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NON-LINEAR VIBRATION OF ECCENTRICALLY
STIFFENED LAMINATED COMPOSITE SHELLS
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Abstract. The present paper deals with a non-linear vibration of eccentrically stiffened
laminated composite doubly curved shallow shells. The calculations of internal forces and
displacements of the shell are based upon the thin shell theory considering the geometrical
non- linearity and the Lekhnitsky’s smeared stiffeners technique. From the deformation
compatibility equation and the motion equation a system of partial differential equations
for stress function and deflection of shell is obtained. The Bubnov-Galerkin’s method and
iterative procedure in conjunction with Newmark constant acceleration scheme are used
for dynamical analysis of shells to give the frequency- amplitude relation of free non-
linear vibration and non-linear transient responses. Numerical results show the influence
of boundary conditions and Gauss curvature on the non-linear vibration of shells.

1. INTRODUCTION

Reinforced laminated structures like plates and shallow shells are widely used in air-
industry and ship-industry. The stiffening member provides the benefit of added load-
carrying static and dynamic capability. When structures subjected to external loads may
be appear a large deflection then the geometrical non-linearity of shell must be considered;
of course it meets with mathematics difficulty. To solve problem we are concerned with
two aspects: to seek an approximated analytical solution which allows to investigate the
motion characterictics and to seek solution by numerical methods. The research results for
nonlinear vibration of composite plates have been represented in [4, 11] and for cylindrical
shells in [2, 5, 7, 8]. Approximated analytical solutions for the vibration problem of doubly
curved unstiffened composite shells were given in [1, 6, 9, 10]. In [3] the authors carried
out the non-linear dynamic analysis of doubly curved stiffened composite shells by the
displacement approach.

The aim of this paper is to search an approximated analytical solution for the dy-
namic problem of doubly curved eccentrically stiffened laminated shells with negative and
positive Gauss curvature and different boundary conditions by using stress function and
Bubnov-Galerkin methods to give non-linear vibration equations of shell. Numerical so-
lutions are given by the iterative method and Newmark constant acceleration scheme.
The frequency-amplitude relation in the non-linear free vibaration and the influence of
boundary conditions and Gauss curvature on the solution of dynamic problem of shells
are examined.
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2. GOVERNING EQUATIONS

Consider a symmetrically laminated composite doubly curved shallow shells of thick-
ness h and in- plane edges @ and b. The shell is reinforced by eccentrically longitudi-
nal and transversal composite stiffeners and subjected to the transverse load of intensity
q(:cl, 9, f).

Using Kirchoff-Love theory non-linear strain-displacement relations for doubly curved
shallow shells are formulated
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where k1 = R~1, ko = R—2 are principal curvatures of the shell; R, Ry are radii of curva-

ture; u, v, w are displacements of the midle surface point along x1, x5, 3 = 2 directions
recpectively; ef and ¢; (i = 1, 2, 6) are strain of the midle surface point and curvature
variations satisfying the deformation compatibility equation:
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Internal forces of an unstiffened composite shell are caculated by Reddy [10]. Note that
in a symmetrically laminated shell the coupling stiffnesses B;; are equal to zero and the
extensional A1g, Az and bending D1g, Dog stiffnesses are negligible compared to the other
stiffnesses. Using Lekhnitsky’s smeared stiffeners technique we get governing internal force
resultants and moments as follows
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are stiffnesses of unreinforced composite shells, @Ef) are transfomed stiffnesses of k**- layer,
E - elastic modulus of stiffeners. Spacings of the longitudinal and transversal stiffeners
are denoted by si, so. Values z1, 23 - eccentricities of the longitudinal and transversal
stiffeners with respect to the middle surface of the shell, A;, A are cross section areas of

the stiffeners and I, I are inertia moments of stiffener cross sections.
The reverse relations are obtained from equations (3)
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Inserting (5) into (4) yields
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Because the load is perpendicular to the middle surface, then following Volmir [12]
the wave propagation in middle surface of the shell can be overpass, it reduces to overlook
inertial forces along z; and x5 directions. The motion equations of doubly curved shallow

composite shell are of the form
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to equations (9) and (10) which are satisfied identically.
Substituting (5) into the compatibility equation (2), and (7) into (11), the system of
two motion equations for stress function ¢ and deflection w are obtained
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3. VIBRATION OF THE SHELL WITH SIMPLY SUPPORTED EDGES

