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Abstract . A general asymptotic solution is presented fo r invest igating t he transient re­
sponse of non- linear systems modeled by hyperbolic-type part ia l different ia l equat ions 
wit h sma ll nonlineari t ies. T he method covers all t he cases when eigen-values of t he cor­
responding unper t urbed systems are real, complex conjugate , or purely imaginary. It is 
shown t hat by suitable substit ution for t he eigen-values in t he general resul t t hat t he solu­
t ion correspo nding to each of t he t hree cases can be obtained. T he method is an extension 
of t he unified Kry lov-Bogoliubov-Mitropolskii met hod , whi ch was ini t ially developed for 
un-da rn ped , under-clamped and over-clamped cases of t he second order ordinary differ­
ent ia l equat ion . T he methods a lso cover a specia l condit ion of the over-damped case in 
which t he general solut ion is useless. 
Keywords: Unified KB:M method, Osc ill at ion, Non-oscillat ion 

1. INTRODUCTION 

Krylov-Bogoliubov-Mitropolskii (KBivI) [1, 2] method is one of t he widely used tech­
niques to obtain analyt ical solutions of weakly nonlinear ordinary differential equations. 
The method was originally developed to find periodic solutions of second-order nonlinear 
ordinary different ial equations . P opov [3] extended the method to damped nonlinear sys­
t ems. Murty, Deekshatulu and Krisna [4] investigat ed nonlinear over-damped systems by 
t his method . Ivlurty [5] used t heir earlier solution [4] as a general solut ion for un-damped , 
damped and over-damped cases, which is the basis of the unified theory. Since Murty's 
t echnique is a generalization of t he KBM method , many authors extended this technique 
in various oscillatory and non-oscillatory syst ems. Bojadziev and Edwards [6] investigat ed 
nonlinear damped oscillatory and non-oscillatory systems wit h varying coefficients follow­
ing Murty's [5] unified method . Recent ly Shamsul [7, 8] has presented a unified fo rmula to 
obtain a general solution of an n -t h order ordinary different ial equation with const ant and 
slowly varying coefficients. The KBM method was extended to partial differential equat ion 
wi th small nonlineari ties by Mitropolskii and l\ilosenkov [9]. Bojadziev and Lardner [10] 
extended t he KB l\11 method to hyperbolic-type partial different ial equation 

a 
p(x)vtt = -;:;--(x(x)ux) + c: f (x, u, Ux, Ut), (1) 

ux 
where t he subscri pt denotes differentiations, E is a small paramet er and fi s a given non­
linear function. 



12 M. Zahurul Islam, M. Shamsul Alam and M. B ellal Hossain 

Bojadziev and Lardner [10] mainly investigated the mono-frequent solution of (1). Bo­
jadziev and Lardner [11] also found mono-frequent type solut ions of the partial differential 
equation with a linear damping effect , - 2p(x)kut , of the form 

a . . 
p(x )(utt + 2kut) = OX (x(x) ux) + Ef (x, '11., Ux, Ut) · (2) 

In another recent paper , Shamsul, Akber and Zahurul [12] present a general formula to 
investigate a class of nonlinear partial differential equations. In this paper a general asymp­
totic solution of (2) is obtained which covers the over-damped , damped and un-damped 
cases . Thus, the unified KBM method [5] is independent of whether the unperturbed sys­
tem has real, complex conjugate, or purely imaginary eigen-values whether described by 
an ordinary or partial differential equation. Moreover a special over-damped solution is 
obtain which is essential when the general solution fail s t o give desired results (See [13] 
for details). 

2. THE METHOD 

Let us consider that u(x , t , c) satisfies a pair of homogeneous boundary conditions 
involving u and its derivatives at x = 0 and x = l : 

Bj(u) = /3j1u(O , t) + /3j2Ux(O, t) + /3j3 u(l, t) + 8j4Ux(l , t ), j = 1, 2, (3) 

where /3jr , j = 1, 2 and r = 1, 2, 3, 4 are eight constants. 
The investigation of mono-frequent damped oscillations of equation (2) is of interest 

in certain problems occurring in mechanics. For instance, such an equat ion describes the 
vibration of certain nonlinear elastic system in the presence of strong viscous damping. We 
shall examine in detail the longitudinal vibrations of a rod . The material of rod is taken 
to be predominately H oaken but with, in addition , small nonlinear elastic characteristic. 

