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Abstract. The paper presents an introduction to the results obtained mainly by the
author in shakedown analysis of elastic plastic structures, with the shakedown theorems
for elastic plastic kinematic hardening materials playing the central role. Some illustrative
examples of application are given.

1. INTRODUCTION

Plastic collapse, along with Euler elastic instability of geometrically-thin structural
members and Griffiths critical crack fracture of brittle-like solids, are among the out-
standing phenomena limiting the load-bearing capacity of structures. Attainment of the
ultimate yield state at a point within a structure does not imply plastic collapse but that
at entire sections to make the structure a mechanism, which could not sustain the larger
loads, does. Plastic instantaneous collapse of structures is determined by the static and
kinematic theorems of plastic limit analysis. A structure subjected to loads varying ar-
bitrarily within certain limits may fails even at lower load limits than those set by the
instantaneous collapse criterion because the plastic deformations would accumulate unre-
strictively or be bounded but vary cyclically and unceasingly. Otherwise, the total plastic
dissipation in the structure would be bounded, hence its overall response to the exter-
nal agencies should shake down to some purely elastic state due to a finite residual stress
field developed inside the structure. Classical shakedown theory for elastic-perfectly plastic
bodies has been well established in the literature. As for the plastic limit theory, the essen-
tial contents of the classical shakedown theory are its dual static and kinematic theorems,
which are path-independent (loading-history-independent): both theorems determine the
shakedown boundary in the loading space under which a loaded structure should be safe
regardless of the loading history, while it should fail if the boundary is allowed to be vi-
olated unlimitedly. The shakedown design is not only safer its limiting case - the plastic
limit one, but also applies to the larger class of dynamic problems, which lie outside the
reach of the plastic limit theorems. In fact, under dynamic loading, a structure would never
fail instantaneously, thank to the inertia effect, but fail incrementally (monotonically or
nonmonotically) or plastic-cyclically with time.
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2. SHAKEDOWN THEOREMS

Originally Melan-Koiter shakedown theorems have been constructed for idealistic
elastic perfectly plastic material model, which is practical and suffice for plastic limit analy-
sis. For shakedown analysis, much more realistic and practical material model is the elastic
plastic kinematic hardening one involving Bauschinger effect. The hardening curve is gen-
erally nonlinear, plastic-deformation-history dependent, and is bounded by the initial and
ultimate yield stresses. Shakedown static and kinematic theorems have been constructed
for the kinematic hardening material satisfying a realistic positive hysteresis postulate,
which do not involve the plastic-deformation-history dependent hardening curve, except
the initial yield stress and ultimate yield strength, keeping the path-independent spirit of
classical Melan-Koiter theorems (Pham, 2007, 2008).

Let σ
e(x, t) denote the fictitious elastic stress response of the body V (under the

assumption of its perfectly elastic behaviour) to external agencies over a period of time
(x ∈ V, t ∈ [0, T ]), called a loading history. The actions of all kinds of external agencies
upon V can be expressed explicitly through σ

e. At every point x ∈ V , the elastic stress
response σ

e(x, t) is confined to a bounded time-independent domain with prescribed limits
in the stress space, called a local loading domain Lx. As a field over V , σ

e(x, t) belongs
to the time-independent global loading domain L:

L = {σe | σ
e(x, t) ∈ Lx, x ∈ V, t ∈ [0, T ]}. (1)

In the spirit of shakedown theorems, the bounded loading domain L, instead of a particular
loading history σ

e(x, t), is given a priori. Shakedown of a body in L means it shakes down
for all possible loading histories σ

e(x, t) ∈ L . ks denotes the shakedown safety factor: at
ks > 1 the structure will shake down, while it will not at ks < 1, and ks = 1 defines the
boundary of the shakedown domain.

