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ON THE SOLUTIONS OF THE MATHIEU’S EQUATION
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Abstract. As shown in [1] solutions of the Mathieu’s equation were classified on three
fundamental kinds depending mainly on its parameters. These solutions were constructed
in the form of infinite series. This paper presents a new approach in which approximated
analytical solutions of the Mathieu’s equation are constructed in the finite form. De-
pending on parameters of Mathieu’s equations general solutions may obtain following
behaviors: either bounded almost periodic, or infinitely increased combining with infin-
itely decreased and or infinitely increased combining with periodic.

1. INTRODUCTION

Consider a Mathieu’s equation
i+ w?(k + pcoswt)z = 0 (1)

solutions of which have important role in investigation of stability problems and in search-
ing solutions of other non-linear differential equations. Consequently, since 1947 McLachlan
N.W.[1] presented methods for constructing solutions of the equation (1) and showed the
stability domain of solutions in plane (k,p) [see 1, pp. 40-41]. These results later were
referenced in works of Kauderer 1961 [see 2, pp. 572-573] and Nguyen Van Dao et al. 2005
[see 3, p.123]. Solution kinds of the Mathieu’s equation and their stability domain are
fundamental scientific results taking attention of many scientists, but to now there is a
little similar research.
The stability domain of solution in plane (k, p) was defined by curves of the form

k=m?+aip+oaop’+asp®+..., m=0,1,2, 3,.. (2)

where o, ag, as... are coefficients to be determined in the solving process. The relations (2)
are so-called characteristic relations. For example, the characteristic relation corresponds
m=1 [1]

1, 1 , 11
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according to which the expression of solution is

1 1 1
x =cost — —pcos3t + —p?(—3cos 3t + 3 ¢os 5t)

8 64
1 1 4 1
_ 5@}93(g cos 3t — g c0s 5t + s <% 7t) (4)
1 11 1 1 1
+ mﬁ(g cos 3t + g °0s o5t — 1g 08 Tt + g0 °°° 9t) + 0(p°).

Note that expressions (3), (4) and other similar expressions corresponding to differ-
ent values m were presented in infinite series.

In the present paper the authors propose a new approach in formulation of charac-
teristic relations and approximated analytical solutions of the Mathieu’s equation in the
finite form.

2. IDEA IN FORMULATION OF AN APPROXIMATED
ANALYTICAL SOLUTION

Consider an equation
i + w?h(t)u = 0. (5)

In general it has no an exact solution, except the case when h(t) has special form
such as

A2 A2 B A A2 3 A 2

b () 2% -1 2HF-DE435 AR -DE 3545 .

e e . = ()
(3+COSWt) 3 T coswi op T 5 +coswt

and Eq.(5) has an exact solution [5]

= (7)

w2 A t A 2

aB B B

= : 1+ Ch / ; 5
5t eosw 0 (Z—ﬁ—l-%—l—coswt)

When h(t) = g1(t) = k1 + p1 coswt, the equation (5) may have not an exact solution, but

it may be seen that (7) is an approximated analytical solution when functions hq(t) and

g1(t) are equal approximately to each other with all t. For the reason hq(t) and g;(t) are

equal approximately to each other with all t, it is necessary to satisfy following conditions:

(i) Values of functions hy(t) and gi(t) at extremum points t = 2% qnd ¢ = w must

be equal to each other

(Z)-n(2) w(Z)n(222) o

(ii) Functions hy(¢) and g1(¢) have no other extremum points, except points ¢ = 22 and
t= Crilm o

d . . d :

7 [hi(t)] = f(t)sinwt, with f(t) # 0 for al ¢; 7 [91(t)] = —wp1 sinwt. 9)
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From (8) it follows [5]
A P1 + \/Z

7" A= k2_2 k2_ 2_1 10
B Rk (k7 — p1) (k7 — p1 — 1), (10)
with sign “+” when p; > 0 and sign “~" when p; < 0;
w? A k2 —pt—k1 A W? 2(k2 —p3) A

B BT R pPimB af B-pik D (11)

According to condition ‘%‘ > 1, ‘% + %‘ > 1 and f(t) # 0, we have [5]
kP —pi <0, (K —pi) (k] —pi — 1) = 16k >0,

4_ K opimk\A 1A (12)
3 ki-pit+k) s 3|71 B
Relations (12) define a domain in plane (ki,p;), which is called a characteristic
domain (see Fig. 1).