First of all , we consider the unperturbed system (2) 

a 
p(x)(u~? ) + 2ku~0 l ) = ox (x(x)u~0 l ), (4) 

with boundary conditions (3) . 
It is well known that with prescribed boundary conditions (3) satisfying certain self­

adjoin ness, (4) has a complete set of separable solutions which can be written in the 
form 

cPn(:r;) e- ktan,O sinh(wnt + ·~;n,o) , n = 1, 2, · · · (5) 

where an,o and 'l/Jn,o are arbitrary constants . The set of funct ions {¢n(x)}, n = 1, 2, · · · 
satisfy the ordinary differential equation 

d ( d¢n ( .1:) ) 2 2 · dx x(x) dx + (k - wn)p(x )¢n(x) = 0, Bj(cPn(x)) = 0, J = 1, 2. (6) 

In order to solve oscillating processes, Bojadziev and Lardner [11] assumed damping is 
less than critical, i .e., w;_ > 0. Here we remove this restriction and consider more general 
W 8 such that w; '> 0 or/and w; < 0. It is to be noted that eigen-values are determined 
from boundary condi t ions (3) . Let us consider { <Pn(x)} are normalized , so that 

l 

J p(x) <Pm(x)<Pn(x)dx = 8m,n · 

0 

(7) 
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Now we shall find a mono-frequent solution of (2) for which E = 0 corresponds to 
frequency W1. Following the KBM method , we look for a solution of the form 

u(x, t, c) = ¢1 (x)a(t) sinh 'ljJ (t) + rn1 (x, a, 'l/J ) + O(c:2 ) · · · , (8) 

where a and 'ljJ satisfy the equations 

. . ) 2 a = -ka + EA 1 (a + 0 ( c: ) · · · , (9) 

Substituting (8) into (2) , making use of (9) and comparing the coefficients of c: , we 
obtain 

p(x )¢1(x) [ ( 2w1A1 - ka2 dd~1 ) cosh 'ljJ + (-ka d~i + kA1 + 2w1aB1) sinh 'ljJ J 
(10) 

+ p(x) [( - ka..?_ + w1~) 2 
+ 2k ( - ka..?_ + w1 ~)) u1 = __§____ (x(x) Bui J + j (o), 

Ba fN Ba B'l/J Bx Bx 

where j (O) = f(x, uo, u 0 ,x , uo,t) and uo = ¢1(x)a(t) sinh 'ljJ(t) . 
Let us expand n1 as a Fourier series in x using the basis { ¢n (:r) } 

00 

·u1 (x, u, ·t/J ) = L vj(a , ·t/J )</> j(x). 
j = l 

(11 ) 

Substituting (11) into (10) , multiplying both sides by <Ps(x) and integrating with re­
spect to x within limits from 0 to l , and making use of (6) and (7) gives 

[ ( 2w1A1 - ka2 d:ai) cosh 'ljJ + ( - ka d~i + kA1 + 2w1aB1) sinh 1/J)] 81 ,s 

a a 2 
+ [( - ka 0a +w1 0 '1/J +k) - w; ]vs = F5 (a ,'l/J ), 

(12) 

' where 
l 

F5 (a, if;) = j j (O )(x, a, ·tj;)¢5 (x) dx . (13) 

0 

It is customary to solve (12) for U'1known functions Ai, B1 and V 5 , s = 1, 2, · · · under 
the assumpti on that v1 does not contain fundamental terms involving sinh ·t/J and cosh t/J 
(see [4, 5] for details) . It is assumed t hat F5 is expanded as a series of hyperbolic functions 

F5 = Fs,o(a) + F s, l (a) cosh 'ljJ + Fs,2(u) cosh2 '1/J · · · + Gs,l (a) sinh 'ljJ + Gs,2(a) sinh2'1jJ + · · · 
(14) 

It is noted that ser ies (14) becomes a Fourier series when the motion is un-damped or 
under-damped , i.e ., w1 as well as 'l/J, G8 ,1 , Gs ,2 q.re purely imaginary. 

