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Abstract. A new 6-noded stiffened triangular plate element for the analysis of stiffened 
composite plates based on Mindlins deformation plate theory has been developed. The 
stiffened plate element is a combination of basic triangular element and bar component. 
The element can accommodate any number of arbitrarily oriented sti!feners and obviates 
the use of mesh lines along the stiffeners. Free vibration analyses of stiffened laminated 
plates have been carried out with this element and the results are compared with those 
published. The finite element results show very good matching with the experimental 
ones. 

1. INTRODUCTION 

Eccentrically st iffened plates are widely used as components of structural systems 
in civil, aerospace, marine and automotive industries . Stiffeners are commonly attached 
to plates along the major load-carrying direction to achive higher stiffness/weigth and 
stength/weigth ratios. To increase further , laminated composites have been first intro­
duced in the aerospace industry, and current l:r· being used in the civil engineering in­
frastructure such as bridge decks, bridges girders, strenghening and retrofitting existing 
structures, etc. 

A number of analytical and numerical models for the analysis of stiffened plates have 
been proposed in the literature such as Kirk [1], Satsangi [6], Mukhopadhyay [2], Ghosh 
and Biswal [4], Chao and Lee [5], Kolli [12], Satish Kumar [9], Gangadhara Prusty [8] etc. 

Among all the numerical methods, the finite element method (FEM) has been found 
to be reasonably accurate with less complexity to model stiffened plates. A more accurate 
model is achieved by representing the plate and stiffeners separately and maintaining 
compatibility between them. Thomson [3] et al. and Satsangi [6] used 8-noded rectangular 
plate elements and assumed that the stiffeners follow the same displacement field as that of 
the plating. The FE model of Kolli [12] consists of the 9-noded rectangular plate element 
and 3-noded beam element, the beams are placed along the plate nodal lines. Edward et 
al. [7] used a st iffened plate element that is composed of a rectangular 9-noded rectangular 
plate element and a number of 3-noded stiffener elements placed within the plate element 
and parallel to the element edges . Gangadhara Prusty [8] studied linear static analysis of 
composite hat-st iffened laminated shells using 8-noded rectangular plate element and 3-
noded beam element . The existing finite element techniques stimulate the st iffener to pass 
along the plate nodal lines. In these studies, no discussion has been made for the st iffeners 
of various shapes and having arbitrary orientation in the plate. To overcome this problem, 
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Satish Kumar and Mukhopadhyay [9] have developed a stiffened t ri angular plate element 
for t he analysis of laminated stiffened plates. This basic plate element is a combination 
of Allman's plane stress triangular element and discrete Kirchhoff-Mindlin plate bending 
element . However, the interpolat ion of displacements in their model is very complex and 
the natural frequencies obtained are less accurate t han t hose published. In an attempt to 
efficient ly solve t his problem, we developed a new 6-noded stiffened laminated triangular 
element. This element can accommodate any number of arbitrarily oriented stiffeners of 
rectangular and closed (hat) sections, and is completely free from the usual constraints on 
t he mesh division of the st iffened plates . 

2. FINITE ELEMENT FORMULATION 

2.1. Stiffness matrix of the stiffened plate e lement 

The displacement field based on the first-order shear deformation plate theory is given 
by 

u(x, y , z, t) = u0 (x , y , t) + z Bx(x, y , t) 
v(x, y, z, t) = v0 (x, y, t) + z By(x, y, t) 
w(x, y, z, t) = w0 (x, y, t) 

The displacement field of st iffener : 

u (x, z, t) = u0 (x , t) + zBx (x, t) 
w (x, t) = w 0 (x, t) 

here, x is x - axis of stiffener. In general, L.. (x , x) = r.p as shown in Fig. 1. 

reference plane of plate 

y 
4 2 

y x 

reference plane of stiffener 'V' .. x 

Fig. 1. Triangular stiffened plate element 

The element st iffness matrix. of stiffened plate is determined by: 

K e= K~ + K :t , 

(2 .l a) 

(2 .lb) 

(2 .2) 

where K~ and K;t are the element stiffness of fiat plate and st iffener respectively and 
given by [10]: 

K~ = j [B{ Af + B{ BB2 +Bf BB1 +Bf DB2 + Bf A'B3] dS 
St 

K:t = bst J [Est] T [rst] T [ Dst] [rst] [Est] di 
(2 .3) 

est 
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A, B, D and A' are the popular matrices of laminated composite [11]; D st is the rigidi ty 
matrix of the stiffener; bst is the width of stiffener; Bi is the strain-displacement matrix 
of the plate: 

