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CRACK ANALYSIS FOR SOME STRUCTURES
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Abstract. Numerical methods of crack analysis for some 2D-elasticity problems with
thermal and dynamic loads are considered in this work. The general steps of the algorithm
are presented. Some programs are written by Gibian languages in the codes Castem for
crack analysis of different structures. Numerical illustrations are realized for the crack
dam model, the plate with one and two cracks the plate with crack at the hole subjected
to under variable tension of thermal loads . The influence of the temperature, dynamic
loads or position of the crack on fracture parameters for these structures are investigated.
The given programs may be useful for estimating the failure of dams, tunnels or other
structures.

1. FINITE FORMULATION OF CRACK ANALYSIS FOR STRUCTURES
SUBJECTED TO THERMAL, DYNAMIC LOADS

The main steps of crack analysis for some plates subjected to static load are presented
in [1]. This part deals with the basis of solution for the problems with thermal and dynamic
loads.

1.1. Thermal conduction problem
Thermal effect within an elastic solid produces heat transfer by conduction and this

flow of thermal energy establishes a temperature field in material.
The equilibrium equation of heat flux in steady-state heat conduction has form [2]:
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; kx, ky, kz are anisotropy conductivity

coefficients, Θ is a temperature function, Θ expresses variation of Θ and it is virtual
value. qB represents the ( heat) flux per unit of volume, qs is the (heat) flux per unit of
surface and Qi are the heat, which is concentrated at the nodes. This equation represents
that the quantities of ingoing and outgoing heat flux are equal.

Note that(1) is similar as the formula of virtual work in the elastic problem. The
temperature Θ(m) in m-th element may be expressed by vector of temperatures θ in the
form:

Θ(m)(x, y, z) = H (m)(x, y, z)θ and Θ
′(m)(x, y, z) = B(m)(x, y, z)θ, θT = [θ1 θ2 ... θn] ,

where θi is temperature at i - node, H (m) and B(m) define temperatures and gradients of
temperatures inside in the m- element depending on the node temperatures.



168 Ngo Huong Nhu

Substituting these expressions into, the equilibrium equation (1) yields

Kθ = Q (2)

where K =
∑

m

∫

V (m)

B(m)T k(m)B(m)dV (m) is the conduction matrix; Q = QB + QS + QC is

the vector node heat, QC is the vector concentrated heat at nodes, and

QB =
∑

m

∫

V (m)

H (m)T qB(m)dV (m); QS =
∑

m

∫

S(m)

HS(m)T qS(m)
dS(m). (3)

1.2. Boundary condition for the thermal problem
Usually there are two types of thermal condition:
- The temperatures are given at some nodes i on the structure:

θi(x, y, z) = θimp
i (4)

- The other important conditions are the convection and radiation, the values of qs in
(3) depend on the temperatures of body surface and ambient temperature. In linear case
the condition is:

qs = λ(θe − θ), (5)

λ - convection constant, θe - given temperature of ambient. Then the heat flux going
through the surface (3) has the form:

QS =
∑

m

∫

S(m)

λ(m)HS(m)THS(m)dS(m)θe −
∑

m

∫

S(m)

λ(m)HS(m)THS(m)dS(m)θ

So the problem of heat conduction leads to solving equation (2) with the unique
temperature unknown θ and boundary condition (4), (5). It is equivalent to a static elastic
problem with unknowns which are displacements.

The given temperature distribution in the structure generally induces the volumetric
and stress changes. These effects are added to solving mechanical problem.

1.3. Thermo-mechanical problem
In many stress analysis problems, the structures are subjected to both mechanical and

thermal loadings. Then, at first it needs to solve a thermal conduction problem to find a
temperature field. Then thermal effects are involved to the mechanical problem as external
nodal load by following:

The elastic behavior has the relationship between stresses and strains as:

{σ} = [D]({ε} −
{

ε0
}

);

D is an elasticity matrix containing material properties, {ε0} is an initial strain.
The strains due to thermal expansion are considered as an initial strain {ε0} in the

body with components: ε
(θ)
ij = α(θ − θ0)δij ; where θ0 is initial temperature, α is thermal

expansion coefficient, δij is Kronecker delta.
The thermal load vector then has form:

{F}θ =

∫

[B]T [D]
{

εθ
ij

}

dv.
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Thermo-mechanical problem leads to solving a general mechanical problem by FEM:

K∗ {U} = {F} +
{

F θ
}

, (6)

where K∗ stiffness matrix, {U},{F} - displacement and nodal force vectors. The obtained
displacements are involved to analyze stresses at the crack point by the way in the following
part.

