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KINEMATICS OF A RIGID ABOUT 
A FIXED POINT 

Do Sanh, Do Dang Khoa 
Hanoi University of Hanoi 

Abstract. This paper employs transmission matrices to investigate the motion of a 
rigid body about a fixed point. Formulas to calculate coordinates , velocities , and the 
accelerations of points on the body are presented. The method separates generalized 
velocities and accelerations making it particular ly useful to the study of a wide range of 
problems in dynamics such as, for example, the calculation of the inertia matrix. 

1. INTRODUCTION 

The spatial motion of a rigid body is of interest in many problems in mechanics having 
application in gyroscopic motion , robotics, and mechanical processing. In particular, rigid 
body kinematics are of special interest to aerospace and shipping applications. Reference 
[2] presents a systematic investigation of this general subject though the methods used 
are complex. This paper describes the use of transmission matrices [5, 6] as a simple but 
powerful approach with the added advantage of being in a form well suited for use with 
the Mathcad and Mathlab software packages. 

2. BASIC THEORY 

In order to investigate the spatial motion of a rigid body two kir1ds of coordinate 
systems are required: one is a fixed frame of reference (ground-coordinate system) and the 
other is a system rigidly connected to the moving body (body-coordinate syst em). 

It is well known that the general motion of a rigid body about a fixed point can be 
treated as a combination of rotations about a set of axes. 

1) Rotation through angle r.p about the x-axis with corresponding matrix Ti 

1 0 0 
Ti = 0 cr.p -sr.p 

0 sr.p ci.p 

2) Rotation through angle 'I/; about the y-axis with corresponding matrix T2 : 

T2 = 
c'lj; 
0 

-s'lj; 

0 s'lj; 
1 0 
0 c'lj; 

3) Rotation through angle e about the z-axis with corresponding matrix T3 

ce -se 0 
T3 = se ce 0 

0 0 1 
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For convenience, we write: cos(ep) = Cep; sin(ep) = Sep; cos(ep + 7./;) = C( rp + 1/)) , .. and 
denote matrices in bold type. All vectors are treated as (3x1) matrices. 

The motion of a body about a fixed point can be performed by means of successive 
rotations about appropriate axes corresponding to above mentioned matrixes. Note that 
in general the axes need not be mutually perpendicular. Although many methods exist 
to investigate the motion of a body about a fixed point, this paper addresses only two of 
these, namely Euler Angles and the familiar Roll-Pitch-Yaw conventions used to describe 
the motion of ships and aircraft. 

2.1. Euler Angles 

Euler angles involve three successive rotations about three axes. In Fig. 1, denote the 
ground coordinate system by O~rJ( and the body coordinate system by Oxyz, where ON 
(called the line of nodes) is the line of intersection of the (x, y)-plane with the (C rJ)-plane 
[2, 4]. The position of the body is defined by means of the three Euler anglesep, 7./;, B, called 
respectively the pure, notation and procession angles. Let the two coordinate systems 
coincide at start time t0 and denote the position of the body at later time t as Oxyz. It 
is possible to show that three successive rotations of the body about appropriate axes is 
sufficient to move the body from position Oxyz at time t to the start position O~r/(. 

One can proceed as follows 

z y 

N 

Fig. 1. Euler Angles 

1) Rotate the body coordinate system Oxyz through angle ep about the z-axis using T1 

cep -Sep 0 
T1 = sep cep 0 

0 0 1 

The body is now located at Ox1y1z1 and Oz1 =Oz, Ox1 =ON, Oy1 . 
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2) Rotate the Ox1y1z1 coordinate system through angle e about ON using T 2 

1 0 0 
T2 = 0 ce -se 

0 se ce 

The Ox1y1z1 body-coordinate system replaces Ox2y2z2 such that Ox2 = ON, Oz2 = 
O~·, Oy2. 