-0.8

Fig. 1. Characteristic domain

The boundary of characteristic domain is determined by characteristic curves
(ki — p}) (ki —pi — 1) — 16k7 =0, (13)
(%_m>ﬁ_l‘_‘2i
3 K -pi+k/)B* 3] |8
If (k1, p1) belongs to the characteristic domain, then the relations (12) are satisfied
and Eq. (5) with h(t) = ¢1(t):

i + w?(ky + p1 coswt)u =0

. (14)

has an approximated analytical solution of the form (7).
So that the relations (12) and solution (7) are called new characteristic relations
and approximated analytical solution. They are presented in finite form.
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3. THE KINDS OF SOLUTIONS

3.1. Solutions of the first kind

Conditions for Eq. (1) obtaining a solution of the first kind are k = k1, p = p1,

where (k1, p1) belongs to the characteristic domain. Obviously this is the solution in form
A 2\

(7) with 3 defined by (10), and Z_ﬁ + = - by (11) and the integral term may be evaluated

B
as
A 2 wg 2
‘ (E + cos wt> dt . <@> sin wt
2 2 2 2 A
‘ (;—ﬁ—l-%—l—coswt) w[(%—l—%) —1] (Z—ﬁ-l-g—l—coswt)
2y w2\ 2 w2
G
g B p w
+ (:2 RE a 37 . (f\ﬁ 5 7 arctg(btht),
”[(@*5) ‘1] [(Wﬁ) ‘1]
wz A 1/2
—_— = — 1
where b = ozg B
YA
o B
Consequently the solution (7) can be rewritten in the form
u =y (t)[Cy + Coua(t)] + Cour (8)[t + us(t)], (15)
where
e ()
— + = 4 cosw .
w(t) = L2 , u2(t)= e — :
i—I-coswt w? A 1 (w——l-é—l—coswt)
B N (@ " 5) o \es B
EUE
us(t) = of B) \aB) __ of arcta(bte2t).  (16)

w[<w_2+i>2_1]3/2 w[<w_2+i>2_1]1/2 2
af B ap B

As seen in (15) the solution in this case consists of two terms: one term increasing

2
infinitely with respect to t and other periodic term of period “T The solution (15) is called

a solution of the first kind. The integral constants are determined by initial conditions.
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Suppose at t =0, u(0) = ug, u(0) = iy we obtain

24 LA
Clzwzﬁi/\ug’ 02:%%
Z 424 -+41

of BT g

Now we go on to formulate the solution; when (k, p) does not belong to the charac-
teristic domain. First of all it needs an auxiliary determination.

3.2. Auxiliary determination

Consider a special equation

£ (2)]o-o

According to [5] this equation has an exact solution

U+

t

1

= —[Ci+C dt],
i a1/2[1+ z/a]

0

where a(t) is an arbitrary function.
When (k, p) does not belong to the characteristic domain, we use a transformation

T = ue'?, (18)

where u is a solution of Eq. (17), ¢ is a function to be determined in the solving process
an i is a properly imaginary number (i? = —1).
Substituting (18) into Eq. (1) and equating the real part and imaginary part to null
we obtain
i + w?(k + peoswt)u — p*u = 0, (19)
Gu + 21 = 0. (20)

From Eq. (20) it follows ¢ = %, where c is an integral constant. According to (17)
u

we take a particular solution

u=a"% and then Y = ca. (21)

Eliminating 4 from Egs. (17), (19) and taking into account (21) we obtain
d la
dt'5a)

Eq. (22) allows to seek function a(t), but it is difficult to find a(t) satisfying exactly
this equation. That is why to find function a(t) satisfying Eq. (22) approximately. For this

la

w?(k +pcoswt) — | 25)2] = c2d?. (22)
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reason we take

A 2

(E —I—coswt>
= 23
a(t) (w_z_i_é_i_coswt)z’ ( )

a3
then
d [1a 1a\?

