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Abstract. !11 a previous paper [l], the identi fi cation algorithm is presented for feedback 
act ive controlled systems. However , thi s method can only be applied to complete mea­
sured systems. The aim of this paper is to present a combinat ion of the identification 
algorithm a nd t he modal superposit ion method to control the incomplete measured sys­
tems . The system response is expanded by modal eigenfunct ion technique. The external 
excitation acting on some first modes is identified wit h a t ime delay and wit h a small 
error depending on the sensor locat ions. Then the control forces will be generated to 
balance the identified excitat ions. A numerical simulation is applied to an eight story 
building subjected to base accelerat ion. 

1. IN TRODUCTION 

The active control method can be applied to many problems such as robot control, 
ship autopilot , airplane autopilot , vibration control of vehicles or structures .. . F ig. 1 
provides a schematic diagram of an active control system. 
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Fig. 1. D iagram of a structural control system 

It consists of 3 main parts: sensors to measure either external excitations or system 
responses or both; computer controller to process the measured information and to com­
pute necessary control force based on a given control algorithm; actuators to produce t he 
required forces . When only the responses can be measured , the met hod is called feedback 
active control. In recent years , t he act ive control method has been widely used to reduce 
the excessive vibrations of civil structures due to environmental disturbances ([2]) . One of 
the bas ic tasks of active structural control problem is to determine a control strategy that 
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uses the measured structural responses to calculate an appropriate control signal to send 
to the actuator. Many control strategies have been proposed, st:ch as LQR/ LQG control 
[3], H2/H00 control [4,5], sliding mode control [6], saturation control [7], reliabili ty-based 
control [8], fuzzy control [9], neural control [10] ... We also proposed two control algorithms 
for structural control. The first applies to structures, in which some components of exci­
tation can be known [11] and the second applies to structures , in which the control forces 
are bounded [12]. In fact, it is usually that one is unable to measure the external exci­
tation whi le the structural response can often be measured. The identification algorithm 
presented in [1] is a method , which identifies the external excit ation from the structural 
response measured. Although this version of identification algorithm can be applied even 
for the nonlinear structures , it requires knowledge of the entire displacement vector of the 
structure, which is not possible for large structures. Thus, the aim of this paper is to 
combine the identification algorithm and the modal superposit ion method for the linear 
structures with incomplete measurement , i.e only some components of response vector can 
be measured. 

2. PROBLEM FORMULATION 

Consider a multi-degree-of-freedom system described by the second order linear dif­
ferential equation 

Mi (t) +Di; (t) + Kx (t) = u(t) + J (t), x(O) = x0 , (1) 

where x(t) is the n-dimensional displacement vector , f(t) is the n-dimensional external 
force vector, u(t) is the n-dimensional control vector, three n x nmatrices M , D and K 
are mass, damping and stiffness matrices, respectively. Let y(t) be the p-dimensional 
measurement (output) vector (p :Sn) with: 

y (t) = Cx (t), (2) 

where C is a p x n measurement matrix. The control force vector u(t) is selected as a 
function of the measurement vector y(t). The control problem is to find the active control 
force u(t) necessary to reduce the norm state vector. It is seen obviously that the best 
control law is that 

u (t) = - f (t). (3) 

Indeed with control law (3), the external excitation is totally eliminated . However , 
~~ . i,s_ us1:1 <=}11:y that one is unable to measure the external excitat ion , so the control law 
(3) . cannot be realized practise. The idea involved in the control law (3) may be used 
in :a ~9difled, way, in .which the history of the external excitation can be identified with 
a time delay by a _so called identification process . The process identifying the entire 
external excitation is presented in [ 1] and here and after is called the original identification 
a lgor,ithm. T he original identification algorithm requires the knowledge of the entire state 
~ector to identify the entire excitation. However , when only the measurement vector in (2) 
can· be measured, the excitation can not be identified all. In this paper , by using modal 
superposition method , the identification algorithm will be extended to identify some most 
important excitations based on the measurement vector y(t) . The detail of this extension 
is presented in section 4. 
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3. IDENTIFICATION ALGORITHM 

The original identification algorithm developed in [l] is shortly presented here. Let T 
be the time duration of the action of external excitation. Let all the components of the 
displacement vector x(t) can be measured and all components of its first and second order 
derivatives can be calculated in a short time. The interval [O, T] is divided into n small 
equal intervals of the length 6. where 6. is a small positive number whose value depends 
on computation speed and accuracy of computer. Thus one has: 

T =qt::. . 