[Bi] = [[Li] N1 [Li] N2 ....... [Li] N5 ]; i = (1, 2, 3) 

Ni are quadratic shape functions; Est is the strain-displacement matrix of the stiffener 
and is given by: 
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r st is the transformation matrix of st iffener strain [10] : 
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(2.5) 

The rigidity matrix of the stiffener due to parallel laminations: The rigidity matrix of t he 
stiffener is expressed as 

0 l 0 ' 
A'st 

(2.6) 

where, the coefficients of rigidi ty matrix are calculated by ignoring the stresses in t he width 
or y direction of stiffener ( ay = TxiJ = Tfa = 0) but not the strains ( Ey i- "fXfj i- "fyz i- 0) : 

Ast = ~ [c'st _ 0 ,st (C'st c1 st + 0 ,st cist) _ c1st (C' st 0 ,st + 0 ,st 0 ,st )] ( _ ) 
-~ 11 12 22 12 26 16 12 26 12 66 16 k Zk+ l Zk 
k= l 

Est - ~ [C'st - C' st ( C'st ci st + C' st C'sl) - C'st ( C'st C'st + C'st c1st )] Z~+l - Zk 
- - . 11 12 22 12 26 16 12 26 12 66 16 k 2 

k= l 

D sl - ~ [c'st c1 st (C'st c1 st + C' st c1 st ) c1st (C'st c1st + C ' st c1st )] Z~+ l - z~ 
- -~ 11 - 12 22 12 26 16 - 12 26 12 66 16 k 3 

A'st _k~ [c1st (C'~;) 2 ] ( ) 
- -~ 55 - c1st Zk+ l - Zk 

k= l 44 k 

(2 .7) 
C'f~ (i, j = 1, 2, 3, 4, 5 and 6) are the stiffness coefficients of the stiffener materia l and 

[ 
C-,st 0 ,st l [ 0 ,st 0 ,st J-1 

22 26 - 22 26 

C- ,st c- ,st - cist ci st 
26 66 26 66 

(2.8) 
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T he rigidity matrix of the stiffener due to perpendicular laminations: The r igidity 
matrix of t he stiffener is expressed as 

( c'fn k ds 0 
n 

( c ist ) d; [Dst] = L 0 11 
k 12 

k= l 
- 2 ( C'~~) k ds 0 

0 

(2.9) 0 

( C'~~ ) k ds ~ 
where d5 is t he height or depth of the stiffener. 

2 .2 . Mass matrices 

a. Mass matrix of the plate element 
The kinetic energy of plate element wit h distributed mass is given by: 

1 ; · Te = 2 u.T p u dV, (2 .10) 

Ve 

where 

1 0 0 l 
0 1 0 

UT = [1::., u, w] = [ 1·lO i1° tif Ox By ] I 0 0 1 (n. 11) \ L. . .l 

z 0 0 
0 z 0 

\Ve can express u in terms of the nodal displacements, a , by using sh<tpc func tions N : 

Te= t / { d}1' [p*] { d} dS = t / {a}T [Nf' [p*] [N] {a} dS = t {a fr [Me] {u} , (2. 12) 

Se Se 

where [.!vle] is the mass matri x of plate element: 

[J\:Ic] = / [Nf [p* ] [NJ dS '(2 .13) 

Se 

and 

Io 
0 Io Sym 

[P*l = I 0 0 Io (2 .14) 

Ii 0 0 I2 
0 Ii 0 0 h 

with 

n hk '!-1 

(Io, Ii , h) = L Pk j (l , z, z2
) dz, 

. k=l hk 

(:2.15) 
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N1 0 0 0 0 N2 0 0 0 0 N5 0 0 
0 N1 0 0 0 0 N2 0 0 0 0 N5 0 

N = 0 0 N1 0 0 0 0 N2 0 0 0 0 N5 
0 0 0 N1 0 0 0 0 N2 0 0 0 0 
0 0 0 0 N1 0 0 0 0 N2 0 0 0 

b. Mass matrix of the stiffen er member 
The kinetic energy of stiffener member with distributed mass is given by : 

The U st can be expressed by 

1 ; · .!.. T ..!. 
T st = 2 U 8 t PUstdV. 

V e 

.!.Q 
Wst 

These terms in plate element coordinates are expressed as 
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0 0 
0 0 
0 0 

N5 0 
0 N5 

(2 .16) 

(2 .17) 

(2 .18) 

(2.19) 

T he displacement compatibility between t he stiffener and t he plate is ensured by t he 
beam displacement field which is interpolated from plat e element 's nodal displacements 
by : 

0 
llsl 1 0 0 6 0 uo 

0 
Vs t . 0 1 0 0 6 VO 

0 
W st 0 0 1 0 0 WO (2.20) 

e Xst 0 0 0 1 0 Bx 
0 Yst 0 0 0 0 1 Oy 

where 6 = H ; h is eccentricit y ; h is t hickness of pla t e and H is height of stiffener. 