3) Rotate the Ox2y2z2-body coordinate system about the Oz2 (= Oc;) through 1/; using T3 

c'l/J -s'l/J 0 
T3 = s·t/J c·t/J 0 

0 0 1 

The three successive rotations restore the body to the start position. The total dis­
placement carried out in a single operation is accomplished using T : 

c'l/J -s'l/J 0 1 0 0 Cl.(J - s<p 0 
T = T3T2T1 = s'ljJ c'l/J 0 0 ce -se S<p Cl.(J 0 

0 0 1 0 se ce 0 0 1 

c'l/Jc<p - s'l/Jscpce -scpc'l/J - s'l/Jccpce s'ljJse 
(1) 

s'l/;ccp + c'ljJscpce -scps'l/J + c'l/;ccpce -c'l/;sB 
sBscp sBccp ce 

The T matrix makes it also possible to determine the components of a vector rigidly 
connected to the body in the fixed coordinate system. In other words , a vector with 
components (a, b, c) in body-coordinates will have components(~, T/, ()in the fixed system 
related by: 

~ a cr.pc'l/J - sr.ps'ljJce -scpc'l/J - ccps'ljJce s'l/;sB a 
.,., = T3T2T1 b czps'l/J + scpc'ljJce -scps'l/J + ccpc'ljJce -c'ljJse b (2) 
( c scpse ccpse ce c 

Putting this another way, 

r 0 =Tr (3) 

where r and r 0 are the respective position vectors of the point M connected rigidly to the 
body - coordinate and fixed coordinate systems. The inverse displacement is accomplished 
using T': 

Cl.(J Sl.{J 0 ce se 0 c'l/; s'ljJ 0 
T'= -s<p C<p 0 -se ce 0 -s'l/J c'l/J 0 

0 0 1 0 0 1 0 0 1 

ccpc'l/J - scps'ljJce ccps'l/J + scpc'ljJcB scpse 
(4) 

- scpc'l/J - czps'ljJcB -scps'l/J + ccpc'ljJcO ccpse 
s'ljJse -c'ljJse ce 

As above, write 

r = T' r 0 (5) 

The matrices T' and T are orthogonal, so that TT'=I. 
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Expression (2) makes it possible to calculate the velocity of a point anywhere on the 
body. 

To so this, introduce the following matrices: 

-s<p -c<p 0 0 0 0 -s'ljJ -c'ljJ 0 
T11 = C<p -s<p 0 

' T22 = 0 -se -ce T33 = c'lj; -s'ljJ 0 
0 0 0 0 ce -se 0 0 0 

a<jJ ae a'lj; 

ri = b<jJ r2 = b() r3 = b~ 
c<jJ ce c~ 

(6) 

The velocity of the point on the body is computed from: 

I e 
v = iJ = T33T2T1r3+T3T22T1r2+T3T2T11r1 (7) 

( 

Expression (7) separates out the generalized velocity. Note for .example, the term 
including the generalized velocity e is: 

c'lj; -s'ljJ 0 -se -ce 0 C<p -S<p 0 
T3T22T1r2 = s·t/J C't/J 0 ce -se 0 S'{J C'{J 0 

0 0 1 0 0 0 0 0 1 

S<ps'l/J s() ops·tjJs() s'lj;c() ae 
- s<pc1/J s() - ccpc'lj; se -c'ljJcO bfJ 

Sf.(JC() ct.pc{) -se ciJ 

which in turn yields the following expressions for the generalized velocity e: 

~(B) =(ast.ps·tjJs() + bc<ps'ljJs() + cs·ij;c())fJ; 

i]( fJ) = - ( ascpc'ljJs() + bc<pc'ljJs() + c</Jc())fJ; 

( ( fJ) = (a st.pee + bcipc() + cs()) e 
To obtain the attendant accelerations, introduce the following matrices: 

- c<p 8<.p 0 0 0 0 -c</J 

Tiu = --'-Si.p -c<p 0 ; T222 = 0 -ce se , T333 = -s'ljJ 
0 0 0 0 0 0 0 

arj:; ae a</J 

ri1 = brjJ r22 = be r33 = b;/; 
crj:; ce C't/J 

a<jJ2 aiJ2 a~J2 

ri,1 = b<jJ2 r2,2 = biJ2 r3,3 = b~2 
c<jJ2 ciJ2 c~2 

ae 

bfJ 
c() 

s<f; 0 
-c</J 0 

0 0 
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acpiJ 

bcpB ; ri,3= r3,1 = 
ecpB 

The accelerations of a point on the body are written in the form: 

