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Abstract. A new C1 rectangular element is proposed and the finite element formulation
based on Reddy’s higher-order shear deformation plate theory is developed. Although the
plate theory is quite attractive but it could not be exploited as expected in finite-element
analysis. This is due to the dificulties associated with satisfaction of inter-elemental
continuity requirement and satisfy zero shear stress boundary conditions of the plate
theory. In this paper, the proposed element is developed where Reddy’s plate theory is
successfully implemented. It has nine nodes and each node contains 7 degrees of freedom.
The performance of the element is tested with different numerical examples, which show
its precision and range of applicability.

1. INTRODUCTION

Laminated composite plates are finding extensive usage in the aeronautical, ship
building and aerospace industries as well as in other fields of modern technology.

The problem of shear deformation has got a good amount of attention after the
popularity of fibre reinforced laminated composites, which is now one of the major areas
of research in recent times. Actually, the role of transverse shear is very important in
composites, as the material is weak in shear due to its low shear modulus compared to
extensional rigidity. In this context, a number of plate theories have been developed where
the major emphasis is to model the shear deformation in a refined manner. Amongst
these plate theories (higher-order shear deformation theories-HSDT) only a representative
selection is made in reference [1–17].

In single layer displacement-based theories, the plate theory proposed by Reddy [7]
is most simple, elegant and useful in the context of present problem. It allows parabolic
variation of transverse shear stress along the plate thickness and satisfy zero shear stress
boundary conditions at the top and bottom of the plate. This has helped to eliminate the
necessity of any arbitrary shear correction factor like that, which is required in FSDT.
Moreover Reddy’s plate theory does not involve any unknown, which does not have any
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physical meaning like that found in some plate theories (e.g. [10,11]). Reddy’s plate theory
has all positive features except one drawback, which is found in a situation when finite
element is applied to this plate model. The problem is concerned with the continuity
requirement of w at the common edges between two elements. It requires C1 continuity of
w as the strain terms contain second-order derivatives of w. This problem is identical to
that experienced in the development of thin-plate elements as mentioned earlier. This has
rather put the main constrain in exploiting such an elegant plate theory in finite element
analysis as expected [4].

In this context, Sheikh and Chakrabarti [4] have developed a triangular element.
This basic element has six nodes (three corner nodes and three mid-side nodes). Recently,
we have developed a C1 rectangular element [1]. This element has four nodes, each node
contains u˚; v˚; w˚; θx, θy, γx and γy as the degrees of freedom. However, this element
was not really good in rate of convergence for the bending analysis of composite plates.

Keeping all the aspects in view, an attempt has been made to develop a nine-node
rectangular element with high accuracy based on higher-order shear deformation theory
of Reddy, where each node contains seven degrees of freedom: u˚; v˚; w˚; θx; θy; γx and
γy. In this element, the field variables: u˚; v˚; γx and γy are approximated by a complete
quadratic polynomial having four unknowns; the transverse displacement w and θx, θy

are approximated by a truncated quintic polynomial having 12 unknowns. With all these
efforts it is found that the element does not satisfy the continuity requirement of normal
slope. Thus, the proposed element is non-conforming but it is found that the performance
of the element is excellent in a wide range of problems, which include different boundary
condition, plate geometry, aspect ratio, stacking sequence, load distribution and so on.

2. ELASTICITY EQUATIONS

According to Reddy’s plate theory [7], the displacement components of a point
at a distance of z from the reference plane may be expressed in terms field variables
(displacement parameters at the reference plane) as:

u(x, y, z) = u0 (x, y)− z
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w(x, y, z) = w0 (x, y)

(1)

The strain vector {ε} may be expressed as:
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3. FINITE ELEMENT MODELING OF EQUATIONS

The formulation is based on the assumptions followed in Reddy’s plate theory. The
middle plane of the plate is taken as the reference plane.

According to (1), there are 7 displacement components on a node. The nodal dis-
placement vector is expressed by:

di =

{

u0
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i w0
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or
d =

{

u0 v0 w0 θx θy γx γy

}T
(5)

Seven components are 7 degrees of freedom of a node, respectively:

di = {qi, qi+1, qi+2, qi+3, qi+4, qi+5, qi+6}
T

Therefore, the element’s nodal displacement vector is presented by:

a =
{

dT
1 dT

2 · · · dT
i dT

n

}T
(6)

According to the discussions made in the previous section, the field variables i.e., the
independent displacement components at the reference plane may be expressed as follows:
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where N is number of nodes of element, Ni are the Lagrange interpolations functions and
Hi are the Hermite interpolation functions.