Let consider a simply supported shell at all edges, then the boundary conditions are
w=0,M;=0,N;=0,Ng=0, inzy =0, a;

1!’
w=0,My=0, Ny=0, Ng =0, inzg = 0, b. (15)
Solutions of stress function and deflection are chosen as
: . mmxry . nmxe
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Substitution of (16) into (1), (3), (7) shows that boundary conditions (15) are satisfied.
Using expressions (16) to equations (13), (14) and Bubnov-Galerkin method leads to
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and
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with m , n are odd numbers.

Remark: When a shell is reinforced by centrically stiffeners then B* = 0; a plate is rein-
forced by eccentrically stiffeners then ky = ko = 0, B}, # 0; a plate 1s reinforced plate by

centrically stiffeners or unreinforced plate then kq = kg =0, B* =0.

The equations (17) and (18) can be rewritten as following
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Inserting (19) into (20) yields
Hsf(t) + (Hy + Hy. A) f(t) — (HoB + H3A) f2(t) + H3Bf3(t) = Hy(t).
The vibration equation of a shell is of the form

f(t) + mlf(t) - 7712f2(t) + m3f3(t) = amn (t)v (21)
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where denote

N Hy + H A N HyB + H3A - Hs;B B H4(t)
ml*T’m2_T7m3— H- ’an(t)_ Hs J (22)
Is]

For linear free vibration the equation (22) gets form

f#)+mif(t) =0, (23)

one can determine the fundamental frequency of vibration
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4. VIBRATION OF THE SHELL WITH SIMPLY SUPPORTED AND
CLAMPED EDGES

Suppose that a shallow shell is simply supported on edges 1 = 0, 1 = a and clamped
on edges z3 = 0, o = b. Then in edges the following conditions are taken
sz,Ml :0, NIZO, N(,-:O,in:rl:(),a;
ow (25)
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The boundary conditions (25) are satisfied when the stress function and deflection are
chosen as follows
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Substituting expressions (26) into equations (13), (14) and using Bubnov-Galerkin method
we get
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and m, n are odd numbers.
Similarly we get the vibration equation of the shell in the form (21), where the terms
m;, (i = 1,2,3) can be calculated by (22) but with coefficients
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5. NON-LINEAR DYNAMICAL ANALYSIS OF DOUBLY CURVED
SHALLOW COMPOSITE SHELLS
5.1. Frequency-amplitude relation of non-linear free vibration

The equation of non-linear free vibration can be obtained from (21)

F(@) +maf(t) —maf2(t) + maf3(t) = 0. (29)

Using harmonic equilibrium method with seeking solution as f(t) = A cos(wt), after some
transformations we get the frequency-amplitude relation of non-linear free vibration
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where Qg = mg/m1, K = mg/my, terms my, ma, ms are determined from (22), v is ratio

of non-linear vibration frequency and fundamental frequency, A - amplitude of non-linear

vibration.

E% particular case for an unreinforced plate or a centrically reinforced plate we have Qo =
2

—= = 0, the expression (30) gets form
my

K
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5.2. Dynamic analysis of composite shell in non-linear vibration
Let’s consider non-linear vibration of a shallow composite shell subjected to excited

load q = q(x1, z2,t) = qo sin(Q2t). Now the equation (21) can be represented in the form of
Duffing equation

F@) + [my = maf(t) + maf2(6)] £(£) = G (1), (31)

where:
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a) For a shell with simply supported edges

_ 16qo sin(Qt
Qmn (t) — ( )2 P

mnm2 [Jo + J27r2(— + ZQ )}

b) For a shell with simply supported edges and clamped edges
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Put K(f) = m1 — maf(t) + maf2(t), Gmn(t) = F(t), equation (31) can be rewritten in
the form

Tmn(t) =

Ft) + K(f)f() = F(2). (32)
Equation (32) can be solved by iterative method with Newmark scheme. Dividing calcu-

lated process by time-step At, corresponding (n + 1) step we have t,.1 = (n + 1)At.
Using Newmark scheme we can rewrite (32) as follows