1.4. Crack analysis with thermal and mechanical loads
When the solid has a crack, the stress-strain field at the tip of a crack can be character-

ized by stress intensity factor K or J-integral Rice, energy release rate G or Crack Opening
Displacement (COD), for linear elastic behavior G = J. To receive K, J, G or COD for
crack structures under thermal load, the first step is to solve a thermo-mechanical problem
to have displacements v(β). Then the stress intensity factor functions KI(r), KII(r) are
calculated from displacements v(β) with β = π and β=0 at the sides of the crack as in [3]:
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r
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1 + ν
.

The values KI , KII are given by extrapolation KI(r), KII(r) for the points r near to
0 . Here they are calculated by the mean of the displacements of three points, which are
closest to the crack tip. The characteristics J- integral and G can be received from stress
intensity factors KI and KII in mixed mode by [3]:

G = J =
K2

I + K2
II

E ′
; E ′ =

E

1 − ν2
− for the plane strain state.

1.5. Crack analysis for structures subjected to dynamic load
When the external loads vary slowly with time, that means the ratio between exciting

load frequency and the natural frequencies of the structures is less than 0.25, the inertia
and damping effects can be neglected and the problem has quasi-static equation [6]:

K∗ {U(t)} = {F (t)} .

At each moment t = ti, ti = t0+i∆t, ∆t = T/n, n - time steps, this equation expresses
a static problem with external load F (ti).

By the same procedure in part 1.4, the given components v(ti) of displacements U(ti)
are employed in calculating of stress intensity factor K, J- integral for static cracks in
elastic material subjected to time dependent loadings for each step of time ti.

2. NUMERICAL CRACK ANALYSIS FOR SOME STRUCTURES

Based on all the above mentioned manners, using the different operators in Castem,
some programs are established by Gibian languages to realize numerical crack analysis for
2D problems with thermal, dynamic loads as the crack dam model, the plate with one or
two cracks and the plate with crack at hole.

The program RUPTEMFV is written for thermo mechanical problem to calculate crack
characteristics for dam model under self-weight, variable hydraulic and thermal loads.

The code RUPBVFT lets crack analysis of plate with one crack under variable tension
loading and temperature and RUPBVF2 for analysis of plate with two cracks.
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The program RUPHOLVF is used for analysis crack at hole in the plate in variable
tension.

The general main steps of all these programs are the same as in [1] but the involving
temperature or variable loads requires some other steps relative to these problems.

Operators and steps in thermal analysis
When there is temperature change in the structure body, the first step in FEM is

finding of the temperature distribution in the structure. There are some steps and special
operators in Castem to find following thermal fields:

- The total conduction of whole structure material by using operator COND
- The heat flux of the given temperatures at the nodes or the line in the structure by

operator DEPI.
- The heat flux can be caused by the convection of the structure with external ambient

temperatures by operator CONV and find the total heat flux.
After that, using operator RESO to solve the thermal problem with total flux, total

conduction to find temperature distribution.
The second step in the thermal analysis is finding of the temperature stresses field from

temperature field by operator THET. These stresses are added to the external mechanical
load and then process of analysis for the structures is realised as usually FEM.The given
displacements in the region of the crack tips and in the structure is used for crack analysis.

Operators and steps in crack analysis with dynamic variable loads
- The first, the function of loading changing and the time steps must be involved to

find the load at considered moment.
- After that, using procedure PASAPAS TAB_DYN to solve quasi-static problems

with corresponding load to find displacement and stress fields for structure at each time
step.

- Using the given displacement distribution and some procedures as ’OBJECTIF’ =
MOT ‘J_DYNA’ and SUPTAB. ‘SOLUTION_PASAPAS’ = TAB_DYN and G_THETA
SUPTAB for crack analysis to find crack characteristics K, J, COD at i-th time step.

