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Abstract. A multiscale method is presented which couples a molecular dynamics ap-
proach for describing fracture at the crack tip with an extended finite element method for
discretizing the remainder of the domain. After recalling the basic equations of molecu-
lar dynamics and continuum mechanics the discretization is discussed for the continuum
subdomain where the partition-of-unity property of finite element shape functions is
used, since in this fashion the crack in the wake of its tip is naturally modelled as a
traction-free discontinuity. Next, the zonal coupling method between the atomistic and
continuum models is described, including an assessment of the energy transfer between
both domains for a one-dimensional problem. Finally, a two-dimensional computation is
presented of dynamic fracture using the coupled model.
Keywords. multiscale methods, molecular dynamics, extended finite element method,
fracture, crack propagation

1. INTRODUCTION

Modern research into fracture commences with the seminal work of Griffith [1].
Later, Irwin [2] and Rice [3] established the relation between the stress intensity factors and
the energy release rate, and gave linear elastic fracture mechanics a firm basis. However,
linear elastic fracture mechanics only applies to crack-like flaws in an otherwise linear
elastic solid and when the singularity associated with that flaw is characterized by a non-
vanishing energy release rate. The fracture and any dissipative processes must also be
confined to a small region in the vicinity of the crack tip.

When the region in which the separation and dissipative process take place is not
small compared to a structural dimension, but any nonlinearity is confined to a surface
emanating from a classical crack tip, i.e. one with a non-vanishing energy release rate,
cohesive zone models as introduced by Barenblatt [4] and Dugdale [5] apply. The cohesive
zone approach was extended by Hillerborg et al. [6] and Needleman [7] to circumstances
where: (i) an initial crack-like flaw need not be present or, if one is present, it need not
be associated with a non-vanishing energy release rate; and (ii) non-linear deformation
behaviour may occur over an extended volume. Initially, cohesive-zone models were incor-
porate in finite element methods via special-purpose interface elements [8, 9], but more
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recently, partition-of-unity finite element methods have shown to very amenable to the
incorporation of cohesive-zone models, e.g. [10–12]. In particular, they naturally enable
crack propagation, also in dynamics [13–17] and in multi-phase continua [18, 19].

In spite of the power of the cohesive-zone approach, and its wide applicability on a
range of scales, it remains a phenomenological approach. Probably, quantum mechanics is
physically the most appropriate theory to describe fracture, but the difficulties to relate
quantum mechanics to continuum mechanics, e.g. via Density Functional Theory [20, 21]
presently seem insurmountable. One scale of observation higher is to use Molecular Dy-
namics to describe fracture processes from a more fundamental physics point of view.
Indeed, researchers have recently used this approach to describe fracture, e.g. [22–24]. A
disadvantage of the approach is that it is computationally demanding. For this reason
multi-scale approaches have been introduced, in fracture [25], as well as in plasticity [26],
in which only a part of the body is analysed using molecular dynamics, while the remain-
ing part of the body is modelled using continuum mechanics and discretized using a finite
element method. This manuscript furthers along this line and combines molecular dynam-
ics for modelling the fracture process at the crack tip with an extended finite element
method (XFEM), where the partition-of-unity property of the polynomial shape functions
is exploited to model the crack in the wake of the tip as a traction-free discontinuity. It
is noted that recently another approach has been published that couples atomistics and
extended finite elements [27], but the current paper makes a further advancement in that
it includes dynamic loadings.

A major issue in multi-scale approaches as discussed above is the accurate coupling
of both domains, especially when different descriptions are assumed on either domain.
While the coupling can, in principle, either be achieved at a discrete interface, or on
a zone of a finite size (overlap or zonal coupling), it is believed that zonal approaches,
which include the Arlequin method [28], the bridging domain method [29–32], discrete-
to-continuum bridging [33], the discontinuous enrichment method [34], and bridging scale
decomposition [35, 36] enable a more gradual transition from one domain to the other.
The ability of a gradual transition is especially important for highly dissimilar domains
and when wave propagation phenomena are considered, where preservation of the energy
and avoiding spurious reflections when a wave exits one domain and enters the other can
become an issue. Inspired by earlier work by Ben Dhia and Rateau [28] and Xiao and
Belytschko [29] we have chosen a weak coupling between the models in the two adjacent
domains.