Substituting the values of F5 from (14) into (12) and assuming that V1 excludes terms 
involving sinh 1/; and cosh 1/J, we obtain 0 

2 dB1 
2w1A1 - ka da = F1 ,1, (15) 

dA 1 
-ka-d + kA1 + 2w1B1 = G1 i, a , (16) 

[ ( -ka :a + W1 a~ + k) 2 
- w?] V1 = F1 ,o + F1 ,2 cosh 2•t/J + G1 ,2 sinh 2·tf; ... (17) 



14 M. Zahurul Islam, M. Shamsul Alam and M. B ellal Hossain 

and 

[( - ka ,~ + W1 ,~ + k) 
2 

- ws2] Vs = (Fs o + Fs 1 cosh ·¢+ Gs 1 sinh ·¢, s 2'. 2. (18) 
ua u ·i,V ' ' ' 

The particular solutions of (15) -(18) give unknown functions A1 , B1 and Vs , s = 
1, 2, ·· ·,which complete the determination of the first order solution of (2) . The method 
can be extended to higher order approximations in a similar way. 

3. EXAMPLE 

As an example of the above procedure we may consider the longitudinal vibrat ion of 
a nonlinear elastic rod described by equation 

fJV.tt + K.71.t =ax, (19) 

where u is longitudina l displacement, a axial tension, p mass per unit length . The term 
2K,Ut represents viscous clamping. The stress-strain relation is assumed as 

1 
<J = I< e + - EEe3 (20 ' 3 ' J 

where K is Young 's modulus, e = Ux axial strain and the second term containing E 
represents nonlinear elast ic behavior. Eliminating <J from (19) and (20) and substi tut ing 
K. = 2pk , we obtain a partial differential equation in the form 

p(utt + 2kut) = Kuxx + EEU~Uxx · (21 ) 

Let us consider the boundary conditions 

u(O, t) = 0, hux(l , t) + u(l , t) = 0. (22 ) 

Applying boundary conditions (22) , we obtain the eigen-functions a nd eigen-values of 
the unperturbed 21 ) as: 

</>n(x) = Cn sinpnx, 
>.2 _ Kp2 n - __ n 

p 
n = 1, 2, .. . 

where {Pn} are the eigen-values of equation 

tanpl = - hp, 

and constants {en} satisfy 

pc; h 
- (l + 

2 2
) = 1, n = 1, 2, · · · . 

2 1 + h Pn 

In (21), the nonlinear function is f = Eu~Uxx · Therefore, we have 

1 
Fs = E ssinh3 1/! = 4Esa3 (sinh37,L1 - 3sinh 1/! ) , 

(23) 

(24) 

(25) 

(26 ) 

l 2 

where Es = E J ( dfx1 
)
2dd:f.i1 <f>s dx . Therefore, only non-zero coefficients of Fs ,n and G s,n, n = 

0 

1, 2, ··· ,are Gs,l = -~Esa3 and Gs,3 = ~E8a3 . Substituting the values of Gs,l and Gs,3 
into (15)-(18) and solving them, we obtain 

A _ 3E1ka3 

1 
- 8(k2 - w?)' 