£ (28)- (3 ~omin

where hq(t) has the form of expression (6).
If (k1, p1) belongs to the characteristic domain, then hi(t) may be equal approxi-
mately to gi(t) with all t

hi(t) =~ w* (k1 + p1 coswt) (25)

Taking into account (23)+(25) Eq. (22) can be rewritten as following

(5rer)
— + cos wt>
c_\p . (26)

— - COsS W
af

k—Fki+ (p—p1)coswt =

A 4
2 B + coswt
Denote ha(t) = 1> 92(t) =k — k1 + (p— p1) coswt.

_( 2 4 conn
—_— — COS W
af B

Repeating similar discussion as in previous section 2 in order that functions ko(t)
and go(t) may be equal approximately to each other with all t, the following conditions

must be satisfied.
A 4
9 (— + 1>
¢ b k—k

k‘—k‘1+p—p1=E<w2 5 1>4,
— + =+
af B

Relations (27) can be rewritten in the other form

C
1—(p—p1)—w—

k—k -
1 b—p1 (28)
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wV2(k — kp)'/?
A 4 A 4
) ()
G) G
{ w? A : w? A :
— 4+ +1 —+2-1 J
(3 (55
2

A
where — and w_ﬁ + — in own turn depend on ki, p; such as expression (10) and (11).
«

1/2°

Relations (28) and (29) are called characteristic relations differing from ones in [1], here
they have the finite form.

When a couple of parameters (k, p) and Eqs. (10), (11) are given, then the equation
(28) is an equation of two variables ki, p1, where k1 changes in the range [-0.7; 0], p1 —
in the range [-1.684; 1.684] and k; - in the range [0; 0.28098], p; - in the range [-0.8998;
0.8998] (see Fig. 1). It is necessary to find (ki, p1) belonging to the characteristic domain
and satisfying Eq. (28). In the principle we can draw the curve k; — p; according to Eq.
(28). If this curve intersects the characteristic domain, so we can choose a couple (k1, p1)
satisfying the proposed desire. But in reality, it is difficult to draw the curve k1 —pq because
of complexity in formulation of this curve from complicated relations (10), (11), and (28).
Therefore, instead of the choice (kq, p1) satisfying the proposed desire we consider either
this curve intersects the boundary of characteristic domain or not. Consequently, it leads to
find a solution of the set of equations (28) and (13) or (28) and (14). A numerical program
was formulated for solving this set of equations to give k1, p; and then c according to Eq.
(29).

Table 1. Some results obtained from formulated program

k p ky p1 <£>2

w

-0.7 1 0.45 | -0.0325958 | 0.133351788 | -0.00594
-0.7 [ 0.854 | -0.0838084 | 0.330159378 | -2.6.107°
0.5 | 0.386 | -0.551283432 | 1.437018653 | 0.000888
0.5 | 0.425 | -0.6068069 | 1.531798374 | 0.000774

From the results in the Table 1, we can see that points (k,p) lie outside the char-
acteristic domain, but points (k1, p1) belong to the characteristic domain, they lie on the
boundary curve (13) of the characteristic domain. The value of ¢ may be taken as a real
number or a properly imaginary number.

3.3. Solutions of other kinds

When (k, p) does not belong to the characteristic domain, the Mathieu’s equation
(1) has solutions of the second and the third kinds.

(i) Solution expressions

According to (18) solution of the Mathieu’s equation has the form of a complex
function x = ue® = wcos + iusing, where u and ¢ are determined by relations (21)
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and (23)
9 2 2
w_ﬁ + % + cos wt (% + cos wt> ¢ (% + cos wt> dt
o .
— 5 , =c 5 \ ok or ¥ = C/ 5 3 5"
E—I—coswt <W_+_+coswt> 0 (w——l———l—coswt)

af  p af  p

By use of expressions (16) function ¢ can be represented as
p = clt +us(t) +ua(t)], (30)

then solutions of the Mathieu’s equation may be expressed in three cases as follows
a) Case ¢ = 0, where 6 is a real number

w2\
— + — + coswit

L_aB B

A
— + coswt

g

(cos @ + ising) (31)

b) Case ¢ = i6

w2

A
— + — t+coswt
x = of B e ? (32)

A
— + coswt

B
c) Case ¢ = -if

w2

A
— + = + coswt
x = of B e? (33)