For any given function vector m(t), the following notation is introduced: 

( k - 1 ) 6 s t ::::: k6 
otherwise k=l , 2, .. .,q (4) 

In Tk = [(k - 1) 6 St S kt::. ], the system response is described by the following equa­
tion: 

Mx(k) (t) + DiYl (t) + Kx(k) (t) = u(k) (t) + f (k) (t) . (5) 

In this subinterval, we assume that the control force u(k)(t) can be known (by the 
control law (7) below), the displacement vector x(k)(t) is measured, the velocity and ac­
celeration vectors are calculated. Thus, the external disturbance J (k)( t) can be calculated 
as 

f (k) (t) = Mx(k) (t) + Dx(k) (t) + K x(k) (t) - u(k) (t). (6) 

So, at the end of the subinterval Tki one can know all about J(t) in this subinterval. 
Because the subinterval Tk ended, this information can be used only in the next subinterval 
Tk+1 to calculate u(k+ll(t), This means that the information about f(t) has a time delay 
6. Using the information of the delayed extern.al excit at ion J(t), the control algorithm is 
proposed as: 

u(k) (t) = - j (k- 1) (t - 6.) 

{ 

u(l) (t) = 0 

= - [Mx(k- l) (t - 6.) + Dx(k - l) (t - 6.) + Kx(k- l ) (t - 6.) - u (k- l) (t - !:::. )] 
k = 2, 3 .. ., q 

(7) 
As we see, the control law (7) is established in the inductive way. With control law 

(7), the delayed external excitation f(t-6) is totally eliminated. Substituting (7) into (1) , 
the differential equation of the controlled system has form : 

Mx (t) + Dx (t) + Kx (t) = - f(t - 6. ) + J(t) 

One has : 

11-J(t - 6.) + f(t) 11 = t::. Ii i (oll 
where ( is a value between t and t - 6. . Therefore, it is easy to see that the norm 
of excitation is sufficiently small if the time delay 6 is small. However, as mentioned 
above, the disadvantage of the original identification algorithm is the requirement of the 
know ledge of ent ire displacement vector x ( t) . 
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4. IDENTIFICATION ALGORITHM USING MODAL 
SUPERPOSITION METHOD 

Incomplete measurement leads to incomplete excitation identification. Two questions 
need to be addressed: which excitation is important and how to identify it? These ques­
tions are not easy to answer if the system is nonlinear . However , in case of the linear system 
modeled in (1) , the answer can be found by well-known modal eigenfunction technique . 
The decoupled modal equations take the form : 

i i (t) + 2~iWiZi (t) + wz Zi (t) =<I>[ u(t) + <I>Tf (t) , i = 1, .. ., n , (8) 

where ~i and Wi (i = 1, .. . , n) are respectively the ith damping ratio and the ith natural 
frequency. <I>i and Zi (i=l , .. ., n) are corresponding eigenvectors and modal coordinates . 
The measurement vector y(t) is also rewritten in modal space: 

n 

y = L C<I>iZi. 
i=l 

(9 ) 

As one knows, the vibrational modes corresponding to large natural frequencies often 
contribute little to the response [13], so attention needs to be paid only to a few vibrational 
modes. Denote Zc as the vector containing the first p modal coordinates and Zr as the 
vector containing the remaining n - p modal coordinates . This means: 

