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Abstract. This work is devoted to the analysis of the stability of the homogeneous
states of a bar made of a brittle strain softening material submitted to a tensile loading.
We distinguish two types of damage models: local damage models and gradient damage
models. We show that a local damage model necessarily leads to the unstability of the
homogeneous response once the first damage threshold is reached. On the contrary, in
the case of a gradient damage model, viewed as a regularization of the underlying local
model, the homogeneous damage states of “sufficiently small" bars are stable.

1. INTRODUCTION

Prior to their complete rupture, many engineering materials such as concrete, rocks,
wood or various composites show a strain-softening behavior when they are deformed be-
yond a certain limit. The theory of damage is generally used to model this behavior at
a continuum level. Limiting our analysis to rate independent behaviors, we can distin-
guish two types of damage models: (i) the so-called local models where the only variables
characterizing the state of the material point are the strain and the damage variable; (ii)
the so-called non local models where additional information on the neighborhood of the
material point are involved.

From the theoretical viewpoint, the boundary-value problem associated with local
models is mathematically ill posed (Benallal et al. 1989 [2], Lasry and Belytschko, 1988
[7]) and lead to multiple (and even an infinite number of) solutions. From the numerical
viewpoint, the computations give rise to spurious mesh dependences: upon refinement of
the meshsize, no convergence is observed or more precisely the deformation is localized into
narrow bands whose thickness corresponds to the meshsize (Bazant, 1993 [1]). Origins of
these pathological localizations are usually understood in terms of bifurcations analyses via
wave propagation phenomena although the loading is quasistatic (Pijaudier and Benallal
[15].) All these bad properties suggest that local models must be revised.

Two main regularization techniques exist to avoid pathological localization, namely
the integral (Pijaudier-Cabot and Bazant, 1987 [14]) or the gradient (Triantafyllidis and
Aifantis, 1986 [16]) damage approaches. Both of them rely on an ad-hoc incorporation of
a material lengthscale in the constitutive behavior (Lorentz and Andrieux, 2003 [8], de
Borst et al., 1993 [5], Peerlings et al., 1996 [13]). However, despite the introduction of
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the gradient of damage as a state variable into the model, the associated initial boundary
value remains ill-posed and does not prevent localized bifurcations.

We revisit here the issues of well-posedness and stability for, first, local models and,
then, gradient damage models by using energetic formulations. Indeed these approaches
have gained popularity in the last decade since they offer a physical and rigorous framework
relying on the tools of the calculus of variations. This global variational approach was first
proposed by Nguyen [12] for a large class of rate independent behaviours, then extended by
Francfort and Marigo [6] and Bourdin, Francfort and Marigo [4] to Damage and Fracture
Mechanics. The power of this concept is that the evolution problem and the stability
analysis are understood respectively as a first and second order conditions of optimality of
the total energy (Benallal and Marigo, 2007 [3]). In particular the stable states naturally
correspond to local minima of the potential energy in a quasi-static loading. Accordingly,
the search of stable states seems to be a more relevant approach than proving the ill-
posedness (i.e. non uniqueness) characterization, while bifurcations which can lead to
multiple equilibrium configurations in a non linear material (e.g. softening material) is
just the reflection of the complexity of our world and can not be a discriminated criterion
for a model.

In this paper, we investigate under which conditions an homogeneous state of dam-
age in a softening material is stable and therefore will be observable during an experiment.
As a matter of fact a spatially homogeneous damage evolution is experimentally significant
since it does not result in a brutal fracture of the specimen but instead offers the possibility
to identify some of the damage material parameters. The paper is structured as follows.
Section 2 describes the statement of the problem and how a local damage approach of a
softening behavior is bound to fail. Sections 3 shows how the regularization of the local
model brings size effects and improvements in the stability results of homogeneous states.

We use the following notation: the prime denotes the spatial derivative or the deriv-
ative with respect to the damage parameter, the dot the time derivative, e.g. v’ = du/0x,

F'(a) = dE(a)/da, & = da/t.