So, all characteristics at the crack tip in the structures at any time step can be received.
The following problems are considered as numerical illustration for above mentioned.

2.1. The crack dam model subjected to self-weight, hydraulic and thermal
loads

Consider a model of gravity dam [4] with the height H=240 cm, the width w=200 cm,
at H=60 cm in the upstream wall there is a notch with crack length a=20 cm (Fig. 2).The
characteristics of material are: E= 35.700 Mpa, ν=0.2, thermal conductivity coefficient
k=2 W/m.K0, the thermal expansion coefficient α =9.e-6.

The thermal conditions are :
The value of temperature at the dam bottom Tb =18oC.
At the upstream side the temperature T1=20oC, the convection factor in the face

contacted with the water λ = 100 W/m2.K0; K0-temperature unit in degrees Kelvin.
At the downstream side the temperature T2 equal to 25o C, 28o C, 38o C the convection

factor in the face contacted with the air λ = 6 W/m2.K0 [5].
The hydraulic load was modeled by the force F (y)= 1000 KN, which was distributed

into concentrated load at all points in the upstream side.
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Using RUPTEMFV code, the received fracture mechanics parameters are shown
in the Table 1. The temperature and stress fields are shown in the Figs. 1a and 1b.

The units in all tables in this work for crack characteristics are COD (mm); K
(MPa.

√
mm); G (MPa. mm); σ (MPa).

Fig. 1a. Temperature field Fig. 1b. Stress field σxx

Table 1. The values of fracture mechanics parameters for crack dam model

Without or T1 T2 Tb σxx

with thermal (0C) (0C) (0C) COD KI KII G max
loading (N/Y)

N 0.0306 0.5003 0.0625 7.2083 4.34
Y 20 25 18 0.1236 0.6983 -0.0256 22.625 14.0
Y 20 28 18 0.1198 0.6603 -0.0176 20.738 13.7
Y 20 38 18 0.1079 0.5332 -0.0524 15.143 13.4

Numerical results are given in Table 1 which shows that:
- The thermal effect has significant influence on the values COD, KI and G. These

values become greater compared with the case without the heat loading.
- When the gradients of temperature in the boundary sides (T2−T1) increase the crack

parameters COD, KI , G decrease.
- The received calculated temperature values at the boundaries (Fig. 1a) coincide with

boundary conditions (T2=250C). In the case without thermal loads this code gives good
agreement with results in [1, 4]. These show the correctness of the written code.

2.2. The crack dam model subjected to self-weightand variable hydraulic loading
Assume that the dam model subjected to self-weight and hydraulic loads F (y) change

on time in law F (y) ∗ fi(t) , i=1,2,...where fi are multiplying factors of variable hydraulic
loading. Time step is equal to 0.5 hour, the considered time is 3,5 hours.

In the 1st case the hydraulic loading change as linear function (Fig. 2b):

f1(t) = {1., 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8};
In the 2nd case the hydraulic loading is changed as periodic function (Fig. 3b):

f2(t) = {1., 1.2, 1, 1.2, 1, 1.2, 1, 1.2}.
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The analysis is realized by the same code RUPTEMFV. The obtained results of de-
formation , graphic of f1(t) and calculated J-dyna are presented in Figs. 2a, 2b, 2c for the
first load case and Figs. 3a, 3b, 3c for the second . The numerical results are shown in the
Table 2.

Fig. 2a. Deformation x1000 Fig. 2b. The factor load Fig. 2c. J-dyna as a function

(step3) function f1(t) of the time t

Fig. 3a. Deformation x1000 Fig. 3b. The factor load Fig. 23c. J-dyna as a function

at 6-th step3 function f2(t) changes of the time t

periodically

Table 2. The values of crack characteristics of dam model for two load cases for
dam model

Load F1= F(y)*f1(t) F2= F(y)*f2(t)
Step
times

J- DYNA K(t) COD
(x e-2)

J- DYNA K(t) COD
(x e-2)