Zc = [ Z1 Z2 .. . Zp ] T ; Zr = [ Zp+l Zp+2 .. . Zn ] T 

Then (8) and (9) are rewritten as 

Zc (t) + 2WcDcic (t) + D~zc (t) = <I>~ u(t) + <I>~ J(t) , . 

ir (t) + 2wrDrir (t) + D;zr (t) = <I>; u(t) + <I>; J(t) , 

y = CcZc + CrZr, 

where We, Wr , De and Dr are diagonal matrices are defined as: 

W c = diag [ ~1 6 ~P ] , Wr = diag [ ~p+l ~p+2 

De = diag [ W1 W2 Wp J , Dr = diag [ Wp+l Wp+2 

and <I> c, <I> r , Cc and Cr are defined as : 

~n ] 

Wn ] 

<I>c = [ <I>1 <I>2 ... <I>p J ; <I>r = [ <I>p+l if>p+2 ... <I>n J 

Cc= C<I>c ; Cr= C<I>r 

(10) 

(11 ) 

(12) 

Because attention needs to be paid only to the first p modes , we need to identify and 
eliminate the excitation <I>r f(t) . The identification process here is implemented in the 
same manner as the process in section 3. The interval [O, T ] is also divided into n small 
equal intervals of the length El. Using the notation ( 4), in Tk = [ ( k - 1) El ::; t ::; kb.], the 
equation (10) has form: 

i~k) (t) + 2WcDci~k) (t) + D~z~k) (t) = <PI U(k)(t) + <I>I J(k )(t) 
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Using (12) , we have 

Then 

<I>I J(kl(t) =zikl (t) + 2wcnc.z~kl(t) + n~z~kl( t ) - <I>~ u(kl( t) 

=C;1(y(k)(t) - Cri~k)(t)) + 2'11cDcC;1(y(k)(t) - Cri~k)(t))+ 

+ n~c; 1 (y(kl(t) - Crz~kl(t)) - <I>~ u(kl(t) · 

<I>I f (k) (t) + E (k) (t) = c;1v(k) (t ) + 2'1t cDcC;1y(k) (t ) + n~c;1 y(k) (t) - <I>I u(k) (t)' (13) 

where 
E(k ) (t) = C; 1 Cri~k) (t) + 2'1tcDcC; 1 Cri~k) (t) + n;c; 1 Crz~k) (t). (14) 

In the subinterval Tk , we assume that the control force u~k)(t) can be known (by the 
control law (15) below), the measurement vector y(kl(t) is known, and the first and second 
derivatives are calculat ed . The error term E (kl (t) introduced through the truncation 
process is still unknown. Thus, from (13), we can not know the exact excitation <I>I f (t) , 
but only an estimate of <I>r f(t) to with an error E(t ). To attenuate this error term, the 
sensors should be located to obtain a significant contribution of the information of X e . This 
means a large norm of Cc in comparison wit h the norm of Cr· Because the subinterval Tk 
ended, the information known can be used only in the next subinterval T k+l to calculate 
u(k+l l (t) . Using the delayed information, the control force <I> I u(t) act ing on the significant 
modes Zc is proposed as: 

<t> I u(l l (t) = o 
<I>I u(k) (t ) = - { <I>I J(k-1) (t - 6 ) + E (k- 1) (t - 6 )} 

= - [ c;;1i/k- 1) (t - 6 ) + 2'1tcDcC;;1 y(k-1 ) (t - 6 ) (15) 

+o~c;; 1 y(k - 1 J (t - 6) - <I>I u(k- ll (t - 6 )) ; k > 1 

To ensure the stability of the controlled system, the control force u( t) must be chosen 
to make the error E(t) in (14) independen the control process . This means that the control 
force <I> '{: u(t) act ing on the insignificant vibrational mode Zr must be set to zero for the 
entire time duration 

<I>; u(t) = 0. (16) 

At last, we determine the physical control force u(t ) by transformation from modal 
space to state space: 

