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KINEMATICS OF A RIGID ABOUT
A FIXED POINT

Do Sanh, Do Dang Khoa
Hanoi University of Hanot

Abstract. This paper employs transmission matrices to investigate the motion of a
rigid body about a fixed point. Formulas to calculate coordinates, velocities, and the
accelerations of points on the body are presented. The method separates generalized
velocities and accelerations making it particularly useful to the study of a wide range of
problems in dynamics such as, for example, the calculation of the inertia matrix.

1. INTRODUCTION

The spatial motion of a rigid body is of interest in many problems in mechanics having
application in gyroscopic motion, robotics, and mechanical processing. In particular, rigid
body kinematics are of special interest to aerospace and shipping applications. Reference
[2] presents a systematic investigation of this general subject though the methods used
are complex. This paper describes the use of transmission matrices [5, 6] as a simple but
powerful approach with the added advantage of being in a form well suited for use with
the Mathcad and Mathlab software packages.

2. BASIC THEORY

In order to investigate the spatial motion of a rigid body two kinds of coordinate
systems are required: one is a fixed frame of reference (ground-coordinate system) and the
other is a system rigidly connected to the moving body (body-coordinate system).

It is well known that the general motion of a rigid body about a fixed point can be
treated as a combination of rotations about a set of axes.

1) Rotation through angle ¢ about the z-azis with corresponding matrix Ty :

1 0 0
Ti=|| 0 cp —sp
0 s¢ cy

2) Rotation through angle ¢ about the y-azis with corresponding matrix Ty:

cy 0 sy
T, = 0 1 0
—sy 0 cy
3) Rotation through angle 6 about the z-azis with corresponding matrix T3
cd —sO 0

Ts=| s ¢ O
0 0 1
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For convenience, we write: cos(p) = Cyp; sin(¢) = Sp;cos(p+9) = C(g +¢?), .. and
denote matrices in bold type. All vectors are treated as (3x1) matrices.

The motion of a body about a fixed point can be performed by means of successive
rotations about appropriate axes corresponding to above mentioned matrixes. Note that
in general the axes need not be mutually perpendicular. Although many methods exist
to investigate the motion of a body about a fixed point, this paper addresses only two of
these, namely Euler Angles and the familiar Roll-Pitch-Yaw conventions used to describe
the motion of ships and aircraft.

2.1. Euler Angles

Euler angles involve three successive rotations about three axes. In Fig. 1, denote the
ground coordinate system by O&n¢ and the body coordinate system by Ozyz, where ON
(called the line of nodes) is the line of intersection of the (z,y)-plane with the (&, n)-plane
[2, 4]. The position of the body is defined by means of the three Euler anglesp, ¥, 0, called
respectively the pure, notation and procession angles. Let the two coordinate systems
coincide at start time ¢ty and denote the position of the body at later time ¢t as Ozyz. It
is possible to show that three successive rotations of the body about appropriate axes is
sufficient to move the body from position Ozyz at time ¢ to the start position O&n(.

One can proceed as follows

Fig. 1. Euler Angles

1) Rotate the body coordinate system Ozyz through angle ¢ about the z-azis using T

cp —sp 0
Ti=| s¢ cp O
0 0 1

The body is now located at Oz1y;21 and Oz = Oz,0x; = ON, Oy;.
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2) Rotate the Oxy,2; coordinate system through angle 6 about ON using T,

1 0 0
To=| 0 c0 —sb6
0 s co

The Oz1y121 body-coordinate system replaces Ozays2s such that Oxy = ON,Ozy =
. 0g, Oys.
3) Rotate the Ozqys29-body coordinate system about the Ozy (= O¢) through v using T3

cyp —syp 0
Ty=1| sy cp 0
0 0 1

The three successive rotations restore the body to the start position. The total dis-
placement carried out in a single operation is accomplished using T

cy —sv 0 1 0 0 cp —sp 0
T=T3T;Ti=| s¥ cy 0O 0 cO —sb sp cg 0
0 0 1 0 s6 b 0 0 1

cYecp — sPspcld  —spch — scpcld  sysh
=|| stcp+ chspcd —sps + chepeld  —cipsl
sfsp sOcp cl

The T matrix makes it also possible to determine the components of a vector rigidly
connected to the body in the fixed coordinate system. In other words, a vector with
components (a, b, ¢) in body-coordinates will have components (£, 7, ¢) in the fixed system
related by:

£ a cpe) — spsheld  —speh — cpspeld  shsh 1 a
n|l=T3TaTi|| b || =] cpsy+ spcpcl —spsip + cpcpcld  —cipsh b (2)
¢ & spst cpsh cf | ¢
Putting this another way,
ro=Tr 3)

where r and r, are the respective position vectors of the point M connected rigidly to the
body —coordinate and fixed coordinate systems. The inverse displacement is accomplished
using T

co sp 0 cd s6 0 cy sy 0

T =|| —s¢p cp 0 —s0 ¢ 0 s cp 0
0 0 1 g @ 0 (O] 0
cpcy — spsel  cpsy + spepel  spsh (
=|| —spch — cpsped —spsi + cpeheld  cpsh
s sl —csh ch
As above, write
r=T" 1, (5)

The matrices T* and T are orthogonal, so that TT’=I.