1 3.20155 e1 1.07448 3.60510 3.20155e1 1.07448 3.60510
2 6.76778e-1 0.15562 0.51666 1.43879e-7 0.000072 1.164617e-4
3 3.85112e1 1.17845 3.94913 3.20070e1 1.074330 3.60477
4 1.88232e0 0.26053 0.86145 2.26238e-6 0.000285 6.5844e-4
5 4.55974e1 1.28229 4.29285 3.19900e1 1.07405 3.60412
6 3.69397e0 0.36497 1.20655 1.14861e-5 0.000643 1.48139e-3
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Note that :
- The Figs. 2c, 3c show that when hydraulic load changes as linear or periodic function,

the J-dyna gives the quasi-periodic or the periodic variable form
- The values COD for the linear changing of hydraulic load are larger than in the case

of periodically changing (Table 2).

2.3. The crack plate subjected to tension variable loading F (t)

Consider the cracked plate of width w=104 mm and length h=40 mm. The length of
fissure 2a=24 mm. The crack is located at the middle of plate so the mesh is constructed
for only half of the plate (Fig. 4b). The material characteristics of plate are E= 75.61
MPa, ν = 0.286. The side DC and AB subjected dynamic tension loadings Fi(t), i=1,2 in
two cases.

- The loading is a linear function: {F1(ti) , i=1, 7}= (0.1e6N, 0.2e6N, 0.3e6N , 0.4e6N,
0.5e6N, 0.6e6 N, 0.7e6N) (Fig. 4a)

- The loading F2(t) is a periodic variable as following: (0.4e6 N ,0.8e6N)x4 times (Fig.
5a).

The mechanical boundary conditions are: Displacements Ux =0 at the side AD and
BC and displacements Uy =0 at the point P5.

The calculation are realized for 7 steps time, each step is 0.5 year. The results in the
case when F1(t) changes linearity are expressed in the Fig. 4b, 4c and for the periodic law
F2(t) in the Fig. 5c, 5b and in the Table 3.

Fig. 4a. The graph of Fig. 4b. Deformation (x100) Fig. 4c. The graph of J-dyna

loading F1(t) at 5-th step of the time t

Clearly that for the plate in tension, independently of linear or periodic load changing,
the function J-dyna in both load cases has no periodic form Figs. (4c, 5c). It is different
between effects of tension and hydrostatic loads. The all values J, KI , COD for the both
loading cases are given in the Table 3.

So, for the periodically loads F2 the all given crack characteristics values are greater.

2.4. The crack plate subjected to tension F (t) varying linearly with time and
constant thermal load

The calculating is realized for plate subjected the thermal conditions as followings:
At the side AD temperature has value T=40oC. On the sides AB, BC, DC there are

convections with ambient temperature T= 20oC with convection factor λ = 6 W/m2.K0,
the thermal conductivity coefficient of material is k=2 W/m.K0, the thermal expansion
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Fig. 5a. The graph of Fig. 5b. Deformation (x100) Fig. 5c. The graph of J-dyna

loading F2(t) at 6-th step of the time t

Table 3. The values of crack characteristics for plate with two load cases

Load F1(t) changes linearly F2(t) changes periodically
Steps J-DYNA KI(t) COD

(xe-4)
J-DYNA KI (t) COD

(xe-4)
1 1.21264e-7 3.1600 6.6016e-4 1.94022e-6 12.64 2.6406e-3
2 7.90816e-5 80.697 1.8036e-2 1.19944e-3 314.27 7.0385e-2
3 1.11545e-2 958.40 2.3309e-1 1.58538e-1 3613.2 8.8369e-1
4 5.98888e-1 7017.8 1.88808 7.84017 25409 6.91449
5 1.52006e1 35379 10.7168 1.79595e2 121610 37.6198
6 2.05092e2 129955 45.1972 2.10988e3 416820 150.461

coefficient α =1.e-5. The factor load for thermal load equal 10e-6.The results of analysis
give thermal distribution in Fig. 6a and J(t) and K(t) in Fig. 6b, 6c

Table 4. The values of crack characteristics when F1(t) changes linearly with and
without thermal load