F inally 

T 81 = ~bs1 / { d} T [P] { d} di:= ~bst j {af [Nf [p] [NJ {Li} di:= ~ {af [Mst] {Li } 
l s t l s t 

(2 .21 ) 

and [Nfst] is mass matrix of stiffener component: 

(2 .22) 
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where 

n hk+' ' ' l cos2 <p 
cos 1P sin 1.p 0 Z COS

2 1.p z cos 1P sin 1P 
sin2 1.p 0 z cos 1P sin 1P z sin2 1P 

[P] = ~Pk, , / 1 0 0 
Sym z2 cos2 <p z2 cos <p sin <p 

k s t 
z2 sin2 1.p 

and 
1 0 0 8 0 
0 1 0 0 6 

[NJ= I 0 0 1 0 0 I [N] 
0 0 0 1 0 
0 0 0 0 1 

3. RESULTS AND DISCUSSIONS 

3 .1. Validation of the model 

Example 1 

1 
300 

J 
~····.+'·.·. ·.• .•.ti' ·.·.•.·.•.•.·.·.·.·.•.iJ.·.·.·.·.·.' ·.·.·· 1 ·.·.·.•.·.·.·.·.·.·. ·.·.·.·.·] ~. =3.4 

~II 

I dz (2 .23) 

(2.24) 

Fig. 2. Laminated stiffened plates, eccent ric- Fig. 3. Frequency vs. ha lf-depth of stiffeners 

ity is variable 

In order to check the reliability and accuracy of the present element , we consider 
t he free vibration of a simply supported blade stiffened plates. The variation of natu­
ral frequencies with stiffener eccentricity are presented for specially orthotropic cross-ply 
laminates with t hree equally spaced stiffeners (Fig. 2). The geometry of the stiffened 
laminates is a x b x h = 400 x 300 x 3.4 (mm3); the lamination of plate and stiffeners is 
(90° / 0° / 90°)r . 

The ply properties: E1 = 9.71 GPa; E2 = 3.25 GPa; G12 = G13 = 0.9025 GPa; G23 
= 0.2356 GPa; v12 = 0.29; p= 1347kg/m3 for bot h the plate and the stiffener. The width 
of stiffener is 3 mm. The numerical results are compared wit h t hose of Ghosh and Biswal 
[4] (4-noded rectangular element with 7 d.o.f at each node) and Chao and Lee [5] . The 
variation of natural frequencies with stiffener half-depth (Fig. 3) shows better agreement 
with those of Ghosh and Biswal than those of Chao and Lee [5] . This may be due to 
neglecting of the shear effects by Chao and Lee. 
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Example 2. Free vibration of a cross-stiffened plate 
The geometry of cross-stiffened plate is a= b = 254 mm, h = 12 . 7 mm, dsx = dsy = 25 .4 

mm, bsx = bsy = 6.35 mm. Where, dsx, bsx is depth and width of the x-direction stiffener; 
d8 y , bsy is depth and width of the y-direction stiffener. The following ply properties of 
AS4/ 3501 graphite/epoxy composites are used: E1 = 144.8 GPa; E2 = 9.67 GPa; G12 = 

G13 = 4.14 GPa; G23 = 3.45 GPa; v12 = 0.3; p = 1389.23 kg/m3 . 

The stiffener laminations are parallel to the plate midplane. The frequencies of the 
first four modes of various boundary conditions of a (0/90) cross-stiffened plate are pre­
sented in Table 1 and they are compared with those reported in [9], [13] and [14), using 
10x10 mesh for full plate. The fundamental frequencies showed good agreement with 
those of [9], whereas the frequencies of higher modes compared excellently with those of 
[14] . According to analysis of [9], the author of [13] used the reduced stiffness coefficients 
in the rigidity matrix of the stiffener which reduced its stiffness . Moreover, they have 
ignored the coupling coefficients in the strain-energy of the stiffener element . Therefore , 
the fundamental frequencies of lower modes with the present element are higher than that 
of [13] . 

Table 1. Effect of boundary conditions on natural frequencies (Hz) of (0/90) 
cross-stiffened plates. 