(17) 

where <I>r u(t) is calculated from (15). The control law using the combination of the 
identification algorithm and the modal superposit ion method is described by (15) and · 
(17) . Substituting (15) and (16) into (10) and (11 ), the modal different ial equations of 
the controlled system take the form: · 

ic (t) + 2Wcf"!ci c (t) + n ;zc (t) = -<I>I f (t - 6 ) - <I> I E (t - 6) + <I>I f (t) 

ir (t) + 2wrDrir (t ) + n;zr (t) =<I>'{: f (t) 
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One has: 

11-<PI f ( t - li) - <PIE (t - li) + <r>I f (t) II ::; li II j (()II + II <P~ E ( t) II · 
It can be seen that the norm of the excitation acting on the significant modes zc is 

small if the time delay and the error term E are small. Because the error term E defined 
in (14) depends only on the insignicant modes Zri we assume this error is sufficiently small. 
However, the effect of this term on t he control process should be the subject for further 
investigations. 

5. NUMERICAL SIMULATION 

Consider an eight-story building subject to base acceleration as shown in Fig. 2. 

- _::....=. !..:" 

Fig. 2. Model of an eight story building subjected to base acceleration 

Uj(f) 

Fig. 3. Active tendon system between two floors 

The history of base acceleration is taken from t he N-S component recorded at Hachi­
nohe City during the Tokachioki earthquake of May 16 , 1968. The absolute peak accel­
eration of the earthquake record is 2.25m/s2 . The characteristics of the building are the 
same for each story: floor mass m, elastic stiffness k and internal damping coefficient d. 
The control force is applied to the structure through a set of tendons connected to an 
actuator placed between each two floors . The active t endon generally consists of a set 
of prestressed t endons whose tensions are controlled by electrohydraulic servomechanism 
[13]. Fig. 3 shows an active tendon mechanism between two floors: 

It is not difficult to derive the structural motion equation as: 

Mi (t ) + D x (t) + K x (t) = u(t) + f (t ) 



An extension of the identification algorithm fo r feedback active ... 39 

where the mass, damping and stiffness matrices have form 

8 7 6 1 
7 7 6 1 

M= 6 6 6 1 m ; D = diag (d, d, .. . ,cl); K = diag(k , k, ... , k) · 
1 

1 1 1 1 1 

The displacement vector x, the control vector u and the excitation vector f have the 
form: · 

X = [ Xl X2 - X1 X3 - X2 . .. XS - X 7 ]T 

f= -[8 7 6 1 ]
T .. 

m x9 

in which , Xi (i=l, .. 8) are the relative displacement of the ith floor with respect to the 
foundation, ui(i=l, .. 8) are the corresponding actuator displacements , kc, a and x9 denote, 
respectively the tendon stiffness, the tendon angle and the base acceleration. Let the 
paramet ers take values as in [14]: m= 345.6 metric tons, elastic stiffness k = 3.404 x 105 

kN/m, internal damping coefficient d= 2937 metric tons/sec, kc=105 kN/ m and a=36° 
.The natural frequencies of this building are 5.79, 17.18 , 27.98, 37.83, 46 .39, 53.37 and 
61.70 rad/s. The damping ratios of some first modes are 2.4%, 7.4%, 123, 16.33. We 
assume only one sensor measures the relative displacement of a certain floor with respect 
to the below floor. If the sensor is located on the ith floor , the measurement matrix C in 
(2) has the form: 

C = [O 0 1 OJ 
i 

The displacement vector of the structure has 8 components, of which only the first 
mode is controlled by the identification algorithm. The numerical simulation is taken 
with different time delays and with different sensor locations . As we see from (14), the 
magnitude of the error term depends mainly on the magnitude of the matrix C;1Cr· Table 
1 shows the norms of c; 1 Cr for different sensor locations 

Table 1. The norms of C; 1Cr in different cases 

Sensor Floor Location 1 2 3 4 5 6 7 8 
Norm of c; Cr 11.2 16.4 17.6 19.8 23 .4 30.0 43.7 86 .0 

It can be seen that t he error produced through the truncation process in (14) might 
be larger if the sensor location is higher. To see this more clearly, we plot the history of 
the error term E(t) in (14). The histories of E(t) are plotted in Fig. 4 for each case of 
the sensor location . It can be seen that, the 3rd floor is the best sensor location and the 
8th floor is t he worst sensor location. However , more investigate need to be done in the 
future to find the method seeking the optimal sensor locations . 