— + coswt

B
where denote @ = 0]t + us(t) + ua(t)].
Equation (1) is a linear differential equation, from expressions (31)-(33) general
solutions of the Mathieu’s equation (1) can be represented as follows:
2
w

A
— + — + coswit
L_ab

— + coswt
B

(Crcos @+ Cysing) (34)

w2\

_ﬁ + B + coswt ) )

z=2 5 (Cre™® + Che?) (35)
— + coswt

B
The solution (34) is a solution of the second kind, which obtains bounded and
almost periodic characters. The solution (35) is a solution of the third kind which obtains
infinitely increased combining with infinitely decreased characters.
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(i) Determination of integral constants
From (34) and (35) it follows that

A
w3 sin wt B eoset
i = 3 5 (C1cos p+Casin @) +(—C1 sin p+Cy cos ¢)0— 3 , (36)
aﬁ(B—l—coswt Z_ﬁ—l—ﬁ—i_COSWt
w3 sinwt 5 5 5 5 B oot
b=— (G 4 0oef) 4 (~Cre™? + o)yt (31)
af <—+coswt> — + — +coswt
6 af B
Suppose at
t=0; x(0) = o, #(0) = o (38)

According to relations (34), (36) and initial conditions (38) the integral constants
of the second kind solution can be determined as

2 (”—2+5+1>
Cy ngﬁi/\!ﬂo, Cy = ab 3 b Zo. (39)
@"FB—I-l 9<B+1>

In accordance of relations (35), (37) and initial conditions (38) the integral constants
of the third kind solution may be evaluated as

2 LA A LA
_ 1 B lag B . 1 B lag B .
Cir=g———F—T0 35— —~ %0, (2 = 5— Tot5 & (40)
2w A 29<5+1> 2wl A 29<§+1>
af B B ol B p

4. CONDITIONS FOR FINDING APPROXIMATED
ANALYTICAL SOLUTIONS

We summarize two conditions to be satisfied for finding approximated analytical
solutions of the Mathieu’s equation

(i) Condition 1. Either relations (12) must be satisfied, or point (k1, p1) belongs to
the characteristic domain (see Fig. 1) and/or hi(t) is equal approximately to gi(t) with
all t, where hy(t) is evaluated by (6) and gj(t)=k;+p;coswt.

(ii) Condition 2. Either relations (28), (29) must be satisfied, or ha(t) is equal
approximately to go(t), where

4
ooy (o)

w <w2 A >4’
— + = +coswt
a B

92(t) =k — k1 + (p — p1) coswt.
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Herein parameters must satisfy relations (28), (29), for example, parameters k, p,
ki, p1, ¢ are given in the Table 1.

5. SOLVING PROCEDURE AND APPLIED EXAMPLES

5.1. Solving procedure

Step 1. Input given parameters k, p, w, zqg , Zg

Step 2. If k = k1, p = p1 belongs to the characteristic domain, solution of the first
kind is taken according to the formulus (15)

Step 3. If (k, p) does not belong to the characteristic domain, then by use of nu-
merical program to find k1, p; and c satisfying relations (28), (29)

Step 4. If k —ky > 0, solution of the second kind is taken according to formulus (34)

Step 5. If k — k1 < 0, solution of the third kind is taken according to formulus (35)

Step 6. Checking conditions for finding approximated analytical solution: h;(t) and
g1(t) or ha(t) and go(t) are equal approximately to each other with all t.

5.2. Applied examples

The following Figs. 2+7 present obtained solutions of three kinds of the Mathieu’s
equation corresponding to different combinations of parameters.

30 40

25
30 [

) , . ek
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o A YYYYY T oV .

5 10 20 30 40 50 50 10 50 100 150 200
Fig. 2a. Graph of z(t) of 15 kind: k1=- Fig. 3a. Graph of z(t) of 1% kind: kj=-
0.3773536, p1=1.110166042, w = 1.732, 0.01396638, p1=0.057500748, w = 0.425,
.TEQZO.L IEO:05 .TEQZO.L IEO:05