The displacement vector is interpolated through element’s nodal displacement vector
as:

d = Ba (11)
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where, B is interpolation matrix and is presented by:

B =



























N1 0 0 0 0 0 0 N2 ...
0 N1 0 0 0 0 0 0 ...
0 0 H1 H2 H3 0 0 0 ...

0 0
∂

∂x
H1

∂

∂x
H2

∂

∂x
H3 0 N1 0 ...

0 0
∂

∂y
H1

∂

∂y
H2

∂

∂y
H3 N1 0 0 ...

0 0 0 0 0 0 N1 0 ...
0 0 0 0 0 N1 0 0 ...

Nn 0 0 0 0 0 0
0 Nn 0 0 0 0 0
0 0 H3N−2 H3N−1 H3N 0 0

0 0
∂

∂x
H3N−2

∂

∂x
H3N−1

∂

∂x
H3N 0 NN

0 0
∂

∂y
H3N−2

∂

∂y
H3N−1

∂

∂y
H3N NN 0

0 0 0 0 0 0 NN

0 0 0 0 0 NN 0



























Now the field variables (3) is substituted in Eqs. (4), (5) and (11) to express the
strain vector {ε} in terms of element’s nodal displacement vector as:
{

ε0
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where, L and L′ are operator matrices and can be presented by:

L′

1 = −

[

0 0 0 0 0 1 0
0 0 0 0 0 0 1

]

; L′

2 =
4

h2

[

0 0 0 0 0 1 0
0 0 0 0 0 0 1

]

(14)

and

L1 =















∂

∂x

0 0 0 0 0 0

0
∂

∂y

0 0 0 0 0

∂

∂y

∂

∂x

0 0 0 0 0















; L2 = −















0 0 0
∂

∂x

0 0 0

0 0 0 0
∂

∂y

0 0

0 0 0
∂

∂y

∂

∂x

0 0















;

L3 =
4

3h2















0 0 0 0 0 0
∂

∂x

0 0 0 0 0
∂

∂y

0

0 0 0 0 0
∂

∂x

∂

∂y

















A C1 bending element for composite plates based on a high-order shear deformation theory 341

Similar to strain vector {ε}, the transverse displacement wmay be expressed in terms
of nodal displacement vector {a} with the help of Eqs. (7), (8) and (11) as

w(x, y) = Bpa = {a}T [0 0 H1 H2 H3 0 0 · · · 0 0 H3∗N−2 H3∗N−1 H3∗N 0 0]T (15)

The present element may have any rectangular shape. This is mapped in a different
plane (ξ − η), which gives a rectangular shape. The relationship between these two axes
system is as follows:

ξ =
2 (x − xc)

a
; η =

2 (y − yc)

b
and x =

a

2
ξ + xc; y =

b

2
η + yc. (16)

where, a× b is dimension of rectangular element; (xc, yc) are the global coordinates of the
center of element.

The interpolation functions of nine-noded rectangular element are determined: An
alternative derivation uses Hermitian polynomials which permit the writing down of suit-
able function directly. A Hermitian polynomial of 5th order was determined.
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N7 = −0, 25(1− ξ)(1 + η)ξη; N8 = −0, 5(1− ξ)(1− η2)ξ; N9 = (1− ξ2)(1− η2) (28)

Finally, using the finite element analysis to study the static behavior of the plate, the
global stiffness matrix [K ] and the global force vector {F} are needed and the equilibrium
equations of them can be determined through the element stiffness matrix, [Ke], and
the nodal load vector, {P}. Where [Ke] and {P} are presented in compact form as the
following:
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∫∫

Se

p(x, y)w(x, y)dS = aT
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Se

[Bp]
T {p(x, y)}dS = {a}T {P} (30)

The integration in the above equations is performed numerically following Gauss
quadrature technique.

4. NUMERICAL RESULTS

Numerical examples of composite plates having different features are solved by the
proposed Hermitian nine-noded rectangular element and the results obtained are presented
with the published results for necessary comparison.

Example 1. The problem of a three ply (00/900/00) square laminate; the material
properties of each ply is assumed as: E1 = 175 GPa; E2 = E3 = 7 GPa; G12 = G13 =
3.5 GPa; G23 = 1.4 GPa; ν12 = ν13 = 0.25; ν23 = 0.01; simply supported at all the edges
and subjected to uniformly distributed load, is studied for different thickness ratios (h/a)
ranging from 0.5 to 0.01. The following nondimensionalized quantities at specific points

Table 1. Deflection (w) at the centre of a simply supported square laminate
(00/90

0/0
0) under uniform distributed load of intensity q

References Theory
Thickness ratio (h/a)

