order 5 in the interval [−1− ε1, 0.5 + ε2],
where ε1, ε2 are positive and appropriately small.

By choosing ε1 = 0.05, ε2 = 0.02 we obtain:

p5∗(ν) = 0.873967+0.194795ν−0.037806ν2−0.058746ν3+0.0028151ν4+0.014051ν5 (21)

whose the maximum percentage error in the interval [−1, 0.5] is only 0.015% (see Fig. 1),
less than the one of p5(ν). It is clear that the approximation p5∗(ν) is a very highly accurate
approximation of x(ν) in the interval [−1, 0.5] in the sense of maximum percentage error.
It is 6 times better than xvm2, the best of the obtained approximations of x(ν) in the
interval ν ∈ [−1, 0.5].
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Analogously, by solving the system (13), (14) with n = 6, a = −1, b = 0.5, f(ν) =
x(ν) (defined by (16)), we obtain the best approximate polynomial of order 6 of x(ν) in
the interval [−1, 0.5], namely:

p6(ν) = 0.874057+ 0.195792ν − 0.040855ν2 − 0.07346ν3 + 0.009183ν4

+ 0.061261ν5 + 0.030267ν6, (22)

whose the maximum percentage error is 0.024% (see Fig. 2).
It is clear, from Fig. 2, that the percentage error of p6(ν) very quickly increases

when ν tends to the boundary values −1 and 0.5. According to Egorov’s theorem [18], in
order to decrease the the percentage error of p6(ν) in the interval [−1, 0.5] we should find
the best approximate polynomial of order 6 in the interval [−1− ε1, 0.5+ ε2]], where ε1, ε2
are positive and appropriately small.
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Fig. 2. Percentage error of approximations: p6(ν) (dashed line), p6∗(ν) (solid line).

By choosing ε1 = 0.1, ε2 = 0.02 we obtain an approximation being better than p6(ν)
in the sense of maximum percentage error, namely:

p6∗(ν) = 0.874045 + 0.195586ν − 0.040371ν2 − 0.069955ν3 + 0.008382ν4

+ 0.04879ν5 + 0.021205ν6, (23)

whose the maximum percentage error (in the interval [−1, 0.5]) is only 0.0083%, less than
the one of p6(ν). The approximation p6∗(ν) is also a very highly accurate approximation
of x(ν) in the interval [−1, 0.5]. It is 10.8 times better than xvm2 in the sense of maximum
percentage error.

Remark 1:
i) Doing analogously as above, i. e. employing the method of least squares and taking

into account Egorov’s theorem, we obtain the following approximation:

p3∗(ν) = 0.873776 + 0.192001ν − 0.034105ν2 − 0.041932ν3 , (24)



Improved approximations for the Rayleigh wave velocity in [-1, 0.5] 353

that is the best approximate polynomial of order 3 of x(ν) in the interval [−1.05, 0.5] in
the sense of least squares, and its maximum percentage error in the interval [−1, 0.5] is
0.1%. Since the maximum percentage errors of the approximations xm(ν) (defined by (3))
and xvm(ν) (defined by (4)) in the interval [−1, 0.5] are 0.411% and 0.21%, respectively,
p3∗(ν) is the best approximate polynomial of order 3 of x(ν) in the interval [−1, 0.5], so
far, in the sense of the maximum percentage error.

2i) Approximations p3∗(ν) and xvm2(ν) have almost the same accuracy, but p3∗(ν)
has a simpler form, so it may be better than xvm2(ν) for practical purposes.

3i) By finding the best approximate polynomial of order 4, in the sense of least
squares, in the interval [−1.02, 0.5325] we obtain the following approximation:

p4∗(ν) = 0.873785 + 0.195024ν − 0.032795ν2 − 0.057681ν3 − 0.014513ν4 , (25)

whose the maximum percentage error (in the interval [−1, 0.5] ) is 0.035%. It is 2.57 times
more accurate than xvm2. It should be noted that, in the sense of maximum percentage
error the approximation p4∗ is better than best approximate polynomial of order 4 of x(ν)
in the interval [−1, 0.5].

4. HIGHLY ACCURATE APPROXIMATIONS OF THE FORM OF THE
INVERSE OF POLYNOMIALS

For the interval [0, 0.5], an approximation of the form of the inverse of a polynomial
was first proposed by Sinclair (see [19], [10]), namely:

xsc(ν) =
1

1.14418− 0.25771ν + 0.12661ν2
, ν ∈ [0, 0.5]. (26)

It was published without the derivation procedure. Interestingly, it was proved recently by
Vinh & Malischewsky [7] that the inverse of Sinclair’s approximation is the best approxi-
mation of s(ν) in the interval [0, 0.5], in the sense of least squares, with respect to the set
of all Taylor expansions of s(ν) up to the second power at the values y ∈ [0, 0.5].