2. CASE OF A LOCAL DAMAGE MODEL

2.1. The damage evolution problem

We consider a homogeneous bar of length L, made of a softening material. The end
x = 0 of the bar is fixed while the displacement of the end x = L is controlled by a hard
device so that the displacement field u; at time ¢ satisfies

u(x =0) =0, u(x = L) =tL, t>0, (1)

where t denotes the loading parameter growing from 0 and identified with the time. The
damage state of the bar at time t is characterized by the scalar field z — o (x). The
evolution of the displacement and the damage in the bar with the time is obtained via an
energetic formulation, see [9] and [10] for a justification of a such energetic approach by
thermodynamical arguments. Specifically, let E(a) be the Young modulus of the material
in the damage state a and w(«) the energy dissipated when the material is damaged up
to a. The functions a — E(«a) and o — w(a) are respectively positive decreasing and
positive increasing. Because of the irreversibility of damage, a; can only increase with ¢.
The evolution of the damage of a point is governed by a local yield criterion formulated
in terms of the concept of critical elastic energy release rate. That leads to the following
system of (in)equalities (sometimes called Kuhn-Tucker conditions) which must hold at
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each time and each point:

Irreversibility condition : dy(z) > 0 (2)
1
Damage criterion : —§E’(at(x))st(x)2 < w'(ay(x)) (3)
1
Energy balance : dy(z) <2E'(at(az))£t(az)2 + w’(at(a:))> =0 (4)

where e¢(x) denotes the strain state of the point z at time ¢, e, = uj. Considering only
quasi-static evolution, the bar must be at equilibrium at each time. That leads to

oy(@) =0,  o1(x) = E(ae(2))er(). (5)
The initial condition ag(z) = 0 saying that the bar is undamaged at t = 0 completes the
formulation of the evolution problem.

2.2. Variational formulation of the evolution problem

Let us introduce the state function Wy giving the strain work (or the total energy
density) associated with an evolution of the state of a material point from (0, 0) to (e, @)

Wole, a) — %E(a)EQ +w(a). (6)
Let C; and D be respectively the kinematically admissible displacement fields at time ¢
and the convex cone of admissible damage fields
Ct ={v:v(0)=0,v(L) =tL}
Co={v:v(0)=0,v(L) =0} (7)
D={3:0>0)

where Cy is the linear space associated with C;. Then with any admissible pair (u,a) in
C: x D, we associate the total energy of the bar

L
Po(u,a):/o Wo(u'(z), o daz—/ —F(a (2)? + w(a(z)) dx (8)

The set of admissible displacement rates u can be identified with Cy, while the set of
admissible damage rates & can be identified with D. Under the assumption that the bar
is sound at the initial time ¢ = 0, the damage evolution problem is strictly equivalent to
the following variational problem

Find (u, o) in C; x D such that
For all (v,08) € C1 x D, Py(us, ar)(v — 0y, f— ) >0 (9)

where P|(u,a)(v, ) denotes the derivative of Py at (u,«) in the direction (v, ) and is
given by

L
Py, o) / E(a)u'v dx +/ <;E'(a)u/2 —l—w/(a)> Bdx (10)
0

Let us verify that (9) implies (2)—(5). Indeed, by inserting 8 = é; and v = 4 + w with
w € Cp in (9), we obtain the variational formulation of the equilibrium of the bar,

L
/0 E(a(z))u (z)w'(x) dz = 0, Yw € Cy (11)
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from which we deduce that the stress along the bar is homogeneous and depends only on
time ¢

ot = E(ay(2))uy(z), Vo e (0,L) (12)

and hence (5). Dividing (12) by E(a(x)), integrating over [0, L] and using boundary
conditions (1), we find

L de
O't/o Elon@) ~ tL (13)

The damage problem is obtained by inserting (11)—(13) into (9) which leads to the varia-
tional inequality governing the evolution of the damage

L 1 L
/ —E'(oy)up?Bdx + / w'(ay)Bdx >0 (14)
0 2 0

where the inequality (14) holds for all 8 € D and becomes an equality when § = ;.
Again, by performing an integration by parts and using classical tools of the calculus of
variations, we recover the local formulation of the damage problem (2)—(4).