Cases with thermal load without thermal load
Steps J- DYNA KI(t) COD

(xe-4)
J-DYNA KI (t) COD

(xe-4)
1 1.21603e-8 1.0187 2.0664e-4 1.21264e-7 3.1600 6.6016e-4
2 1.06728e-5 29.646 6.8258e-3 7.90816e-5 80.697 1.8036e-2
3 1.80513e-3 385.54 9.5674e-2 1.11545e-2 958.40 2.3309e-1
4 1.16508e-1 3097.4 8.4122e-1 5.98888e-1 7017.8 1.88808
5 3.61452 17252 5.21759 1.52006e1 35379 10.7168

The results show that:
- When thermal load exists, the values J, K, COD became smaller compared with the

case it does not exit (Table 4)
- The given temperatures of analysis are: 40oC; 34.288oC; 29.576oC; 26.181oC; 20.023oC

at the corresponding points in the middle line of plate P1, P6, P3, P7, P5 so calculating
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results coincide with boundary conditions on the AD and CB (Fig. 6a) so the code RUP-
BVFT is reliable.

Fig. 6a. Temperature field Fig. 6b. J-dyna Fig. 6c. K(t)

2.5. The plate having two cracks subjected to tension load F (t) varying linearly
with time

In this part, the plate of above mentioned dimensions under linear loading is considered
for cases: The plate has only one crack (Fig. 7a) and the plate has two cracks (Fig. 7b,
7c) with the lengths a1=12 mm and a2=8 mm. The mechanical boundary conditions are:
Displacements Ux =0 at the side AD and CB and displacements Uy =0 at the point B1.
The influence of second crack on the first is investigated by code RUPBVF2.

2.5.1. The influence of positions of the cracks

Consider plate with two cracks. The first crack is located at the distance h1=30 mm,
the second crack is located in two ways
a) The second cracks lies at h2=7 mm from bottom of the plate (Fig. 7b)
b) The second crack is located at the distance h2= 10 mm (Fig. 7c).

The results of analysis at 4-th step time give the different deformations in the Figs.
7b, 7c. If COD1, J1, K1 are denoted for the first crack and COD2, J2, K2 for the second,
the crack characteristics in each case for each crack are presented in the Table 5.

Table 5. The values of COD and J for two cracks

Cases h1=30 mm, h2=7 mm h1=30 mm, h2=10 mm
Steps COD1

(xe-3)
COD2
(xe-3)

J2 COD1
(xe-3)

COD2
(xe-3)

J2

1 1.1239e-2 8.6608e-2 1.6758e-1 1.12496e-2 6.95413e-2 3.4544e-3
2 1.1782e-1 1.04137 1.71478e1 1.78262e-1 8.36894e-1 5.8529e-1
3 1.3128 5.70472 3.26458e2 1.31286 4.58749 2.22252e1
4 5.89818 18.7309 2.08197e3 5.89834 15.0793 3.11415e2
5 18.0338 41.9681 6.80607e3 18.0350 33.8195 1.93761e3
6 40.2281 72.3401 1.77129e4 40.2281 58.275 6.56825e3
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The Table 5 shows that:
- When h2 is smaller (7 mm< 10 mm) that means the crack nearest the boundary

loading, the crack characteristics for second crack have greater values and the failure can
be arisen early.

- The calculated values COD2 of second crack is larger than COD1 of the first crack
(Table 5). This is a good coincidence with visual deformation results in Fig. 7b, 7c.

Fig. 7a. The deformation Fig. 7b. The deformation Fig. 7c. The deformation

with one crack when h2=7 mm when h2=10 000 mm

2.5.2. The influence of second crack existence on the characteristics of the first crack

Now consider how characteristics of the first crack change when second crack arises.
The plate with only one crack (Fig. 7a) and the plate with two cracks are analyzed (Fig.
7b) The results for first crack are shown in the Table 6.