2 3E1w1a 
- 2 ' B1 - 8(k2 _ w

1
) (27) 



A unified lfrylov-Bogoliubov-Mitropolskii method ... 15 

(28) 

and 
- E 5 a3 ( 4kw cosh 'ljJ + ( 4k2 + w; - wr) sinh 'ljJ) 

Vs = ~-----,,.--------~'--~'-'--------'-

4( 4k2 - (ws - w1)2)(4k2 - (ws +w1)2) 

3E5 a3 (12kw1 cosh3 '1j; + (4k2 + w; - 9wf) sinh 34' ) 
+ 4(4k2 - (w 5 - 3w1) 2)(4k2 - (w

5 
+ 3w1)2) ' 

8 2: 2
· (

29
) 

Substitut ing the values of A1 and B1 from (27) into (9) , we integrate them with respect 
to t , and obtain 

a = ----;:======= (30) 

Thus the fi rst order solution of (19) is 

00 

u(x, t , c) = ¢ 1 (x)a sinh 'ljJ + =: L </>5 (x)v 5 (a , 'I); ), (31 ) 
s=l 

where a , 1/J, V1 and v 5 , s 2: 2 are given respectively by (30) , (28) and (29) . In the case of 
an under-damped system, all w5 are replaced by iw 5 , a by - ia, 'ljJ by i'lj;, cosh i'lj; by cos'lj; 
and sinh i ?jl by isin ?jl . These yield 

and 

00 

u(x, t , E) = ¢1(x)asin ?ji + E ~ </> 8 (x)v 5 (a, ?jl ), 
s= l 

E 1a3 (3kw1 cos 37/J + (k2 - 2wf) sin 3'1j;) 
v - ---'-----~----==-----

1 - 16(k2 + wi)(k2 + 4wi) 

3E5 a3 ( 4kw cos ?ji + ( 4k2 + w; - wf) sin ?ji) 
V s= 4(4k2 + (w 5 - w1) 2)(4k2 + (ws +w1) 2) 

E 5 a3 (12kw1 cos 3'1); + ( 4k2 + w; - 9wi) sin 3?jl) 

4(4k2 + (ws - 3wi) 2)(4k2 + (ws + 3w1)2 ) 
8 2: 2. 

(32) 

(33) 

(34) 

(35) 

It is obvious that when k > 0, the solution is similar to Bojadziev and Lardner [11], 
and ident ical to that obtained in [9] when k = 0. 
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4. A SPECIAL DAMPING CONDITION 

Clearly v1 (See (28)) is not defined for k = 2w1 . This situation occurs when the 
difference of 3>-1 and >-2 or 3>-2 and >-1 are significant (where >-1 and >-2 are the 
eigen-values of the corresponding unperturbed syst em (19)) . In this case v1 must contain 
a secular type term te-t (See [13] for det ails). In this situat ion we seek a solution of the 
form [13], 

u(x, t , c:) = </>1 (x)(ae - >.t + be- µ1
) + rn1 (x, a, b, t) + O(c-2

), 

where a and b satisfy the equations 

a= c- A1(a, b, t) + O(c- 2
), 

. 2 
b=c-B1(a , b, t )+ O(c: ). 

(36) 

(37) 

Substituting (36) into (2), utilizing (37) and comparing the coefficients ofc, we obtain 

p(x)</>(x) [ (a~1 - >-A1 + µA1 ) e->.t + (a!1 
- >-B1 + µB1 )e-µt ) J 

( a
2 

a ) a ( au1 ) 0 + p(.r,) at2 + 2k at 111 = ax x(x) ax + J ' 

where J 0 = J( x, uo , uo ,x, uo ,t) and uo = </>1(x)(ae- >.t + be- ''1
). 

Let us expand u 1 as a Fourier series in x using the basis { </>n ( x) } as 

<X 

u 1 (x , a, b, t) = L v.i(a, b, t) </>j (x). 
j= l 

(38) 

(39) 

Substituting (39) into (38) , multiplying both sides by </>8 (x) and integrating with re-
spect to x within limits 0 to l , and making use of ( 6) and (7) gives 

where 

[( aA1 ) :\t ( 8B1 ) t] at - >-A1 + µA 1 e- + at - >-B1 + µB1 e- µ c51 ,s 

+ (:t + >-)(gt +µ) vs = F8 (a , b, t) , 

l 

F8 (a, b, t) = j J0 (x , ·uo , 'Uo ,x, uo ,t)<l>s(x) dx. 