2.3. Homogeneous evolutions

As it is pointed out in [3], the evolution problem can admit an infinite number
of solutions. We are interested here in particular solutions, the so-called homogeneous
evolutions, for which the damage field and the strain field are uniform (¢; and a; depend
on t but not on x). In such a case we have

or = E(my)t, ug(x) = tx, gp =1t (15)
Then the damage criterion (3) and the energy balance condition (4) read as
1 1
§E,(Oét)t2 + U]/(Oét) Z 0, dt <2E/(Oét)t2 + w'(at)> =0 (16)

Assuming that the whole bar is undamaged at the beginning of the loading (g = 0), we

obtain that the first time ¢, when the damage criterion becomes an equality is given by

~ 2w'(0)
E'(0)

t. = (17)

If ¢, is strictly positive (i.e. if w’(0) > 0), then we observe an elastic phase in the time
interval [0, ¢.): during this phase, the softening material is sound and its rigidity is Ey. For
t > t., the damage criterion is an equality, and the damage grows homogeneously in the
bar (&; > 0). Finally, the value at any time ¢ of the homogeneous damage is given by

2w’ (o)

~Flay) =¢? otherwise (18)

=0 if t<t,

We remark that the homogeneous damage problem is well posed if the function o —
—2w'(a)/E' () is strictly monotone. If this monotonicity condition is satisfied then there
exists a unique homogeneous damage state which verifies the evolution problem. However,
this condition does not prevent bifurcation and appearance of non-homogeneous damage
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in the bar. To illustrate our study, we consider the following particular damage law for the
softening material

E(a) = Eo(1 — a)?, w(a)=—a, a>0 (19)

As w'(0) > 0 in (19) then there exists an elastic phase. For this law, the monotonicity
condition above is satisfied and (18) admits a unique solution at each time ¢

t.\ 2
ap = max (0, 1— <t> ) with t, = % (20)

Finally the relation between the stress of the homogeneous solution and the prescribed
displacement at x = L is given by

. aoi if t <t (1)
K 00 (%’)3 otherwise

We plot on (Fig.1) the stress in the bar versus the time (which is also the homogeneous
strain) for the homogeneous damage solution. After the elastic phase the stress decreases,
which is characteristic of the strain softening property of the material.

o/0o

1

0 1 t/te
Fig. 1. Stress vs time for the homogeneous damage response of the bar

2.4. Unstability of homogeneous states

We see that the homogeneous damage evolution defined by (18) is always a solution
of the evolution problem in the case of the local model. However, this response will be
physically acceptable and experimentally observable if and only if, at each time, the cor-
responding state (uy, o) is stable. Following [12] and [4], the stability of a state is defined
in terms of local minimization of the total energy (8) at each time or more precisely, be-
cause of the irreversibility condition on the damage evolution, in terms of unilateral local
minimization (see [6], [12]). We briefly recall this definition of stability hereafter.

Let a be an admissible damage field and ug* be the displacement field equilibrating
the bar in this damage state at time ¢. Then the total energy of the bar can read as

El(a) = Po(uf, o) = Hélcn Po(v, ) (22)
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A damage state o (not necessarily homogeneous) will be Ef-stable (at time t) if and only
if it exists a neighborhood of admissible states in which any accessible state has a greater
potential energy. This condition can be written formally as follows

Eb-stability:  Ir >0,V €D :||B|| =1,Vh € [0,7r] Ei(a) < EY(a+ hpB) (23)

It is important to notice that the test directions are chosen in D and therefore must be
positive as we cannot violate the irreversibility condition (a(x)+hB3(x) > a(z) for every x).
The displacement uf* is obtained by solving the variational formulation of the equilibrium
of the bar for the given damage « in D i.e.