~ 
a= ii =T33T2T1r33+T3T22T1r22+T3T2T11r11 +T333T2T1r3,3 

( (8) 
+T3T222 Tir2 ,2+T3T2T111r1,1 +2T33T22 Tir2,3 

+2T33T2T11r1,3+2T3T22T11r1,2 

The transmission matrices T and T' allow us to determine the angular velocity of the 
body in the body-coordinate and fixed coordinate systems. Denote the angular velocity in 
the body-coordinate and the fixed coordinate systems respectively as w and w0

. Applying 
(3) and (5) we have 

w0 =Tw (9) 

W = T'w 0 
(10) 

To illustrate the process, determine the angular velocity of the body in the fixed 
coordinate system and apply the theorem for the addition of angular velocities,, we get: 

n = cp + iJ +;µ(a) where n is the absolute angular velocity of the body. 
It is easy then to show: f! := WO 

To apply (9), one must first calculate the components of the angular velocity in the 
body - coordinate system. First determine the components of ;p in the body-coordinate 
system using T' to calculate T';p: 

ecpe?jJ - scps?j;ee 
-scpe?/J - ecps?j;ee 

s?j;se 

ecps?/J + sr.pe?/J + sr.pe?j;ee sr.pse 
-scps?j; + ecpe?j;ee ecpse 

-e?j;se ee 

0 
0 

1/J 

scpse~ 
ecpse~ 
ee~ 

The components of the angular velocity of the body in the body-coordinate system 
become 

From (9) obtain: 

~scpse +Beep 
w = ~er.pse - Bsr.p 

~ee + cp 

ecpe?/J - scps?j;ee -sr.pe?/J - ecps?j;ee s?j;se 
w0 = Tw = er.ps?j; + sr.pc?j; ee - sr.ps?/J + cr.pe?j;ee - e?j; se 

scpse ecpse ee 

tj:;s?j;se + Be?j; 
- cpe?j; se + Bs?j; 

<Pee+ 1h 

~sr.psB + Beep 
~cr.pse - esr.p 

-J;ee + cp 

As an example of how to apply the method, consider the gyroscope shown in Fig. 2. 
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Fig. 2. Equilibrium Gyroscope 

Assume t he disk rotates about the horizontal axis CD with constant angular velocity w1 
and CD in t urn rotates about the vertical axis with constant angular velocity w2. The body­
coordinate and fixed coordinate systems are as shown. Clearly, 1/; = 0, cp =wit, e = w2 t in 
which case t he angular velocity of the body in the body-coordinate system is: 

Matrlx T then becomes 

T= 

w2 cos wit 
w = w2 sin wit 

Wi 

cos wit 
sin wit cosw2t 

0 

- sin wit 
COS Wit COS W2t 

0 

0 
COS W2t 

1 

The angular velocity of the body in the fixed coordinate system becomes 

0 
w0 = Tw = w2 cosw2t - wi sinw2t 

w2 sinw2t + wi cosw2t 

2.2. Roll-Pitch-Yaw Angles 

The shipping and aerospace industries adopt the Roll-Pitch-Yaw convention [2] . Direct 
the r1-axis to point up and draw the other axes while observing the right-hand rule. In an 
aircraft body coordinate system the xy- plane coincides with the plane of symmetry of the 
aircraft, and the x-axis points from tail to cabin. The y-axis points up. 

To determine the yaw, pitching and rolling angles, draw lines ONi, ON2, ON3, where 
ONi is the intersection of the (~() -plane and the (y, z) -plane, ON2 is the intersection of 
the (~() -plane and the (x, TJ)-plane and ON3 is the intersection of the (x, TJ)-plane with 
the (~, TJ) -plane. Fig. 3 shows the yaw, pitching and rolling angles. Rigid body rotations 
are determined as follows: 
1) Rotate the body through cp about the Ox axis. Described by Ti 

1 0 0 
Ti = 0 ccp - .scp 

0 .scp ccp 
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Fig. 3. Roll-Pitch-Yaw Angles 