128 Do Sanh, Do Dang Khoa

Expression (2) makes it possible to calculate the velocity of a point anywhere on the
body.
To so this, introduce the following matrices:

| —s¢ —cp 0 0 0 0 ' -5y —cy 0 |
T]] = | cp —S® 0 5 TQQ — 0 —sf —ch ; T33 = Cw —S¢ 0 |
| 0o o o 0 cf —sf | I 0o 0 o H
ag || ab a1
ri=| b |; ro=| b0 |; r3=|| by H
cp " o | e ||
(6)
The velocity of the point on the body is computed from:
£
v=| 1 || =Ts3T2T1rg+TsT22T1ro+T3T2T11r1 (7)
¢

Expression (7) separates out the generalized velocity. Note for example, the term
including the generalized velocity 8 is:

cp —sip 0 —s0 —cf O cp —sp 0 aé
T3gTosTiro =|| s ¢ 0 e —s6 0 sp  cp 0 bo
0 0 1 0 0 0 0 0 1 0

spssh  cpssd sl aé '
=|| —spcysh —cpcysd —cypclh bo
spch cpct —50 c0

which in turn yields the following expressions for the generalized velocity 6:
£(0) =(aspsysh + bepsihst + csiped)d;
77(0) = — (aspcysh + bepeyp sl + cwcﬁ)é;

C(0) =(aspch + bewed + cs0)0

To obtain the attendant accelerations, introduce the following matrices:

—cp sp 0 o o o] |~ sy 0
Ti11 =1 —=s¢ —cp 0| ; Ta22 :i 0 —cf s0 ||; Tazg=| —s¢p —cy 0
0 0 0] 1o 0 o Lo 00
ap af | m}% I
rin=|| b@ ||; ra2=| b0 ||; Taz=| bp ||;
cP cf ]‘ c
ap? Il abh? | a)?
rig=|| bp? ||; raz= ‘1 b6? ||; rzgz=| by?
| c? H cf? c?
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ac,bé agbz/} by
ri2=rz1 = | bpl ||; rig=r31=| bgyp || ; raz=rza=| b6y
cpl oY cOp
The accelerations of a point on the body are written in the form:
£
a=| 7 || =T33T2T1r33+T3T22T1r22+T3T2T11r11+T333T2T1rss
¢ (8)

+T3T222T1r22+T3T2T1111r1,1+2T33T22Tr23
+2T33T2T11r1,3+2T3T22T11r1,2

The transmission matrices T and T’ allow us to determine the angular velocity of the
body in the body-coordinate and fixed coordinate systems. Denote the angular velocity in
the body-coordinate and the fixed coordinate systems respectively as w and w®. Applying
(3) and (5) we have

W= Tw 9)

w=Tw° (10)

To illustrate the process, determine the angular velocity of the body in the fixed
coordinate system and apply the theorem for the addition of angular velocities, we get:

Q= +0+ 1])(a) where €2 is the absolute angular velocity of the body.

It is easy then to show: = w°®

To apply (9), one must first calculate the components of the angular velocity in the
body —coordinate system. First determine the components of % in the body-coordinate
system using T’ to calculate T’1]):

) cpch — spsiheld  cpsy 4 spcy + spcheld  spsh 0 5050
T = || —spcy — cpsich — 388 + cpcpchd cpsh 0 = s
sysf —csh cl ) e

The components of the angular velocity of the body in the body-coordinate system
become
1[}3@50 - 0:ccp
w = || Yecpshd — Osp
Yeh + @
From (9) obtain:

cpcy) — spspcd  —spcp — cpspcld  sypsl Yspsh + e
w°=Tw = || cpsy + spcpcd —spsy + cpcpcd —cipsh Pepst — Osg
spst cpst cl vel + ¢
@ssO + Oer
=|| —pcst + Os1)
peb + 1)

As an example of how to apply the method, consider the gyroscope shown in Fig. 2.
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Fig. 2. Equilibrium Gyroscope

Assume the disk rotates about the horizontal axis CD with constant angular velocity wy
and CD in turn rotates about the vertical axis with constant angular velocity wg. The body-
coordinate and fixed coordinate systems are as shown. Clearly, ¥ = 0, ¢ = wit, 0 = wyt in
which case the angular velocity of the body in the body-coordinate system is:

Wy coswit
w = wo sin wqt
w1
Matrix T then becomes
cos wit —sinwqt 0
T = || sinwitcoswat coswitcoswat coswat
\ 0 0 1

The angular velocity of the body in the fixed coordinate system becomes

0
w’ = Tw = || wy coswat — wy sinwayt
wg sinwst + wq cos wat

2.2. Roll-Pitch-Yaw Angles

The shipping and aerospace industries adopt the Roll-Pitch-Yaw convention [2]. Direct
the n-azis to point up and draw the other axes while observing the right-hand rule. In an
aircraft body coordinate system the zy- plane coincides with the plane of symmetry of the
aircraft, and the z-axis points from tail to cabin. The y-axis points up.