L
/ E(a(z))ud (z)w'(z)dz =0 Yw € Cy (24)
0
After integrating by parts we find
of = E(a(z))uf’(z), Yz e (0,L) with of = e (25)

L 4
fO E(oc:(vx))
By inserting (25) in (8), we finally obtain the expression of &}(«)

. t2L2 L
Eola) = —p——+ w(a) dx (26)
0 E(a) 0

Now in practice, to check the stability inequality (23), we develop, for a given direction 3,
the functional h — Ef(a + h3) with respect to h around h = 0 up to the second order

(0 + h8) = Eb() + hEL (@)(B) + 8" (@)(8) + o) (27)

where the first derivative £'(«) is given by

L o& 2 a
e = [ (ve+ BT ) s (28)

and the second derivative by

@ = [ (ae - (Er - 2O ) s

L (o) / E' () \*
tL 0 E(Oé)2
We see that the stability condition consists in finding the sign of each derivative of &f.
Let us study the stability of the homogeneous damage state «;. Firstly, we focus

on the first derivative and analyze under which condition it is positive or not. Using the
homogeneous property of oz, we obtain

&'t = [ ’ (w’(at>+§E’<at>t2)ﬁd:c— (w/<at>+;E’<at>t2) / Cgdr (30)

If t < te, then oy = 0 and the damage criterion for the homogeneous damage state (16);
is a strict inequality. The first derivative (28) is then strictly positive if 3 is not equal to 0
and we conclude to the stability of the homogeneous state during the elastic phase. Now if

(29)
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t > t., then from (18), we deduce that the first derivative is equal to zero in any direction
test B € D. Then the stability issue is given by the sign of the second order derivative
(29). By using the non dependence of oy on z, (29) can be simplified and read as

{9 =2 ([ par)

Inserting the damage law (19) into (31), we find for ¢ > ¢,

o _4Eot2< L )2_ o [F o
&) =0 /0 Bdz) — 3ot /0 62 ds (32)

Despite the presence of the first term in (32) which is positive, it is always possible to find
a damage state for which (32) is negative and therefore leads to instabilities. Indeed, let
(Bn) be the following sequence of admissible damage state defined by

1 if 0<zx<Z™
— - = n
Bnl@) { 0 otherwise

Then we obtain the following estimates when n — oo

()

We conclude that for n large enough Eéll(at)(ﬁn) will be strictly negative and the state
oy + hpB, will have a smaller energy than a;. Therefore at time ¢t > t., the homogeneous
state is not stable.

2

1 L 1
Nﬁv /0 51%6&”5 (33)

3. GRADIENT DAMAGE MODEL

3.1. Presentation

A way to prevent strong variations of the constitutive variables at the scale of the
microstructure is to regularize the model by introducing some gradient effects. As the
damage variable causes strain softening and localization in the evolution, we apply the
regularization only to the damage variable. In the previous section, we see that the local
formulation of the damage problem (2)-(4) and the equilibrium (5) were strictly equivalent
to a global variational approach based on the strain work Wy (6). This variational approach
also permitted to define rigorously a stability criterion for a damage state in terms of
unilateral local minimas of the potential energy. Now, (re-)starting from this variational
framework, we introduce the non locality of our model directly in the postulated strain
work W, as follows

1
Wi(e,a, ) = §E0€20/2 + Wo(e, o) (34)

where o is the spatial derivative of the damage field at the material point z, ¢ denotes
the internal length of the material and Ej is the Young modulus of the sound material
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(Eo = E(0)). Then the total energy of the bar becomes

L L 1
Po(u, ) = / Wi(u', o, ') dzx = / §E0€20/2 + §E(a)u'2 +w(a) dz (35)
0 0

We remark that we obtain the energy of the local model by putting ¢ equals to 0 in
(35). All the notions of “evolution" (9) and “stability" (23) which were introduced in the
previous section are now being transposed to Wp. In particular the evolution problem for
the gradient damage model now reads as

Find (u¢, a¢) in C; x D such that
For all (v, 3) € Ci x D, Py(ug, o) (v — @y, f — ) >0 (36)

where Pj(u,a)(v, 3) denotes the derivative of Py at (u,a) in the direction (v, ) and is
given by