Although Sinclair’s expression (26) approximates rather well x(ν) in [0, 0.5] (its
maximum percentage error is 0.02%) but it is not the best one of this form. Recently,
Vinh & Malischewsky [7] have found an inverse of a second-order polynomial, namely:

xvms2(ν) =
1

1.14413− 0.25689ν + 0.12457ν2
, (27)

which is 4 times more accurate than Sinclair’s approximation. Approximations of Sinclair
type with higher accuracy for this range were also obtained recently by Vinh & Malis-
chewsky [7] using the method of least squares. In this section approximations of x(ν) in
the form of the inverse of polynomials of order 3 and 5, denoted by xvms3(ν) and xvms5(ν),
respectively, are created for the interval [−1, 0.5]. They are approximations with high ac-
curacies.

Because 0 < x(ν) < 1 ∀ ν ∈ [−1, 0.5], it follows that s(ν) = 1/x(ν) > 1 ∀ ν ∈
[−1, 0.5]. This leads to:

‖ x − 1

g
‖<‖ s − g ‖ ∀ g ∈ L2[0, 0.5] : g(ν) > 1 ∀ ν ∈ [−1, 0.5]. (28)
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The inequality (28) is valid for both L2[−1, 0.5]-norm and C[−1, 0.5]-norm. Here C[a, b]
denotes the space of continuous functions in [a, b]. It follows form inequality (28) that if
g(ν) is a good approximation of s(ν) then 1/g(ν) is a good one of x(ν). A more accurate
approximation of s(ν) likely leads to a corresponding more accurate one of x(ν) by this
way. Following this idea, in order to obtain the approximations of the form of the inverse of
polynomials with high accuracy we should find highly accurate approximations of s(ν)in
the interval [−1, 0.5], where s(ν) (dimensionless slowness) is given by ([20]):

s(ν) =
1

x(ν)
=

√
s̄, s̄ =

1

4(1− γ)

[

2 − 4

3
γ + 3

√

v(γ) +
3 + (4γ − 3)2

9 3

√

v(γ)

]

, (29)

where:

v(ν) =
2

27
(27 − 90γ + 99γ2 − 32γ3) +

2

3
√

3
(1− γ)

√

11− 62γ + 107γ2 − 64γ3. (30)

Now we find the best approximate polynomial of order 5 of s(ν) in the interval [−1, 0.5]
in the sense of least squares. That means we have to solve the system (13), (14) with
n = 5, a = −1, b = 0.5, f(ν) = s(ν). It is not difficult see that its unique solution is:

a0 = 1.14416, a1 = −0.25557, a2 = 0.10791, a3 = 0.04916,

a4 = −0.03049, a5 = −0.02378. (31)

The desired polynomial is:

q5(ν) = 1.14416− 0.25557ν + 0.10791ν2 + 0.04916ν3 − 0.03049ν4 − 0.02378ν5, (32)

From (32) we obtain a very good approximation, namely 1/q5, of x(ν) in the interval
[−1, 0.5] whose maximum percentage error is 0.012% (see Fig. 3). It is clear, however,
from Fig. 3, that the percentage error of 1/q5(ν) very quickly increases when ν tends to
the boundary points −1 and 0.5, especially the point −1. According to Egorov’s theorem
[18] and inequality (28), in order to decrease the the percentage error of 1/q5(ν) in the
interval [−1, 0.5] we should find the best approximate polynomial of order 5 of s(ν) in
the interval [−1− ε1, 0.5 + ε2]], where ε1, ε2 are positive and appropriately small. Taking
ε1 = 0.03, ε2 = 0.02 we obtain the following approximate polynomial:

q5∗(ν) = 1.14417− 0.25552ν + 0.10772ν2 + 0.04871ν3 − 0.03ν4 − 0.02297ν5 . (33)

Thus, the approximation xvms5(ν) is given by:

xvms5(ν) =
1

1.14416− 0.25557ν + 0.10791ν2 + 0.04916ν3 − 0.03049ν4 − 0.02378ν5
(34)

The maximum percentage error of xvms5(ν) in the interval [−1, 0.5] is only 0.0058%. This
says that xvms5(ν) is very highly accurate approximation of x(ν) in the interval [−1, 0.5].
It is 15.5 times more accurate than xvm2.

Following the same procedure as above we obtain:

xvms3(ν) =
1

1.14447− 0.25632ν + 0.0993ν2 + 0.04888ν3
, (35)

where the denominator of xvms3(ν) is the best approximate third-order polynomial of
s(ν) in the interval [−1, 0.54]. The maximum percentage error of xvms3(ν) in the interval
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Fig. 3. Percentage error of approximations: xvms5(ν) (solid line), 1/q5(ν) (dashed line).

[−1, 0.5] is 0.046%, 1.8 times smaller than that of xvm2 , so it is a highly accurate ap-
proximation of x(ν) in the interval [−1, 0.5]. It should be noted that xvms3(ν) is 2 times
better than p3∗(ν) and xvms5(ν) is 2.6 times better than p5∗(ν), even it is more accurate
than p6∗(ν).