Table 6. The values of crack characteristics for the first crack

Load The plate has one crack The plate has two cracks, h2=7 mm
Steps J1 KI(t) COD (xe-4) J1 K1(t) COD1 (xe-4)

1 9.29264e-3 874.76 1.7946e-1 3.46248e-3 533.97 1.1239e-1
2 1.50229e0 1112.2 2.68346 6.39327e-1 7255.7 1.78261
3 4.73728e1 62458 18.4155 2.38601e1 44326 13.128
4 4.97271e2 2.02356e5 76.4394 3.02318e2 1.57780e5 58.9818
5 2.29517e3 4.34738e5 215.156 1.65627e3 3.69305e5 180.338
6 6.74956e3 7.45517e5 444.492 5.29698e3 6.60441e5 402.281

The results shows:
- When second crack exists all characteristics of the first crack become smaller.
- The calculating also gives that: characteristics J1, K1 (Table 6), and COD1(Table 5)

for the first crack are almost the same in both case h2=7 mm and h2=10 mm that means
the positions of second crack has a little influence on the characteristics of the first crack.

The code and results of this part let investigate the complex problems with many
cracks as estimating of plate failure or development of cracks.
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2.5.3. The problem for the crack at hole in the plate under dynamic load

A rectangular plate of width and length 2w=250 mm, 2h=200 mm respectively, E=
140 Mpa , ν =0.1 is considered . The plate has a hole with radius R= 30 mm and the
center at C(125, 10) (Fig. 8). The crack point lies at the hole at point P11 (x=150 mm,
y=20 mm). The length of crack a = 50 mm. The crack inclined at angle 450 to the axis
0x. The boundary conditions are: Ux=0, Uy=0 at P0, Uy=0 at P2.

On opposite sides LG and CD, the plate is subjected to dynamic tension uniform load
varying linearly with time: 4000 N, 5000 N, 6000 N, 7000 N, 8000 N, 9000 N, 10000 N,
11000 N and cyclically changing as: 4000 N, 8000 N, 4000 N, 8000 N, 4000 N, 8000 N,
4000 N, 8000 N.

Using the code RUPHOLVF, the values of the J-dyna in both load cases are received
in 6 time steps, each of which equals 0.5 hours and are shown in the Table 7 and in the
graph form (Fig. 8b, 8c).

Fig. 8a. The deformation

(x 500) of the plate under lin-

ear tension at 4th-step

Fig. 8b. J-dyna function in

the case of linear tension

Fig. 8c. J-dyna function in

the case of cyclic tension

Table 7. The values of crack characteristics for plate with the crack at hole

Load Tension load changes linearly Tension load changes cyclically

Steps J- DYNA KI(t) J- DYNA KI(t)

1 1.64748 15264 2.92886 20351
2 2.69189e1 61699 4.27133e1 77719
3 6.59936e1 96605 8.10499e1 107059
4 5.73176e1 90031 4.14790e1 76588
5 3.05805e1 65761 5.60815 28162
6 1.91673e1 52063 6.12952 29441

3. CONCLUSION

The main steps and algorithm of crack analysis for structures subjected thermal and
dynamic loads are presented. Some codes are written based on the languages Gibian and
operators in Castem. The codes are checked and used to solve many 2D problems with
complex geometry forms and loads: the crack dam model under dynamic hydrostatic load,
the crack plate with various tension, the plate with one and two cracks , the plate with
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crack at hole. By using these codes, the integral J, Stress Intensity factors KI and Crack
Opening Displacement are received at any time step with any changing load law, involved
thermal effect. The methods and given codes can be useful for practical problems to
estimate the failure of the structures.
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PHÂN TÍCH VẾT NỨT CHỊU TẢI TRỌNG NHIỆT VÀ ĐỘNG
Phương pháp tính toán số và thuật toán phân tích vết nứt cho bài toán 2D đàn hồi

chịu tải trọng động và tải nhiệt được đề cập trong bài báo. Một số chương trình được lập
trên cơ sở ngôn ngữ Gibian và các toán tử của Castem đã giải được cho nhiều kết cấu
khác nhau. Các tính toán số minh hoạ được thực hiện cho mô hình đập nứt chịu tải thuỷ
tĩnh thay đổi, tải nhiệt và trọng lượng bản thân, bản với một vết nứt, hai vết nứt chịu
lực kéo biến thiên theo thời gian, bản có nứt ở mép lỗ. ảnh hưởng của nhiệt độ, dạng tải
trọng động và vị trí nứt đến các thông số đặc trưng cho vết nứt của các kết cấu được
nghiên cứu và đánh giá. Các chương trình và phương pháp tính có thể ứng dụng được cho
các bài toán thực tế.