0.01 0.02 0.05 0.1 0.25 0.5

Present (4x4 mesh) HSDT 0.7101 0.7259 0.8236 1.1076 2.4774 5.1557
Present (6x6 mesh) HSDT 0.7036 0.7210 0.8217 1.106 2.4795 5.155

Present (8x8 mesh) HSDT 0.7010 0.7190 0.8185 1.1011 2.4766 5.1525
Present (10x10 mesh) HSDT 0.6998 0.7179 0.8152 1.0964 2.4725 5.1488

Present (12x12 mesh) HSDT 0.6991 0.7170 0.8124 1.0926 2.4690 5.1457
Sheikh et al. [4]. HSDT 0.6708 0.6841 0.7763 1.0910 2.9093 7.7670
Mesh: (16x16) FSDT 0.6713 0.6823 0.7568 1.0235 2.6608 7.7068

Reddy [7]
HSDT 0.6705 0.6838 0.7760 1.0900 2.9091 7.7671
FSDT 0.6697 0.6807 0.7573 1.0219 2.6596 7.7062

Ghosh and Dey [12] HSDT 0.6823 - 0.7572 0.9650 - -
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are presented in Tables.
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The plate is analysed with different mesh divisions and the deflection obtained at the
plate centre is presented with the analytical solution of Reddy [7], finite element solutions
of Sheikh & Chakrabarti [4], Ghosh and Dey [12] in Table 1. The results clearly show that
the deflection values obtained using proposed C1 element are in close agreement with the
other results for a/h ratios equal to 100, 50, 20 and 10. For very thick plates (a/h ratio
equal to 4 and 2), the present element underpredicts deflection by 15%-33% compared to
the results of Reddy [7] and Sheikh [4].

Example 2. A simply supported four layered square antisymmetric angle-ply (θ/-
θ/θ/-θ) composite plates under sinusoidal transverse load is considered for different
thickness ratios (h/a) ranging from 0.25 to 0.01. The material properties of each ply is
assumed as: E1 = 276 GPa; E2 = E3 = 6.895 GPa; G12 = G13 = 3.45 GPa; G23 = 4.12
GPa; ν12 = ν13 = ν23 = 0.25. The following nondimensionalized quantities at specific
points are presented in Tables 2.

Table 2. (w) at the important points of a simply supported square angle-ply (θ/-
θ/θ/-θ) under sinusoidal load of amplitude q

θ Theory
Thickness ratio (h/a)
0.01 0.1 0.25

15o

Present, 4 node rectangular element (16×16 mesh) 0.2537 0.4237 1.0818
Present, 4 node rectangular element (24×24 mesh) 0.2534 0.4253 1.0880
Present, 9 node rectangular element (8×8 mesh) 0.2651 0.4509 1.1219
Ren [17] 0.2668 0.4505 1.3050
Swaminathan [16] (Model-1, full third order
displacement theory-TSDT)

0.2662 0.4423 1.2608

Swaminathan [16] (Model-3, High order
displacement theory-HSDT)

0.2666 0.4329 1.1903

30o

Present, 4 node rectangular element (16×16 mesh) 0.1944 0.3506 0.9171
Present, 4 node rectangular element (24×24 mesh) 0.1951 0.3694 0.9284
Present, 9 node rectangular element (12×12 mesh) 0.2001 0.3694 0.9554
Ren [17] 0.2049 0.3543 1.0943
Swaminathan [16] (Model-1, full third order
displacement theory-TSDT)

0.2046 0.3439 1.0399

Swaminathan [16] (Model-3, High order
displacement theory-HSDT)

0.2046 0.3291 0.9494

45o

Present, 4 node rectangular element (16×16 mesh) 0.1727 0.3250 0.8454
Present, 9 node rectangular element (8×8 mesh) 0.1769 0.3411 0.8826
Ren [17] 0.1821 0.3201 1.0160
Swaminathan [16] (Model-1, full third order
displacement theory-TSDT)

0.1818 0.3101 0.9626

Swaminathan [16] (Model-3, High order
displacement theory-HSDT)

0.1818 0.2956 0.8747
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There is a good agreement between the results obtained by using the proposed
element and the analytical results of Swaminathan et al., [16] and the results reported
by Ren, [17]. To assess the improvement of new element over 4 node rectangular element
[1], [2] the size of mesh and the rate of convergence are also presented in these tables.
We see that for all the fibre orientation (θ = 15˚, 30˚ and 45˚) and a/h ratio equal
to 100 and 10, the values of transverse deflection predicted by the present model for 4
layered antisymmetric angle-ply (θ/-θ/θ/-θ) plates under sinusoidal transverse load are
in good agreement with the analytical results of Swaminathan [16] and C˚ isoparametric
finite element result of Ren [17]. In the case of thick plates with a/h ratio equal 4, the
values of deflection predicted by our model are 10%-15% lower for any given value of fibre
orientation as compared to the results of Swaminathan [16] and Ren [17].