3 0.2
0 o0 4
100 20 30 40 50 60 5 0 50
= 0.2
Fig. 2b. Graph of hq(t) and gi(t) of 1% Fig. 3b. Graph of hi(t) and g¢1(t)
k1=-0.3773536, p1=1.110166042, w=1.732, of 15%: k1=-0.01396638, p;=0.057500748,

z9 = 0.1, 29 = 0.5 w=0.425, zo = 0.1, 9 = 0.5
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Fig. 4a. Graph z(t) of 2" kind: ki=-
0.55283432, p1=1.437, k = 0.5, p=0.234,
w=1.732, 290 =0.1, 4o = 0.5

2

Fig. 4b. Graph hi(t) and g;(t) of 27d
Kind: ky=-0.55283432, p;=1.437, k = 0.5,
p=0.234, w = 1.732, 20 = 0.1 30=0.5
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Fig. 4c. Graph ha(t) and go(t) of 27d
Kind: ky=-0.55283432, p;=1.437, k = 0.5,
p=0.386, w = 1.732, 20 = 0.1 59=0.5
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Fig. 6a. Graph z(t) of 3'¢ kind: ki=-
0.0325958, p1=0.133351788, k —= —0.7,
p=0.45, w = 0.425, 2 = 0.1, do = 0.5
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Fig. 5a. Graph z(t) of 2" kind: k;=-
0.6068069, p;=1.531798374, k = 0.5,
p=0.425, w = 1.732, 9 = 0.1, 9 = 0.5

5

-5
Fig. 5b. Graph hy(t) and g (t) of 2°¢ kind:
k1 =-0.6068069, pr—1.531798374, k — 0.5,
p=0.425, w = 1.732, 20 = 0.1 dp = 0.5

Fig. 5c. Graph ha(t) and go(t) of 2°¢ kind:
k1 =-0.6068069, pr—1.531798374, k — 0.5,
p=0.425, w = 1.732, 20 = 0.1 dg = 0.5

15

10

s U
D /

ol (el

-10
Fig. 7a. Graph z(t) of 3'¢ kind: kj=-
0.0838084, p1=0.330159378, k = —0.7,
p=0.854, w — 0.425, 2o = 0.1, io = 0.5

229
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05 1
0 -+ o -
5 0 50 5 0 150
05 1
Fig. 6b. Graph gy(t) and hy(t) of 3% Fig. 7b. Graph g1 (t) and hy(t) of 3'¢ kind: k;=-
kind: k1=-0.0325958, p1=0,133351788, k = 0.0838084, p1=0.330159378, k = —0.7, p=0.854,
—0.7, p=0.45, w = 0.425, xg = 0.1 £¢x=0.5 w = 0.425, 9 = 0.1 £9=0.5

0

-1

Fig. 6¢c. Graph g¢o(t) and ho(t): ki=- Fig. 7c. Graph go(t) and ho(t) of 3'4 kind: k;=-
0.0325958, p1—=0.133351788, k — —0.7, 0.0838084, p1=0,330159378, k = —0.7, p—0.854,
p=0.45, w = 0.425, 2o = 0.1 49=0.5 w = 0.425, 20 = 0.1 #o=0.5

6. DISCUSSION

Formulation of the new characteristic relations and approximated analytical solu-
tions in the finite form is derived.

The behaviors of solutions of the first, second, and third kind obtained in this paper
are the same behaviors of solutions described in [1] respectively.

Conditions for finding approximated analytical solutions in considered examples are
checked and satisfied.

A continuing study must be improved in formulation of the program for solving
equations (28) and (29).

Finding a(t) in the form (23) is only an attempt, it may be proposed in other form
such that Eq. (22) is better satisfied approximately.
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VE NGHIEM CUA PHUONG TRINH MATHIEU

Nhu da biét trong cong trinh ctia N. W. McLachlan cic nghiém clia phuong trinh
Mathieu dude chia lam ba dang co ban tity thudc vao cac tham s clia phuong trinh. Céc
nghiém nay dugc thiét 1ap dudi dang chudi vo han. Bai nay trinh bay mot cach tiép can
méi xay dung nghiém gii tich gan ding duéi dang hitu han ctia phuong trinh Mathieu.
Tiy thudc céc tham s6 ctia phuong trinh ma nghiém tong quat ciia ching c6 thé c6 tinh
chat sau: hoac 13 gi6i noi hau hoan toan, hoac 13 tang gidm vo han va hodc 1 tuan hoan
tang vo han.