2) Rotate the body through e about the 
z-axis. Described by T2 

ce -se 0 
T2 = se ce 0 

0 0 1 

3) Rotate through 1/J about the y-axis . Described by T3 

c1/J 0 s1/J 
T 3 = 0 1 0 

-s1/J 0 c1/J 

The transmission matrix takes the form 

c1/J 
0 

- 81/J 

c·tjJce 
-se 
s'ljJce 

0 s·t/J ce - s() 0 1 0 0 
1 0 se ce 0 0 crp - srp 
0 c"ljJ 0 0 1 0 srp erp 

srps1/J + crpc'l/J s() srpc1/J se - erps·t/J 
er.pee srpce 

crps1/J s() - srpc1/J crpe1/J + srps1/J se 

The inverse transmission matrix becomes 

c'ljJee se c-s'ljJce 
T' = srps1/J - crpc'ljJs() er.pee srpc1/J + crps'ljJse 

crps'l/J + srpc'ljJse -srpce crpe1/J - srps"ljJse 

131 

Krylov angles are used in shipping [2]. To construct the Oxyz- body coordinate system, 
orientate the Ox-axis from the ship's rudder to the bows, and direct the Oy-axis to the 
port (left) side. The Oz-axis is in the diametrical plane of the ship. 

To determine the Roll, Pitch and Yaw angles, draw lines ON1, ON2 , ON3 Line ON1 
is the intersection of the (x, y) and (e, () planes, and lines ON2 and ON3 are respectively 
perpendicular to ON1 in the (x, y) plane and the (e()-side project plane. The rotations 
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N, 

TJ 

Fig. 4. Krylov Angles 

about the axes Oz, Ox and 077 are denoted respectively: cp, e and 1/;. T1, T2, and T3 are 
the corresponding rotation matrices: 

ccp -scp 0 1 0 0 c'l/J 0 s'lj; 

T1= scp ccp 0 T2= 0 ce -se T3= 0 1 0 
0 0 1 0 se ce -s'lj; 0 c·tj; 

The transmission matrix T takes the form 

c'lj; 0 s'lj; 1 0 0 ccp -Sep 0 
T = T3T2T1 = ' O 1 0 0 ce - se scp ccp 0 

-s'l/J 0 c'l/J 0 se ce 0 0 1 

ccpc'l/J + scps'ljJsB ccps'ljJsB - scpc'lj; s'ljJce 
scpd) ccpce -se 

scpctj;sB - ccps'l/J scps'l/J + ccpc'ljJsB c'ljJcB 

The inverse transmission matrix T' takes the form 

ccp scp 0 1 0 0 c'l/J 0 -s'l/J 
T'= ~scp ccp 0 0 ce se 0 1 0 

0 0 1 0 -se ce s'ljJ 0 c'l/J 

ccpc'l/J + scps'ljJsB scpce scpc'ljJsB - ccps'l/J 
ccps'ljJsB - scpc'l/J ccpcB scps'l/J + ccpc'ljJsB 

s'ljJcB - se c'lj;cB 

Matrices T and T' make it easy to determine the components of the angular velocity of 
the body in the body-coordinate and fixed coordinate systems. Working with Roll-Pitch­
Yaw angles similarly establishes formulae (7), (8), (9), and (10). 
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3. CONCLUSION 

The transmission matrix is used to investigate the kinematics of the rigid body about 
a fixed point. The proposed method is a general, simple and useful tool with which to 
conduct investigations into the motion of aircraft and ships, and other fields in which rigid 
body rotations play a significant role. It is clear method formulates problems in terms 
that are very convenient for general engineering use with special purpose software such as 
Mathcad, and Maple. 

This work was completed with the financial support of the Basic Program in Natural 
Science. 
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KHAO SAT DQNG HQC CUA VAT RAN QUAY 
QUANH MQT DIEM co D~NH 

Trong bai bao sU' di,mg phuong phap ma tr~n chuy€n d§ khao sat d<)ng hoc ciia v~t rfo chuy@n 
dong quanh m<)t diem c6 djnh. Trong phuong pha.p du<;1c dua ra da sl't di,mg cac phuong phap: 
phuong phap g6c die, phuong phap g6c Roll-Pitch-Yaw. D?,c bi0t trong cac bi§u thuc tfnh v~n 
t6c, tfnh gia t6c cac dicSm thu<)c v0,t trong cac ceing thuc nay cho phep xac dinh rieng re cac s6 
h1;tng chua cac v~n t6c suy r6ng , cac gia t6c suy r<)ng. 

Phtfdng phap dtt<;lc trlnh bay r§.t, don gian, r&t ti~n !<;Ji d6i voi cac ky sU, cac nguoi lam ky 
thu~t nhO c6 th§ sU' di,mg trvc ti@p cac philn m€m chuyen di,mg nhu Mathcad, Maple, ... 