L L L
Py(u, ) (v, B) = / Eot*a’ 3’ d:c—i—/ E(a)u'v' da:—i—/ (;E’(a)u'2 + w’(a)) Bdx (37)
0 0 0
On the one hand, as the regularization does not affect the kinematic variable, the equi-
librium of the bar is not changed and is still given by (12) and (13). On the other hand
because of the regularizing damage term, the obtention of the strong formulation for the
damage evolution is slightly different than for the underlying local model though it is still
deduced from the variational inequality (36). By inserting v = u; and 8 = ¢ + vy, with ~
in D into (36), we obtain the variational inequality governing the damage field evolution

L 2
/ <E'(at)65 + w'(at)> v+ EolPaly dz > 0 (38)
0

where the inequality must hold for all v € D and becomes an equality when v = ¢;. By
integrating by part (38), we obtain

L 2
/ (E’(at);t +w' (o) — EOKQaQ') ~vdx + [62047]5 >0 (39)
0

Using classical arguments of calculus of variations, the strong formulation of the evolution
of the damage now reads as

Irreversibility condition : dz > 0 (40)
1
Damage criterion : —Egl?a) + §E’(at)ef +w' (o) >0 (41)
1
Energy balance : dy (—EOKQQQ/ + §E’(at)€? + w’(at)> =0 (42)

Boundaries conditions : a}(0) >0, aj(L) >0, ¢%(0)ay(0) =0, &(L)ag(L) =0 (43)

Following the same variational approach than for the local model, we investigate for the
gradient damage model the behavior and the stability of homogeneous states of damage.
From (40)—(43), we deduce immediately that the evolution in time of homogeneous states
is exactly governed by the same set of equalities and inequalities as for the local damage
model. Indeed in the case of homogeneous states, the spatial derivatives are equal to 0
(o, = o = 0). Therefore, the value of the homogeneous damage (20) at time ¢ remains
the same for the enhanced gradient damage model. However significant differences happen



Stability of non localized responses for damaging materials 815

when we focus on the stability analysis. Indeed in the case of the local model, the instability
of any solution is the consequence of the possibility to localize the damage on a vanishing
length. As a result, the presence of gradient damage terms in the energy (35) should prevent
from this kind of localization of zero energy and thereby we expect some improvements in
the stability results.

3.2. Stability issue for homogeneous states

As the stability of a damaged state relies on its energy and because we modified the
energy itself by incorporating gradient terms, we define for the non-local damage model
the &}-stability where &/ is given by

Ef(a) = Pu(u, @) = min Py(v, a) (44)

veCt
as follows
Ef-stability: Jr >0,V e D: ||B]| =1,Vh e [0,r] E}(a) < Ef(a+ hp) (45)
From (24)-(25) which remain true, we deduce

5 /2 t2L2 L
E o+ ———+ | w(a)dz (46)
0 Fay 0

Using the same approach as for the underlying local model (see Section 2.4), we calculate
the successive derivatives of &} at state a;. The first derivative is given by

L L
E(a)(B) = ; E0£2a;(m)6’(a:)dm+/ (w’(at)+;E’(at)t2)ﬂdx

0
- <w/(at)+;E’(ozt)t2) /OLﬂdx (47)

where we use the fact that «j(x) = 0 over the whole bar. Then the first derivative is the
same as for the underlying local model and we deduce with the same arguments that the

elastic phase is stable. For ¢ > t., Sg/(at)(ﬁ) = 0 for any 8 € D and the stability is given
by the sign of the second derivative. Here the second derivative reads as

e o G5 [ )
B (< E(at))2 Eué&t)) t? — w”(at)> OL B* dx (48)

By introducing the Rayleigh ratio R! defined on D\{0} by

By [ 52 du + 5 B0 ([ gy
Ri(B) = (Blar -2 >);Eatu (Eto) )) S 5)2da:

E(at)

we deduce that for ¢t > ¢,
oy is Ef-stable at time t & A} = 6in% RL(B) > 1 (50)
€
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After some calculations which are not reproduced here, we find

¢ 1 E/(Oét)2t27 <\/E707rt2El(at)2 g>2/3> -

=7 ~ - min < —
<EE((att)) _E g t)) 12 — w' (o) E(ay) E(ay) L

By putting the internal length ¢ to 0 we recover the instability result of the underlying
local model for ¢ > t, since Aj = 0. On the contrary, if £ # 0 then we have )‘2 > A
the condition of localisation from the homogeneous state in the local damage model is
always a lower bound of the criterion of localization in the non-local one. Moreover, the
non-local damage model introduces a size effect which involves the length of the bar in
the stability results. More precisely, depending on the value of the ratio n = ¢/L, we
distinguish two different behaviors in the evolution of the bar after the end of the elastic
phase. In particular, if we consider the damage law (19), then the stability criterion (51)

reads as .
4 4 (2w Egt. £
AL =min | =, = — 52
¢ = S (3’3 < oot L> ) (52)

Using (50) and (52), we can identify for any given ratios t/t. and n = L/¢ the zone

n=L\¢

STABLE UNSTABLE

0 1 t/t,

Fig. 2. Stability diagram of the homogeneous states of the bar

of stability (i.e. A, > 1) and unstability (i.e. A} < 1) (Fig.2). While in the underlying
local model any homogeneous state after the elastic phase is unstable for any length of
bar, certain homogeneous states beyond the elastic phase are Ef-stable if the bar is small
enough. It means that it is physically possible to observe them during a tensile test provided
that the length of the bar is sufficiently small. On the contrary, if the length of the bar
exceeds a critical length, we see on Fig.2 that all homogeneous states remain unstable for
t > t. and a non-homogeneous state necessarily appears at t = ..

4. CONCLUSION

A comparison between a local damage model and a gradient damage model has
been carried out in the one-dimensional context of a bar made of a softening material
and submitted to a tensile test. Even if for both models, the same homogeneous response
is solution of the corresponding damage evolution problem, the properties of stability
of such a response drastically depends on the model. In the case of a local model the
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homogeneous state is unstable once the first damage threshold is reached, while in the
case of the enhanced gradient model the stability analysis is not so trivial and can be
interpreted in terms of size effect. Specifically, for sufficiently “short bars" (i.e. for L/¢
small enough), the homogeneous state is stable, at least in a certain time interval after the
elastic phase. On the other hand, for long bars (L /¢ large enough), all homogeneous states
beyond the elastic phase are unstable (like for a local model) and the structure localizes
its damage. A way to preserve the stability of the homogeneous damage in the bar in
the full range of the test and for any bar length should be to modify the experimental
procedure in the spirit of Mazars et al. work. Indeed, in [11], by sticking aluminium bars
to a concrete specimen, Mazars et al. showed that a certain homogeneity of the strain is
preserved during the tensile test. We could account for these added aluminium bars in our
gradient damage model by introducing a residual elastic energy (the Young modulus will
never fall to 0) and analyze their consequences on the stability of the homogeneous states.
This quite appealing work is under investigation.
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ON DINH CUA DAP UNG KHONG DIA PHUONG DOI
VvOI VAT LIEU HU HONG

Bai béo phan tich sit én dinh ctia trang thai dong nhat ciia dam dudgc ché tao tit vat
lisu mém bién dang don chiu tai trong nén. Xem xét chi tiét hai loai mo6 hinh hu héng: mo
hinh hu héng dia phuong va mo6 hinh hu héng gradien. Da chi ra ring mo hing hu héng
dia phuong sé dan tdi sy khong 6n dinh ctia dap ting dong nhat mot khi dat duge ngudng
hu héng thi nhat. Trai lai trong truong hop ciia mo hinh hu héng gradien ma dude xem
xét nhu mot syt diéu chinh mo hinh dia phuong co ban, trang thai hu héng dong nhat cia
dam ”da nhd” lai 1 trang thai 6n dinh.