The time delay is taken as 1/500 and 1/800 of the total duration time. The displace­
ments of the top floor relative to foundation and actuator displacements are compared in 
Table 2 
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Fig. 4. Error term E(t) histories for 8 choices of sensor location 

Table 2. The maxima d isplacements of the top floor in the numerical simulation 

Controlled , Controlled , 
Sensor location Time delay Time delay Uncontrolled 

6 = 0.23 T (cm) r6 = 0.1253 T (cm) (cm) 
1st floor 6.76 5.13 
2na floor 5.61 4.34 
3ra floor 4.10 2.85 
4tn floor 4.79 2.61 
5tn floor 4.90 3.61 13.4 

6th floor 7.26 5.70 
7tn floor 8.31 7.53 
8tn floor 10.23 8.89 

The histories of t he top floor displacement in two cases of sensor location: 3rd floor 
(the best case) and 8th floor (the worst case) are shown in Fig. 5 and 6. In t he figures , 
bold limes trace the controlled response, and light dotled lines the uncontrolled response 
thin and dotted lines are uncontrolled responses 

As we sec, the effect of ident ification algorithm depends on the error term E ( t) and the 
time delay 6. The more small E(t) and 6 are, the better identification control algorithm 
is . 

6. CONCLUSION 

The aim of this paper is to extend the identification algorithm for feedback active 
control of incomplete measured systems. The system is expanded to the modal space. A 
limited number of sensors is used to measure some components of the displacement vec­
tor. Using this incomplete information, an algorithm is presented to identify the external 
excitation acting on some first modes. The excitation is ident ified with a t ime delay and 
a small error term. The magnitude of the error term depends on sensor numbers and lo­
cations. To illustrate the algorithm , the numerical simulat ion is applied to an eight story 
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Fig, 5, The histories of the top floor displacement, Do = 0,2%T, sensor is located 
on the 3rd floor (a) and on the 8th floor (b) 
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Fig. 6. The histo ries of t he top floor displacement , Do = 0.125%T, sensor is located 
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build ing su bj ected to base accelerat ion . The effects of t he t ime delay and sensor location 
are considered . 
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MCT RONG THUAT TOAN NHAN DANG CHO BAI TOAN DIED 
KHIEN TICH eve PHAN HOI. cu A. cAc H:$ B! DO HAN CHE 

Trong bai baa da dm1c cong bo [l ], thu~t toan nh~n d~ng da dm;rc trlnh bay cho cac 
h~ dU'Q'C dieu khien tfch C\J'C phan hoi. Tuy nhien, phmmg phap nay mai chi ap dung cho 
cac h~ dU'Q'C do hoan toan. M\lC dfch ctl.a bai ba.o la trlnh bay m9t Sl,l' ket hqp giua thu~t 
toan nh%n d~ng va phucmg phap chOng chat cac d~ng rieng de dieu khien cac h~ bj do 
h~n che. Dap ung cua h~ dm;rc tach b~ng ky thu~t d1,mg rieng. Kich d¢mg ngoai t ac d9ng 
vao m9t SO di;mg rieng dau tien dU'Q'C nh~n d~ng VCYi m<)t th&i gian tre va rn<)t thanh phan 
sai so phl}. thu<)c vao vj trf d~t dau do. Sau d6 h!C dieu khi en dU'Q'C sinh ra de can b~ng 
v&i kfch d<?ng ngoai da d.uqc nh~n di;tng . Mo phOng so d.uqc thv c hi~n cha mo hlnh nha 8 
tang chju t ai gia toe nen 