Shakedown static theorem

ks = min {Ū, C̄} , (2)

where

Ū = sup
ρ∈R

{ k | k(ρ + σ
e) ∈ Yu , ∀σ

e ∈ L} , (3)

C̄ = sup
ρ′

{ k | k(ρ′ + σ
e) ∈ Yi , ∀σ

e ∈ L} , (4)

R is the set of admissible time-independent self-equilibrated residual stress fields ρ(x)
that satisfy homogeneous equilibrium equations on V ; ρ

′ is a time-independent stress field
that is not requied to be self-equilibrated; Yu designates the elastic domain in the stress
space that is bounded by the yield surface determined by the ultimate yield stress σu

Y ,
while Yi is the respective domain bounded by the yield surface determined by the initial
yield stress σi

Y .
Shakedown kinematic theorem

k−1
s = max {U, C} , (5)
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where

U = sup
e

p∈A;σe∈L

∫ T
0

dt
∫

V

σ
e : epdV

∫ T
0

dt
∫

V

Du(ep)dV
, (6)

C = sup
x∈V ;σe∈L;êp;ρ′

(σe + ρ
′) : êp

Di(êp)
, (7)

A is the set of compatible-end-cycle plastic strain rate fields e
p over the time cycles

0 ≤ t ≤ T :

A = {ep | ε
p =

∫ T

0

e
pdt ∈ C} ; (8)

C is the set of compatible plastic strain increment fields on V ; ê
p and ρ

′ are plastic strain
rate and time-independent stress fields that are not required to satisfy any compatibility
and equilibrium constraints; D(ep) is the dissipation function determined by the yield
stress σY and the respective yield criterion, e.g. for a Mises material

D(ep) =
√

2/3σY (ep : ep)1/2, (9)

while for a Tresca material:

D(ep) =
1

2
σY (| ep

1 | + | ep
2 | + | ep

3 |) = σY max{| ep
1 |, | ep

2 |, | ep
3 |}, (10)

ep
1, e

p
2, e

p
3 are the principal plastic strain rates; Du(ep) and Di(e

p) are the dissipation func-
tions with σu

Y and σi
Y taking the places of σY , respectively.

At Ū > C̄ of criterion (2) [or U < C of criterion (5)] the nonshakedown collapse
mode is cyclic, otherwise the incremental collapse mode prevails.

For broad classes of problems, the following reduced kinematic theorem is useful
(Pham and Stumpf, 1994; Pham, 2008)

Reduced kinematic theorem

k−1
s = max {I, A} , (11)

where

I = sup
σe∈L;εp∈C

∫

V

max
tx

[σe(x, tx) : ε
p(x)]dV

∫

V

Du(εp)dV
, (12)

A = sup
x∈V ;σe∈L;ε̂

p
;t1,t2

[σe(x, t1) − σ
e(x, t2)] : ε̂

p(x)

2Di(ε̂
p)

. (13)
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3. SOME ILLUSTRATIVE EXAMPLES

Aa a first example of application, let us consider a beam of rectangular cross-section
of the size b × 2h, which is bended up and down alternatively with the moment ±M (fig.
1). The outermost layers on the upper and lower sides of the beam begin to yield at the
moment M = M i

Y = σi
Y

2
3
bh2, while the ultimate yielding moment (the plastic limit load)

of the beam is M = Mu
Y = σu

Y bh2. Application of eqs. (11)-(13) gives the obvious result:

k−1
s = max {I, A} = max {M/Mu

Y , M/M i
Y } = M/M i

Y ; (14)

hence at M = M i
Y (ks = 1), the beam fails because of alternating plasticity started from

the failure of the beam’s outermost layers.

M b

2
h

Fig. 1. A beam in bending

Next, consider a beam clamped at the two ends A and D (no horizontal kinematic
constraint). The vertical point load P is applied and removed slowly, but alternatively, at B
and then C for un unlimited number of times. Application of criterion (12) with an optimal
incremental collapse mechanism ABC shown in fig. 2 yields the nonshakedown limit load:
PSD = 8.1Mu

Y /l (the respective plastic limit load is significantly larger: PP = 9Mu
Y /l).

P P

A B C D

l/3 l/3

l

A
B

C

Fig. 2. A clamped beam under sequential loads

A thick-walled hollow sphere of inner and outer radii a and b is subjected to qua-
sistatic internal pressure q, which may vary arbitrarily from 0 to the limit qU (fig. 3).
Application of criterion (11)-(13) yields

k−1
s = max {I, A} = qU max{

1

2σu
Y ln(b/a)

,
3b3

4σi
Y (b3 − a3)

} . (15)
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q

a

b

Fig. 3. A hollow sphere under variable pressure

In this case, the incremental collapse load coincides with the plastic limit one, while the
alternating plasticity happens at the inner radius of the hollow sphere.