This paper is organized as follows. First, we briefly list the equations of molecu-
lar dynamics. This is followed by a succinct recapitulating of the governing equations of
continuum mechanics, both in the strong and the weak forms. The discretization of the
continuum subdomain is carried out using the extended finite element method, where the
partition-of-unity property of finite element shape functions is used to model the traction-
free discontinuity in the wake of the crack tip. Subsequently, it is discussed how both
domains can be coupled, see also [37] and an analysis is presented of the energy conserva-
tion properties of the coupling scheme. The paper concludes with a full two-dimensional
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coupled analysis of dynamic crack propagation which shows multiple branching and sug-
gests the formation of dislocations, which shows similarities with recent simulations on
dynamic fracture using cohesive-zone models [9, 17].

2. MOLECULAR DYNAMICS

For the discrete domain, i.e. Ωm, we build a grid of Na atoms, and, accordingly, the
initial value problem in this domain can be written as:

For 1 ≤ i ≤ Na (t) and t ∈ [0; T ], given the initial conditions
(

d (0) , ḋ (0)
)

, find
(d, f) ∈ Dad ×Fad such that:

mid̈i = fi (1)

with mi the mass of atom i and:

Dad =
{

d =
(

di(t)
)

1≤i≤Na
, ∀t ∈ [0, T ]

}

Fad =
{

f =
(

fi(t) = −∇∇∇iU
(

d (t)
)

)

1≤i≤Na

, ∀t ∈ [0, T ]
}

(2)

from where it transpires that the interatomic forces are derived from a potential energy
U . d and f assemble the discrete displacements di and forces fi of the individual atoms,
respectively. The internal energy of the discrete domain can be viewed as the sum of each
atomic contribution Uj :

U =
∑

j

Uj (d) (3)

and the force fi acting on atom i can be written as the sum of all elementary forces:

fi = −
∂U

∂di
=

∑

j 6=i

fij (4)

In order to limit the cost of computing such a force, we reduce the summation by only
including so-called “nearest” neighbours, within a cut-off radius rc:

fi '
∑

rij<rc

fij (5)

where rij is the interatomic distance.
In the subdomain Ωm the weak formulation becomes:

∀w∗ ∈ Ḋad,0 , given the initial conditions
(

d (0) , ḋ (0)
)

,

find d ∈ Dad such that:

am (d, w∗) = 0 (6)

with w∗ the test function, and

am (d, w∗) =

Na
∑

i=1

mid̈i · w
∗
i +

Na
∑

i=1

∇∇∇iU(d) · w∗
i
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3. CONTINUUM MODEL

Assuming small deformation gradients for simplicity, the governing equations in the
continuum subdomain ΩM can be written in a standard manner as:

For x ∈ ΩM (t) and t ∈ [0; T ] , given the initial conditions
(

u (x, 0) , u̇ (x, 0)
)

,

find (u, σσσ) ∈ Uad × Sad such that:

ρü = div σσσ + gd

(7)

with ρ the mass density and u the continuum displacement vector, σσσ the stress tensor,
and gd the body force vector applied in ΩM , subject to the boundary conditions

Uad =
{

u = u (x, t) ∈
[

H1 (ΩM)
]3

; u = ud on ∂1Ω , ∀t ∈ [0, T ]
}

Sad =
{

σσσ = K : ∇u (x, t) ∈
[

L2 (ΩM)
]6

; σσσ · n = Fd on ∂2Ω , ∀t ∈ [0, T ]
}

(8)

where K is the fourth-order stiffness tensor, n the outward normal vector to ∂Ω2, and ud

and Fd the prescribed displacements and tractions at ∂Ω1 and ∂Ω2, respectively.
To allow for a discretization of the continuum subdomain we next specify the weak

formulation:

∀v∗ ∈ U̇ad,0 , given the initial conditions
(

u (x, 0) , u̇ (x, 0)
)

,

find u ∈ Uad such that:

aM (u, v∗) = lM (v∗) (9)

with v∗ the test function, and

aM (u, v∗) =

∫

ΩM

ρü · v∗dΩ +

∫

ΩM

εεε (u) : K : εεε (v∗) dΩ (10)

lM (v∗) =

∫

∂2Ω

Fd · v
∗dS +

∫

ΩM

gd · v
∗dΩ (11)