To determine the yaw, pitching and rolling angles, draw lines ON;, ONy, ON3 where
ON; is the intersection of the (£¢)-plane and the (y, z)-plane, ONg is the intersection of
the (£¢)-plane and the (z,n)-plane and ONg is the intersection of the (x,n)-plane with
the (&,n)-plane. Fig. 3 shows the yaw, pitching and rolling angles. Rigid body rotations
are determined as follows:

1) Rotate the body through ¢ about the Ox axis. Described by T

1 0 0
Ti1=|| 0 cp —sp
0 s cp
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Fig. 3. Roll-Pitch-Yaw Angles

2) Rotate the body through 6 about the
z-axis. Described by Tg

cd —s6 0
To=| s cf O
0 0 1
3) Rotate through 1 about the y-azis. Described by T
cy 0 sy
T3 = 0 1 0
—s 0 cy

The transmission matrix takes the form

cp 0 sy cd —s0 0|1 0
T =T3T.T, = 0 1 0 ||||sf 8 O 0 cp
—sp 0 cy 0 0 1 0 sp
cpeld  spsyh + cpepst spesd — cpsy
= —s0 cpch spch

scl  cpsyPstd — spcy  cpc) + spsishd

The inverse transmission matrix becomes
cch s6 —sch
T = || spsy — cpepstd  cpcd  spc + cpsishd
cpsY + spcpsl  —spcl  cpch — spsipsl

0

131

Krylov angles are used in shipping [2]. To construct the Ozyz- body coordinate system,
orientate the Oz-axis from the ship’s rudder to the bows, and direct the Oy-azis to the

port (left) side. The Oz-azis is in the diametrical plane of the ship.

To determine the Roll, Pitch and Yaw angles, draw lines ON;j, ON3, ON3 Line ON;
is the intersection of the (x,y) and (&, () planes, and lines ONy and ONj are respectively
perpendicular to ON; in the (z,y) plane and the (£¢)-side project plane. The rotations
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Fig. 4. Krylov Angles

about the axes Oz, Ox and On are denoted respectively: ¢, 6 and ¥. Ty, T9, and T3 are
the corresponding rotation matrices:

cp —sp 0 1 0 0 cp 0 s \’
Ti=|sp cpg 0| ;Te=|0 c8 —s0 | ; Tz= 0O 1 0 l
0 0 1 0 sf cf —s¢p 0 cy |
The transmission matrix T takes the form
cy 0 sy l 1 0 0 cp —sp 0
T=T3T,T;y=| '0 1 0 0 cd —sb sp cp 0
—s 0 cy l 0 s6 cf 0 0 1

coc) + spsihsd  cpsish — spc)  sied
= spcl cpch —s0
spepstd — cpsh spsy 4+ cpesd  ced

The inverse transmission matrix T takes the form

cp sp 0 1 0 ’ O —sd)
T =|| =sp cp 0 ch 59 ;
0 0 1 —s6 ¢l || || s¢ O cv,b

cpcy + spsi sl 54,060 speyst — cpsy
= || cpshshd — spcp  cpchd  sps + cpcipshd
sl —sf cpch

Matrices T and T’ make it easy to determine the components of the angular velocity of
the body in the body-coordinate and fixed coordinate systems. Working with Roll-Pitch-
Yaw angles similarly establishes formulae (7), (8), (9), and (10).
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3. CONCLUSION

The transmission matrix is used to investigate the kinematics of the rigid body about
a fixed point. The proposed method is a general, simple and useful tool with which to
conduct investigations into the motion of aircraft and ships, and other fields in which rigid
body rotations play a significant role. It is clear method formulates problems in terms
that are very convenient for general engineering use with special purpose software such as
Mathcad, and Maple.

This work was completed with the financial support of the Basic Program in Natural
Science.
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KHAO SAT PONG HOC CUA VAT RAN QUAY
QUANH MOT PIEM CO PINH

Trong bai bao st dung phuong phap ma tran chuyén dé khao sat dong hoc ciia vat rén chuyén
dong quanh mot diém c¢b dinh. Trong phuong phap duge dua ra da st dung cac phuong phap:
phuong phip goc Ole, phuong phap goc Roll-Pitch-Yaw. Dic bigt trong cac biéu thitc tinh van
tdc, tinh gia téc cac diém thudc vat trong céc cong thitc nay cho phép xac dinh riéng ré cac sb
hang chita cac van téc suy rong, céc gia toc suy rong.

Phuong phap duge trinh bay rat don gidn, rat tién lgi doéi véi cac ki su, cdc ngudi lam ky
thuat nho ¢ thé sit dung truc tiép cac phan mém chuyén dung nhu Mathcad, Maple, ...