At last consider a disk of radius a clamped at the edge and subjected to uniform
quasiperiodic dynamic pressure

q = q0 + q1sinωt , (16)

where q0 =const, q1 and ω are quasistatic functions of time varying between the limits

0 ≤ q1 ≤ qU
1 , 0 ≤ ω ≤ ωU < ωI , (17)

ωI is the principal natural frequency of the structure. Denote

k4 =
hm

D
ω2 , k4

U =
hm

D
ω2

U , D =
Eh3

12(1− ν2)
, (18)

where E is the Young’s modulus, ν - the Poisson ratio, m - the mass density, and h is the
thickness of the disk.

From the result for the elastic perfectly plastic material (Pham, 1997), we deduce
the corresponding result for kinematic hardening material

k−1
s = max {I, A} , (19)

where

I =
a2

12Mu
Y

+
qU
1

2Mu
Y

| Pr(kU , a) | +
qU
1

2Mu
Y a

a
∫

0

| Pθ(kU , r) | dr , (20)

A =
3qU

1

2M i
Y

| Pr(kU , a) | (21)

(with A = 1, the alternating plasticity collapse mode happens at the disk’s perimeter),

Mu
Y =

h2

4
σu

Y , M i
Y =

h2

4
σi

Y , (22)
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Pr(k, r) =
[

kI1(ka)J0(kr)− kJ1(ka)I0(kr)−
1− ν

r
I1(ka)J1(kr)

+
1 − ν

r
J1(ka)I1(kr)

]

k−3
[

J0(ka)I1(ka) + J1(ka)I0(ka)
]−1

,

Pθ(k, r) =
[

νkI1(ka)J0(kr) − νkJ1(ka)I0(kr) +
1 − ν

r
I1(ka)J1(kr)

−
1 − ν

r
J1(ka)I1(kr)

]

k−3
[

J0(ka)I1(ka) + J1(ka)I0(ka)
]−1

, (23)

J0, J1, I0, I1 are Bessel functions.
As an illustration, we fix the value Q0 = q0

a2

2Mu
Y

= 4.6. A graphical display of the

incremental collapse curve I = 1 and the alternating plasticity collapse ones A = 1 in the
plane of dimensionless coordinates Q1 = qU

1
a2

2Mu
Y

against K = kua, at various values of

σi
Y /σu

Y = 1/1.5, 1/2, 1/3 (corresponding in order to, presumably, increasing numbers of
loading cycles; presume σu

Y is fixed for the material) are presented in Fig. 4. The domain
under both the curves I = 1 and A = 1, is the shakedown domain. At high numbers of
cycles, σi

Y should be lowered toward the fatigue limit and the shakedown domain would
be reduced correspondingly. With σi

Y /σu
Y = 1/2 , the collapse mode changes from the

alternating plasticity one to the incremental one as K increases (at about K = 2.2). With
σi

Y /σu
Y = 1/1.5 , the disk fails only incrementally, while with σi

Y /σu
Y = 1/3, the alternating

plasticity mode is the one that prevails.

Fig. 4. Incremental (I = 1) and alternaning plasticity (A = 1) collapse curves
at various values of σu

Y
/σi

Y
, in the plane of dimensionless load amplitude Q1 and

frequency K
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4. CLOSURE

For more details about our results and application of the theorems in solving many
practical engineering problems (mainly on elastic perfectly plastic structures) see the Ref-
erences.

Future directions:
- Develope methods to solve problems for practical engineering structures made of

realistic kinematic hardening materials, especially those subjected to dynamic loading.
- Improve further the base of shakedown theory, and extend the shakedown analysis

to various complicated material models.
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THÍCH NGHI VÀ HỎNG CỦA CÁC KẾT CẤU ĐÀN DẺO CHỊU TẢI
TRỌNG THAY ĐỔI VÀ LẶP LẠI

Bài viết giới thiệu một số kết quả chính tác giả nhận được trong phân tích thích
nghi các kết cấu đàn dẻo, với các định lý thích nghi cho vật liệu đàn dẻo tái bền động học
đóng vai trò trung tâm. Một số ví dụ áp dụng được trình bầy.