K*(.f)n+1 : fn+1 = F;:+1: (33)
where
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The solution f,,;1 is determined at the time t,,+1 = (n + 1)At, then velocity and acceler-
ation can be calculated respectively by formulas
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Since the coefficient K*(f),11 in (33) is non-linear, we use an iterative method to solve

(35)

the equation. Using here the direct iteration technicue the equation (33) car t - ~~pressed
as '
* k Lk‘+1
K (- 1550 = Fia, (36)

where k is the iteration number. At any fixed time for the (k 4 1) iteration, the stiff-

ness K*(f)g:zl is calculated from the k" iteration. Calculating process stops when the
convergence criterion is satisfied

j(k j.k+1)

FG <e, (37)

where € > 0 is a given small value.
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6. NUMERICAL EXAMPLES

The shallow shell considered here is a panel with in-plane edges a = b=2 m, curvatures
k1 = 1/R1, k2 = 1/Ry. The shell is simply supported at all its edges or simply supported-
clamped. The skin of the shell had 4 plies [45/ —45/ — 45/45], each ply being 1.5 mm. The
material of the shell is AS4/3501 graphite/epoxy with parameters £;=144.8 GPa, F3=9.67
GPa

Gi12 = G13=4,14GPa, Ga3=3.45GPa, vy =0.3, p=1389.23 kg/m°,

where I/1 , E3 are the elastic modulus in directions z1 and 25 respectively, 115 - the Poisson
coefficient, G'12, G13 and Ga3 are the shear modulii in 12,13 and 23 planes.

Material of reinforced stiffener has elastic modulus £ = 600G Pa. The height of the stiff-
ener is equal to 12mm, while their width 4mm. The spacings of longitudinal stiffener and
tranversal stiffeners s;=50 mm, and s3=50 mm respectively.

The time-step At is taken as 7'/300 where period T' = 27/, Q) is a frequency of excited
load and t, = n.At are used for numerically solving non-linear differential equation by
Newmark method. The applied harmonic uniform load is of the form q(x1, z2,t) = psin Qt,
where the magnitude p may be taken as 7,500 N/m?, 15,000 N/m?, 30,000 N/m?. Two
cases of Gauss curvature are taken into consideration: k = k1.ks > 0 when R} = Ry = 5m
and k = k1.ks < 0 when Ry = 3 m, Ry = -10 m, we take respectively §2 = 1400 and
2 = 800(s71), these frequency values of excited load are near to ones of fundamental
frequency values when k > 0: wg = 1416 (in case SS-SS), wg = 1390 (in case SS-CC); when
k < 0:wp = 780 (in case SS-SS), wp = 749 (in case SS-CC) respectively (calculated data
according to (3.10)).

The Figs. 1, 2, 3 show graphs of maximum deflection w4, = f by 25 period, that
means the non - linear transient responses, for cases of boundary condition with simply
supported edges (SS-SS) and simply supported-clamped edges (SS-CC) when Gauss cur-
vature k = ky.k2 > 0 and magnitude p of excited load as 7,500 N/m?, 15,000 N/m?, 30,000
N/m? respectively. The Fig. 4 shows relation of maximum deflection and velocity of max-
imum deflection when Gauss cuvature k = kj.ko > 0, p=30,000 N/m?.
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Fig. 1. Non-linear transient responses with Fig. 2. Non-linear transient responses with
p=7,500 N/m? p=1,5000 N/m?
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p=30000 N/m2
—55-88
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k>0

Fig. 8. Non-linear transient responses with

p=30,000 N/m?

p=30000 N/m2
SS-SS

Fig. 4. Deflection-velocity relation

Fig. 5 shows the graph of maximum deflection wy,q; = f by 25 period (non-linear
transient responses) for cases of boundary condition with simply supported edges (SS-
SS) and simply supported-clamped edges (SS-CC) when Gauss curvature k = ki.ko < 0.
Relation for maximum deflection and velocity of maximum deflection when p=7,500 N/m?
is expressed in Fig. 6.

f.(m)/
0.08

p=7500 N/m2

k<0

- 85-85

Fig. 5. Non-linear transient responses

p=7500 N/m2
58-SS

Fig. 6. Deflection-velocity relation

The Figs. 7, 8, 9 show non-linear transient responses and graphs f — f by 25 period
respectively for cases with Gauss curvature k < 0, when p=1,5000 N/m?, and Figs. 10, 11,
12 for cases with Gauss curvature k < 0, p=30,000 N/m?.