0 

In general , F8 (a , b, t) can be expanded as a Taylor's series 

F
8
(a, b, t) = L Fj,r(a, b)e - (j.>..+r11)t. 

j ,r= O 

( 40) 

( 41) 

( 42) 

In order to det ermine over-damped solutions of (1) , we assume that ·u1 does not contain 
t~rms with e- (.i>.+rµ)t, where j>.. + rµ < k(j + r), so that the coeffi cient of the expansion 
of u1 does not become large , and u 1 does not contain the secular type term te - (j>.+rµ)t. 

The function F8 (a , b, t) becomes 

F5 (a, b, t) = E5 (a 3e- 3>. t + 3a2be- (2>.+µ)t + 3ab2e- (.\+ 2µ)t + b3e- 3µ1) . (43) 
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Substituting the values of F8 (a , b, t) from (43) into (40) we obtain the following equa­
tions 

and 

and 

( :t + ,\) (:t + /l)vs = E1(a3e. - 3>..t + 3ab2e. - (2~+µ)t . 
Solving (44) -(46), we obtain 

- Ei b3e - (- A+3µ)t 

2p( - ,\ + 3p) 
- Eib3 

2µ' 

,\ =/:- 3p, 

,\ = 3p, 

a,3e- 3>-t 3ab2e - (2>.+1;)t 

V1 = E1 ( 2,\(3,\ - f.l) + (,\ + p)(2J\) ). 

( 44) 

( 45) 

(46) 

( 47) 

(48) 

( 49) 

Substituting the values of Ai and B1 from (48) a nd (49) into (37) , and integrating 
them with respect to t, we obtain 

a= ao - EiEb~ (1 - e- (- A+3µ)t) ,\=I- 3p , 
2p( - J\ + 3µ) ) 

E1Eb8 
= a0 - ~t, ,\ = 3p, 

2 . 
b = bo - E1rnobo (1 - e- (>. +µ)t) . 

2µ(,\ + µ) 

Thus the first order special over-damped solution of (19) is 

u(x , t , E) = ¢1(x)(ae- >..t + be-µt + rn1), 

where a, b and v1 are given by (50), (51) and (49) respect ively. 

5. RESULTS AND DISCUSSION 

( 50) 

(51) 

(52) 

A unified solution is found for a nonlinear partia l differentia l equation based on the 
works of Murty et. al. [4 , 5]. In order to t est the accuracy of this unified solution, we 
compare the solution to t he numerical solut ion (consider to be exact) . . With regard to 
such a comparison concerning the presented unified method of this paper , we refer to a 
recent work by Shamsul [7] and as well as a previous work by Murty, D eekshatulu and 
Krisna [4] . Moreover, we compare the perturbation solution to the unperturbed solution 
to denote the response of t he nonlinear term. 

The solution (31) is well established and useful as an over-damped solution of (19). 
We are interested in 'comparing it with numerical solution (generated by finite difference 
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method). Let us consider an over-damped case of (19) , in which p = 1, k = 1.25 , l = 2, 
K = l. The solutions to (24) are 1.144465, 2.543493, 4.048082 · · · , eigen-values are - 1. 25 ± 
0.502693, - 1.25 ± 2.215143i , - 1.25 ± 3.850256i · · · , and one set of eigen-value is real and 
w1 = 0.502693. For E = 0.2 and initial values [u(x, 0) = 0.90667sin (l. 144465x), Ut(x, 0) = 
0 ], u(x , t , E) has been evaluated and the corresponding numerical solution of (19) has been 
computed. The results for x = 2 (i .e. for the lower end of the rod) and x = 1 (i .e. for the 
middle point of the rod) are presented respectively in Fig. l(a) and Fig . l (b) . From the 
figures it is clear that solution Eq. (31) compares well the numerical solution. 

The solution (32) is also well established and useful as an un-damped and under 
damped solution of (19) . Let us consider the un-damped case of (19) , in which, p = 1, 
k = 0.0, l = 2, K = l. The solution of (24) are 1.144465 , 2.543493 , 4.048082 · · · or eigen 
values are 1.144465, 2.543493 , 4.048082 · · · . For E = 0.2 and for initial values [u(x , 0) = 

0.90667 sin(l.144465x), u1(x , 0) = 0 ], u(x, t, E) has been evaluated and the corresponding 
numerical solution of (19) computed. The results for x = 2 respecyively and x = 1 are 
presented respectively in Fig. 2(a) and Fig. 2 (b). From the figures, it is clear that solution 
(32) compares well with the numerical solution. 