4. COUPLING SCHEME

4.1. Coupling functions
In order to enable an efficient coupling between the two domains, a coupling zone

is defined and a coupling function is computed which is used to obtain the global energy.
First a coupling length Lc is chosen such that will be the characteristic length of the
coupling region. Subsequently, the patch of atoms, Ωm, is included in the continuum at a
given position. Atoms at a distance ` ≤ Lc from the Molecular Dynamics Box (MD-Box)
boundary are considered to be in the coupling zone Ωc. The finite elements in this zone are
named “coupling elements”. Inside the MD-Box, where only the atomistic model applies,
elements are removed. The resulting, discretized domain is shown in Figure 1. In principle,
each atom must be coupled to the finite element discretization of the underlying contin-
uum. It suffices to couple only a limited number of atoms to the underlying continuum
without loss of accuracy. Since this directly affects the size of the coupling matrices that
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Fig. 1. Discretized domain with the coupling region. The dark, “pear-shaped” area
is the domain where an MD calculation is carried out (Ωm). The coupling region
Ωc consists of elements that are surrounded by a bold line

will be derived next, such a limited coupling markedly decreases the computational ef-
fort, and therefore, a bigger scale transition becomes possible at reasonable computational
costs.

In the coupling zone Ωc, we enforce a velocity coupling in a weak sense, and we
distribute the energy between both models via a partition of unity [28]. For this purpose
we define the following functions, see Figure 2:

α : ΩM → [0, 1] (12)

β : Ωm → [0, 1] (13)

such that:






















α(x) = 1 for x ∈ ΩM\Ωc

β(x) = 1 for x ∈ Ωm\Ωc

α(x) + β(x) = 1 for x ∈ Ωc

(14)

The displacement and velocity fields in the domains ΩM and Ωm have a different
nature. In ΩM we have a continuum field, while in Ωm we have a discrete field, which is
only defined at the geometrical points corresponding to the atoms. Therefore we construct
a so-called “mediator space”, denoted by M, on which we project the fields u̇ and ḋ in order
to be able to compare them. The nature of M is constrained by the discrete character of
the atomistic field. Indeed, its displacements cannot be extrapolated outside the atomic
positions if we want to maintain a physical interpretation at the fine scale. Accordingly,
M has to be a subspace of the physical atomistic space. More precisely, we project the
velocities using an operator Π on a discrete subset Ωc of the atomic positions included in
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Fig. 2. Partition of unity for the energy distribution

Ωc. Considering that M is built as a Hilbert space, we introduce a scalar product c from
M×M onto R. With these definitions we formulate the velocity coupling operator as:

∀µ∗ ∈ M , c
(

µ∗, Πu̇− Πḋ
)

=< µ∗, Πu̇− Πḋ >M (15)

with c the classical scalar product on M. The global equations are coupled via Lagrange
multipliers and can subsequently be written as:

∀ (v∗, w∗, µµµ∗) ∈ U̇ad,0 × Ḋad,0 ×M,

given the initial conditions
(

u (x, 0) , u̇ (x, 0) , d (0) , ḋ (0)
)

,

find (u, d, λλλ) ∈ Uad ×Dad ×M such that:

aα,M (u, v∗) + aβ,m (d, w∗) + c (λλλ, Πv∗ − Πw∗) + c
(

µµµ∗, Πu̇− Πḋ
)

= lα,M (v∗) (16)

The modified forms aα,M , aβ,m and lα,M take into account the weighting functions
α(x) and β(x), see [37] for details. In the atomistic subdomain the modified form aβ,m

that takes into account the distribution of the energy reads:

aβ,m (d, w∗) = w∗ · mβd̈− w∗ · fβ (17)

with:
βi = β (di) , mβ = [βiδi,jmi] , fβ = [fβ,i] (18)

4.2. Discretized problem
In a manner which is by now standard the interpolation of each component of the

displacement field is enriched with discontinuous functions in order to properly capture
the traction-free discontinuity in the wake of the crack tip:

∀x ∈ ΩM , uh(x) =
∑

i∈NM

Ni(x)ūi +
∑

i∈Ncut

Ni(x)HΓd
ûi (19)

where Ni are standard finite element shape functions supported by the set of nodes NM

included in the discretized domain ΩM . Nodes in Ncut have their support cut by the dis-
continuity. They hold additional degrees of freedom ûi corresponding to the discontinuous
function HΓd

defined by:

HΓd
(x) =

x · nΓd

‖x · nΓd
‖

(20)
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with nΓd
the normal to the discontinuity Γ. Symbolically, eq. (19) can be written as

∀x ∈ ΩM , uh = NTU (21)

where the matrix N contains the standard interpolation polynomials Ni(x) as well as the
discontinuous function HΓd

, and the array U contains the displacement degrees-of-freedom
ūi and ûi. The transition within the domain ΩM between the subdomain where the nodes
are “enriched” and the part which has just the standard formulation does not affect the
Molecular Dynamics computation other than through the coupling matrices.