5. AN IMPROVED APPROXIMATION DERIVED BY
APPROXIMATING THE SECULAR EQUATION

In order to establish approximate expressions of the Rayleigh wave speed one can
replace the cubic secular equation by quadratic ones approximating the cubic power by the
best approximate second-order polynomials (see [6], [13], [14]). The approximating can be
carried out in the space L2[a, b] or in the one C[a, b]. Vinh & Malischewsky [6] and Li [14]
used the space L2[a, b], and from obtained results it is shown that the best approximation
of Rayleigh wave speed corresponds to the choice a = x̄(−1) = 0.474572, b = x̄(0.5) =
0.912622. Now we employ the space C[a, b] to approximate the cubic power, and according
to this conclusion, we choose a = 0.474572, b = 0.912622. It should be noted that, as
shown by Vinh & Malischewsky [6], Lamczos’s approximation used by Rahman & and
Michelistch [13] is nothing but the best approximate second-order polynomial of the cubic
power in C[0, 1].

As demonstrated in [6], among all polynomials q(t) of the n-th degree whose leading
coefficient is unity, the Chebysev polynomial Tn(t)/2n−1 (see [12]) deviates the least from
zero in C[−1, 1]. By the transformation t(z) = (2z−a−b)/(b−a), this observation leads to
the conclusion: among all polynomials of the n-th order whose leading coefficient is unity,
the polynomial (b − a)nTn(t(z))/22n−1 deviates the least from zero in C[a, b]. That means
the following proposition is valid: the polynomial pn−1(z) = zn − (b − a)nTn(t(z))/22n−1

deviates the least from zn in C[a, b]. Applying the proposition for n = 3, a = 0.474572, b =
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0.912622 we have:

p2(z) = 2.080791z2 − 1.4072514z + 0.3087185. (36)

that is the best approximate second-order polynomial of z3 in C[0.474572, 0.912622]. Em-
ploying the proposition for a = 0, b = 1 and n = 3 produces Lanczos’s approximation,
namely: 1.5z2 − 0.5625z + 0.03125, that is the best approximate second-order polynomial
of z3 in C[0, 1].
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Fig. 4. Percentage error of approximation xvm2∗.

Replacing the cubic power in the secular equation by the approximation (36) leads
to a quadratic equation. Its solution corresponding to Rayleigh wave speed is then easy
obtained, namely:

xvm2∗ =

√

29.185498− 13.185498ν −
√

203.095267ν2 − 70.467717ν + 123.372451

23.676836(1− ν)
(37)

Making use of (15)-(17) and (37), the maximum percentage error of xvm2∗ in the interval
[−1, 0.5] is 0.056%. This can also be seen from Figure 4. From Table 1 and this fact
it is concluded that among approximations of the Rayleigh wave velocity in the interval
[−1, 0.5] derived by approximating the cubic power, xvm2∗ is the best, so far, in the sense of
maximum percentage error, and it is 1.6 times, 2.8 times, 5.5 times, 7.5 times, respectively,
more accurate than xvm2, xl2, xvml, xrm, the approximations previously obtained by this
way.

6. CONCLUSIONS

In this paper we have derived improved approximations of the Rayleigh wave ve-
locity for the range ν ∈ [−1, 0.5] using the method of least squares and taking account
into Egogov’s theorem. Some of them are very highly accurate approximations. That are
approximations p5∗, p6∗ and xvms5 whose maximum percentage error are 0.015%, 0.0083%
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and 0.0056%, respectively. They are 6 times, 10.8 times and 15.5 times better than xvm2,
the best of the previously established approximations of x(ν) for the values ν ∈ [−1, 0.5].
By approximating the cubic power in the space C[0.474572, 0.912622] an approximation
with high accuracy has been established that is the best, so far, of the approximations
obtained by approximating the secular equation. It should be noted that the technique
used here can be employed to create approximations with higher accuracy.
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CÁC XẤP XỈ VỚI ĐỘ CHÍNH XÁC CAO CỦA VẬN TỐC SÓNG
RAYLEIGH TRÊN ĐOẠN [-1, 0.5]

Trong bài báo này, các xấp xỉ với độ chính xác cao của vận tốc sóng Rayleigh trên
đoạn [-1, 0.5] đÓ được xây dựng dụa trên phương pháp bình phương tối thiểu. Cụ thể: (i)
Đó là các đa thức xấp xỉ bậc 4, 5, 6 với các sai số tương đối là 0.035%, 0.015%, 0.0083%.
(ii) Các xấp xỉ là nghịch đảo của các đa thức bậc 3, bậc 5 cũng đÓ được xây dựng. Chúng
có độ chính xác rất cao. (iii) Sử dụng đa thức bậc hai xấp xỉ tốt nhất của lũy thừa bậc ba

trong không gian C[0.474572, 0.912622], các tác giả đÓ thu được một xấp xỉ mà cho đến
nay là tốt nhất trong các xấp xỉ tìm thấy bằng cách xấp xỉ trực tiếp phương trình tán sắc.