Example 3. A symmetric (00/900/900/00) square plate with equal thickness lay-
ers has been subjected to a sinusoidal transverse load on top plane and the results are
presented in Table 3. The material properties and boundary conditions are as Example 1.

Table 3. Deflection (w) and Stresses (σxx, σyy, σxz, σyz and σxy) at the important
points of a simply supported square (00/90

0/90
0/0

0) plate under sinusoidal load
of amplitude q

h/a References Theory w σxx σyy σxz σyz σxy

0.25

Present (9-noded element) HSDT 1.9248 0.7264 0.4264 0.1971 0.2530 0.0453

High order displacement theory
(4-noded element) [1]

HSDT 1.8966 0.6797 0.4138 0.2127 0.2429 0.0409

Full third displacement theory
(4-noded element) [2]

FTDT 1.8787 0.7050 0.4034 0.2066 0.2377 0.0452

Pagano [13] ESL 1.9500 0.7200 0.6630 0.2190 0.2920 0.0467
Aagaah et al. [5] TSDT 1.9000 0.6810 0.6470 0.2190 0.2440 0.0451

0.1

Present (9-noded element) HSDT 0.7506 0.5681 0.2870 0.2652 0.1868 0.0260

High order displacement theory
(4-noded element) [1]

HSDT 0.7145 0.5562 0.2618 0.2722 0.1585 0.0233

Full third displacement theory
(4-noded element) [2]

FTDT 0.7143 0.5518 0.2582 0.2626 0.1458 0.0265

Pagano [13] ESL 0.7430 0.5590 0.4010 0.3010 0.1960 0.0275
Aagaah et al. [5] TSDT 0.7320 0.5510 0.3940 0.2110 0.1630 0.0451

0.01

Present (9-noded element) HSDT 0.4528 0.5392 0.2066 0.2636 0.1486 0.0210
High order displacement theory

(4-nodedf element) [1]

HSDT 0.4295 0.5439 0.1822 0.2927 0.1132 0.0209

Full third displacement theory

(4-noded element) [2]

FTDT 0.4339 0.5401 0.1804 0.2410 0.1425 0.0213

Pagano [13] ESL 0.4370 0.5390 0.2760 0.3370 0.1410 0.0216

Aagaah et al. [5] TSDT 0.4350 0.5390 0.2750 0.3080 0.1290 0.0216

There is also a good agreement between the results obtained by using the proposed
element and the three-dimensional elasticity solution of Pagano [13] and the results of
finite element solution of Aagaah et al. [5] based on the TSDT.

5. CONCLUSIONS

A new C1 rectangular element is proposed and the finite element formulation based
on Reddy’s higher-order shear deformation plate theory is presented. This element has
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nine nodes, each node contains 7 degrees of freedom: u˚; v˚; w˚; θx, θy, γx and γy.
Thus the element is quite elegant from computational point of view. The formulation is
based on displacement approach where u˚; v˚; w; γx and γy are taken as the independent
displacement components. The element is tested numerically in a wide range of problems
covering different loading, material property, stacking sequence and so on. It shows the
performance of the element in terms of accuracy, rate of convergence, applicability and so
on. The element is free from shear locking problem and it does not possess any spurious
modes.

Based on these observations the element can be recommended for the analysis of
any composite plate structures having moderate thickness to predict the deflection and
stress with sufficient accuracy.
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PHẦN TỬ C1 MỚI TRONG BÀI TOÁN UỐN TẤM COMPOSITE LỚP
DỰA TRÊN LÝ THUYẾT BIẾN DẠNG CẮT BẬC CAO

Nghiên cứu tập trung vào xây dựng phần tử C1 dạng tứ giác chín nút (7 bậc tự
do/nút), không tương thích dựa trên lý thuyết tấm biến dạng cắt bậc cao của Reddy
(HSDT). Khó khăn nằm ở chỗ phần tử được xây dựng phải đảm bảo được tính liên tục
của đạo hàm của độ võng tại các nút chung và điều kiện biên về ứng suất cắt ngang tại
mặt trên và dưới của tấm. Vì vậy, mục đích được đặt ra trong bài báo này là xây dựng
một kiểu phần tử Hermite chịu uốn. Sau đó, xây dựng thuật toán và chương trình máy
tính để phân tích tĩnh các tấm composite lớp (dày và mỏng) chịu tải trọng uốn. Kết quả
số của chương trình đã được so sánh với một số kết quả đã công bố khác để kiểm tra độ
chính xác và phạm vi áp dụng của phần tử đề xuất.