With the latter symbolic notation the bilinear form aα,M and the linear form lα,M

become:

aα,M (uh, v∗
h) = V∗TMαÜ + V∗TKαU (22)

lα,M (v∗
h) = V∗TFα (23)

where the term that represents the body forces has been omitted for simplicity, and

M =

∫

ΩM

ρNTNdΩ (24)

K =

∫

ΩM

∇NT
K∇NdΩ (25)

the mass and stiffness matrices, respectively. With the standard definition of the scalar
product, the coupling term in the continuum can be discretized as follows:

c (λλλ, Πv∗
h) = V∗TCMΛΛΛ = V∗TFL

M (26)

with CM the continuum coupling matrix. The vector ΛΛΛ contains the Lagrange multipliers
and its size equals the Ωc subset cardinal times the dimension of the space considered.
FL

M can be regarded as a fictitious force due to the coupling via the Lagrange multipliers.
This force has a non-zero value only in the coupling zone Ωc.

Using the Lagrange multipliers in the atomistic domain similar to that in the con-
tinuum domain:

fL
m = CmΛΛΛ (27)

the weighted and coupled system (16) can be cast in a matrix-vector format:

V∗T
(

MαÜ + KαU + CMΛΛΛ
)

+ W∗T
(

mβd̈− fβ − CmΛΛΛ
)

+

µµµ∗T
(

CT
MU̇ −CT

mḋ
)

= V∗TFα (28)

Since this set must hold for any admissible (V∗, W∗, µµµ∗) we finally obtain:






















MαÜ + KαU = Fα −CMΛΛΛ

mβd̈ = fβ + CmΛΛΛ

CT
M U̇ = CT

mḋ

(29)

with (U, d,ΛΛΛ) the set of unknowns. Details on the time integration scheme associated with
this set of coupled ordinary differential equations are given in Ref. [37].
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Fig. 3. Mechanical energy (drawn line) and the work stored in the Lagrange mul-
tipliers (dashed line) when the prediction step is with the full stiffness and mass
matrices.

4.3. Energy transfer between the atomistics and continuum domains
The energy transfer for the coupling between the continuum and atomistic domains

is studied by means of a longitudinal bar discretized with finite elements, and contain-
ing an atomistic region, with a coupling zone on both sides. The bar is submitted to
a traction wave, which is enforced by displacing the left-most 20 elements in the ini-
tial configuration. The right-hand end is free. The whole domain is 59.142528× 10−9 m

long and 100 atoms have been put in the atomistic domain. The interatomic distance is
re = 0.1234708× 10−9 m, and the finite element size is h = re. We use a Lennard-Jones
potential as constitutive model for the atoms, with a = 32.043529× 10−21 J and a mass
m = 0.0016599×10−24 g. The elastic material properties for the finite element model have
been derived from the atomic properties [39]. The computation continues for 2000 time
steps with ∆t = 1 × 10−15 s, which amounts to 95% of the critical time step.

Figure 3 shows the total mechanical energy during the computation. We observe
some fluctuations each time the wave crosses a coupling zone. In fact, work is stored by
the Lagrange multipliers, and subsequently put back in the mechanical system when the
wave exits the coupling zone. We observe that the work of the Lagrange multipliers is
complementary to the mechanical energy, and the energy balance is therefore satisfied.
From energy plots of Figure 4 we observe that for different coupling lengths (i) the total
energy is preserved, and that (ii) the energy correctly passes from one domain to the other
when the wave traverses the coupling zones.

5. DYNAMIC FRACTURE

We now proceed with a two-dimensional simulation of dynamic fracture. A cop-
per single crystal is considered in its (111) plane, so that the two-dimensional lattice is
hexagonal. The Lennard-Jones potential is used in the molecular dynamics simulation
with parameters from [38]: a = 0.415 eV and b = 0.2277 nm. The Young’s modulus E
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Fig. 4. Energy plots for the finite element - Molecular Dynamics coupling. In
subfigures (a), (c) and (e) the drawn line is the energy in the first (left) continuum,
the dashed line is the energy in the second (right) continuum, and the dash-dotted
line represents the energy stored in the atoms. The bold drawn line is the total
mechanical energy.
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Fig. 5. Deformed configuration at t = 33.209 ps

and Poisson’s ratio ν for the continuum are obtained following the procedure given in [39]:
E = 79.334 GPa and ν = 0.25. The copper atomic mass is taken as m = 0.105520602596×
10−24 kg (mCu = 63.546