For the under damped case, we consider p = 1, k = 0.2 , l = 2, K = l. The so­
lutions of (24) are 1.144465 , 2.543493, 4.048082 ·· ·or eigen-values are - 0.2 ± 1.126854 , 
-0.2 ± 2.535618 , -0.2 ± 4.043138 · · · . For E = 0.5 and for initial values [u( x, 0) = 0.90667 
sin(l.144465x), Ut(x, 0) =OJ, u(x, t, E) evaluated and the corresponding numerical solution 
of (19) has been computed. The results for x = 2 and x = 1 are presented in Fig. 3 (a) 
and Fig.3 (b) respectively. From the figures, it is clear that solution (32) compares well 
with the numerical solution. 

When k = 2w1, then solution Eq. (52) is useful for an over-damped solution of 
equation (19). We are interested to compare it with numerical solution (generated by 
finite difference method). Let us considerp = 1, k = 1.3215 , l = 2, K = 1. The solu­
tions of (24 ) are l.144465, 2.543493, 4.048082 · · · or eigen-values are - 1.3215 ± 0.660728 , 
- 1.3215 ± 2. l 73245i , - 1.3215 ± 3.826304i · · · and one set of eigen-value is real. For E = 0.5 
and initial values [u(x, O) = 0.90667sin(l.144465.r,), 1J,t(x, 0) = OJ, 11(x , t , c) has been eval­
uated and the corresponding numerical solution of (19) has been computed. The results for 
x = 2 respectively and x = 1 are presented respectively in Fig. 4( a) and Fig. 4(b). From 
the figures, it is clear that solution Eq. (52) compares well with the numerical solution. 

6. CONCLUSION 

A general formula is presented for obtaining the transient response of nonlinear sys­
tems governed by a hyperbolic-type partial differential equation with small nonlinearities . 
According to.the unified theory [4, 5] there exists a general solution , used in three cases, 
i.e. o,ver~damped , under-damped and un-damped. In previous papers [5, 7] only ordinary 
differential equations are considered . In the present paper, we observe a similar result for 
partial differential equations. 
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GIA.I HE PHL'dNG TRINH DAO HAM RIENG PHI T UYEN DANG HYPERBOLIC BANG 

PHVdNG PHAP KROLOV-BOGOLIUBOV-MITROPOLSKII 

Mot nghiem tiem c~n t6ng quat dl1QC bi§u dien d§ khao sat di;ic tr ung cua he phi tuyE\n cl\19~ 
mo hlnh bing cac phuong trlnh d<;LO ham rieng d <;Lng hyperbo lic voi he s6 phi tuyE\n be. Phuong 
phap bao gom tat ca cac t ruong h<;Jp khi cac gia tr j rieng cua he khong nhieu lo<;Ln t uc1ng ling la 
thvc, lien hc;Jp phuc, thuh ao . N6 cho th§,y bi ng S\l' t hay t h§ phu hc;Jp cu~ cac gia t ri rieng trorig 
kE\t qua t6ng quat , nghiem t uong ling voi moi t n.tong hc;Jp t rong ba tniong hc;Jp la c6 th§ thu du9c. 
Phuong phap nay la mot S\l' mc':J rong cua phuong phap Krolov-Bogoliubov-Mi tropolskii , n6 la S\l' 
ph;it tricin ball dau cho cac trUong hc;Jp tat dan , tat dan ch~m, t i\.t clan qua Cua phUcJ11g trlnh di;J.O 
ham thuong b~c hai . Cac phuong phap ciing bao gom di@u kien di;ic biet cua t ruong h<;Jp tih dan 
qua trong d6 nghiem t6ng quat la khong c6 nghia. 