Figs. 13, 14 show the non-linear transient responses for unstiffened and stiffened shell
with simply supported at all edges, simply supported-clamped edges. The skin of the shell
had 4 plies , each ply being 1 mm. The spacings s;, sy of stiffeners vary differently, conse-
quently the effect of stiffeners on the transient responses of shell is represented apparently.
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Fig. 7. Non-linear transient responses when Fig. 8. Deflection-velocity relation (SS-SS)
p=1,500 N/m?
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k<0 f

— §8-S§

f.(m)

F1g. 9. Deflection-velocity relation (SS-CC) Fig. 10. Non-linear transient responses

fA  p=30000 N/m2

Fig. 11. Relation of deflection-velocity (SS-SS) Fig. 12. Relation of deflection-velocity (SS-CC)

Discussion

- Although the excited load is harmonic, non - linear responses of shell are not harmonic
by timing, however having a specific cycle for the shell of positive Gauss cuvature & > 0.
For non-linear vibration of a shell when fundamental frequency is equal to frequency of
excited load may occur the phenomenon of resoriance, but in this considered example the
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Fig. 13. Non-linear transient responses (SS-SS) Fig. 14. Non-linear transient responses (SS-CC)

frequency of excited load is near to the fundamental frequency we observe the phenomenon
like harmonic beat of a linear vibration and the amplitude of external load is smaller, then
the cycle of non-linear transient responses is larger.

- For the shell with negative Gauss curvature k < 0, the phenomenon of cycle is not
clear and its turn is rather complicated and needed to be examined more carefully.
- When £ > 0 the amplitude of non-linear vibration for the shell with SS-SS edges is
greater than with SS-CC edges, when k < 0 the above rule is not changed completely.
- Non-linear responses and relation of declection f-velocity f for a shell with k > 0 is
stable, a sudden phenomenon does not happen but for a shell with & < 0 this rule is not
true and needed to be examined more carefully.

7. CONCLUSION

The governing equations for dynamic problem of eccentrically stiffened laminated com-
posite shallow shell are given and analysed by use of the thin shell theory cosidering ge-
ometrical non-linearity and the Lekhnitsky’s smeared stiffeners technique. Using stress
function and Bubnov-Galerkin methods the equation of non-linear vibration for shallow
shell in the form of Duffing equation is obtained. Numerical solution is carried out by
iterative method using Newmark calculated scheme. Obtained results show the influence
of boundary conditions and Gauss curvature on the non-linear vibration of eccentrically
stiffened laminated shallow shell.

This publication is supported by the National Council for Natural Science and
the Vietnam National University, Hanoi.
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DAO DONG PHI TUYEN CUA VO COMPOSITE
LOP CO GAN GIA CUONG

Bai béo trinh bay dao dong phi tuyén ciia vé thodi composite 16p hai do cong
c6 gan gia cudng lech tam. Tinh toan noi lyc va chuyen vi dua trén ly thuyét vo
mong ¢6 tinh dén yéu t6 phi tuyén hinh hoc va ky thuat tinh gan gia cudng theo
Lekhnitoky. Dua trén phuong trinh tuong thich bién dang va phuong trinh chuyén
dong ctia vé dé thiét 1ap hé phuong trinh dao ham riéng theo ham ing suat va do
vong clia ciia vo. Sit dung phuong phéap Bubnov-Gaberkin va phuong phap budc lap
¢6 dung so d6 Newmark dé phan tich dong lyc ctia vo. Da nhan dude lien hé tan
so-bién do clia dao dong phi tuyén tu do va dap tng titc thoi phi tuyén cia vé. Céc
két qua tinh toén s6 cho thay anh hudng 16 rét clia didu kién bién va do cong Gauss
dén dao dong phi tuyén cia vé.