NA
g with NA the Avogadro number: NA = 6.02214179×1023 mol−1),

which corresponds to a mass density ρ = 1865.250812586× 103 kgm−3. In the present
study, the temperature has not been taken into account, since the focus is on the coupling
of Molecular Dynamics to an (extended) finite element method for crack propagation.
When extending the methodology to explicitly include the temperature a “thermal equi-
librium” has to be achieved in addition to the mechanical equilibrium. This can for instance
be done using the Nose-Hoover thermostat method [40].

The computational domain is 100 nm long and 77.5 nm wide with an initial crack
of 10 nm. The finite element mesh consists of 1221 quadrilateral elements and 4868 nodes.
The element size is about 10 times the interatomic distance. 36635 atoms are put in the
vicinity of the crack tip. The width of the coupling domain is approximatively 3 nm and
33% of the atoms in this region hold Lagrange multipliers. For computational reasons,
the results that are presented from now on have been obtained by only including the
first neighbours in the atomistic interactions. Indeed, the equilibration techniques and
the updates are expensive when we take into account many neighbours. Simulations on
a smaller scale have indicated that the results are close to those obtained with more
neighbours.

The test consists of applying a velocity on the top and bottom edges of the specimen.
The prescribed velocity in this example is Vp = 47.4 ms−1. The time step is 15.811388 fs

(10−15s). Figure 5 gives the displacement field after the crack has propagated, at t =
33.209 ps. Close inspection reveals that, going from the atomistic zone to the continuum
domain, no spurious wave reflections occur, which indicates that the coupling algorithm
works properly, and is in agreement with results for linear elasticity presented in [37]. We
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also see that, even though the prescribed loading corresponds to Mode-I and the atomistic
lattice is a perfect single crystal, the crack path is not that which we would expect to
obtain with classical continuum methods. We observe crack branching, the occurrence of
dislocations, and locally, mixed-mode behaviour.

6. CONCLUDING REMARKS

A numerical approach has been proposed for combining a molecular dynamics
method and a finite element method that exploits the partition-of-unity property of fi-
nite element shape functions (extended finite element method). The aim is to simulate
dynamic fracture in an efficient manner on basis of elementary physical principles. To
this end the zone around the crack tip is modelled using molecular dynamics. Around
this so-called Molecular Dynamics Box a continuum mechanics approach is adopted, with
the finite element method used for discretization. The partition-of-unity property of the
finite element shape functions is exploited to model the crack in the wake of its tip as a
traction-free discontinuity. The coupling between the continuum and molecular dynamics
zones has a zonal character where the energy is partitioned over both models and a weak
velocity coupling is enforced. In this manner, spurious reflections are avoided and energy
is conserved when a wave travels from one zone into another.
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ĐỘNG LỰC HỌC PHÂN TỬ/ PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN
CHO BÀI TOÁN PHÁT TRIỂN VẾT NỨT ĐỘNG

Phương pháp đa tỷ lệ được trình bày ở đây là sự kết hợp giữa phương pháp động
lực học phân tử cho việc mô tả sự phá hủy tại đỉnh của vết nứt với phương pháp phần tử
hữu hạn mở rộng cho việc số hóa miền còn lại. Sau khi sử dụng các phương trình cơ bản
của động lực học phân tử và cơ học môi trường liên tục, việc số hóa sẽ được thực hiện cho
miền con liên tục mà ở đó tính chất phân vùng đơn vị của các hàm dạng của phần tử hữu
hạn sẽ được sử dụng, do ở dạng này vết nứt trong đường lằn của đỉnh của nó sẽ được mô
hình như sự không liên tục không có lực kéo. Tiếp theo, phương pháp kết hợp vùng giữa
các mô hình nguyên tử và liên tục sẽ được mô tả, bao gồm việc đánh giá sự truyền năng
lượng giữa hai miền cho bài toán một chiều. Cuối cùng, tính toán hai chiều cho bài toán
phá hủy động lực học sử dụng mô hình kết hợp sẽ được trình bày. Từ khóa : Phương pháp
đa tỷ lệ, phương pháp động lực học phân tử, phương pháp phần tử hữu hạn mở rộng, cơ
học phá hủy, phát triển vết nứt