Boundary Mode Present Ref. [9] Ref. (13] R e f. [14] 
conditions no 

1 1063.6 1076.0 961.81 1092.64 
2 2132.5 2059.6 1954.41 1837.04 ssss 3 2263 .0 2302.7 2325.41 2491.85 
4 2619.8 2635.8 2641.18 2654.51 
1 1693.9 1666.5 1583.50 1753.79 
2 3026.1 2929.2 2831.53 2716.65 cc cc 3 3102.8 3140.1 3165.27 3319.93 
4 3635.3 3666.3 3634.62 3686.53 

3.2. Experimental study 

Let 's consider a stiffened rectangular composite plate made of glass fiber /polyester 
3210 with lamination [M300/WR800/M300/WR800/M450]. Where, M300 denotes glass 
fiber in Mat form , which its weight per unit area is 300 g/m2

; M450 denotes glass fiber 
in Mat form , which its weight per unit area is 450 g/m2 and vVR800 denotes glass fiber 
in WR form , which its weight per unit area is 800 g/m2

. The sides of plate are a x b = 
800 x 500 mm 2 . The plate is reinforced by 6 longitudinal ( nx = 6) and 9 transverse ( ny 

= 9) hat stiffeners (Fig. 4). The stiffeners were made by glass fiber in Mat and have the 
same sizes as follows: bst x hst x tst = 10 x 20 x 1.8 (mm3

). 

Three first natural frequencies of unstiffened and stiffened plates subjected to vari­
ous boundary conditions were measured by "Multi- vibration measuring machine" 
DEWE BOOK-DASYLab 5.61.10 and are given in Table 2. 
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Fig. 4. Experimental set-up and testing procedure for stiffened composite plate 

Table 2. Experimental results on natural frequencies (Hz) of stiffened composite plate [15] 

Plates Mode Clamped CC at x-edges CC at y-edges Simply 
no at 4 edges SS at y-edges SS at x-edges Supported 

at 4 edges 
1 36.430 34.595 22 .620 18.310 

Unstiffened 2 53.560 45.770 43.600 33.530 
3 82.320 68.510 61.030 59.380 
1 147.660 139.280 82 .070 65.460 

Stiffened 2 206.330 168.630 166.500 118.640 
3 322.370 259.810 242.080 225.135 

3.3. Finite element results and comparison 

In this section, we calculate the natural frequencies for above stiffened composite plate 
by our computer program. The first three natural frequencies will be compared with those 
of experimental ones. 

The elastic constants of material used in the calculation were determined by our me­
chanical tests [16]. 

For a Mat layer : E11 = E22 = 4.807 GPa; G12 = 2.05 GPa; v12 = 0.17. 
For a WR layer (0 ° and 90 ° ): E11 = 10.58 GPa; E22 = 2.64 GPa; G12 = 1.02 GPa; 

V12 = 0.17. 
Thickness of a M300 layer, tM3 = 0.6 mm; thickness of a M450 and WR8 layer , tM45 

= twRs = l mm. 
The laminations of stiffeners are parallel to the plate midplane. The frequencies of 

the first three modes of various boundary conditions of a cross-stiffened plate using 12x12 
mesh for full plate are presented in Table 3 and they are compared with those reported in 
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[15] in Fig. 5 and Fig. 6. The fundamental frequency of clamped plate at 4 edges shown 
very good agreement with those of [15] , whereas the frequencies of simply supported plate 
at 4 edges are higher than that of [15] . This may be due to the boundary condition 
constructed in experimental study (not simply supported absolutely) . 

Table 3. Natural frequencies-NF (Hz) of stiffened plates calculated by finite element 
program. 

Plates Mode 
no 

1 
Unstiffened 2 

3 
1 

Stiffened 2 
3 

Fig. 5. Comparision of 
ported plate 

Clamped CC at x-edges CC at y-edges Simply 
at 4 edges SS at y-edges SS at x-edges Supported 

at 4 edges 
38.749 35 .485 24.420 19.639 
58 .708 47.660 45.560 37.201 
93.653 70.490 63.020 63.855 
158.173 141.240 84 .110 78.357 
219.784 170.720 167.390 139.836 
328.392 261.590 251.140 245.759 

Fig. 6. Comparision of NF of clamped plate 

4. CONCLUSIONS 

In this paper , we have presented a new 6-noded stiffened triangular plate element for 
vibration analysis of laminated composite plate with laminated stiffeners. The .stiffener 
is elegantly modeled and does not introduce any additional nodes. The plate element 
entertains any number of arbitrary oriented stiffener elements and eliminates the usual 
constraints imposed on the mesh division of stiffened plates. The model is validated by 
comparing with existing results documented in the literature. Some problems on free vi­
bration analyses of laminated stiffened plates made of graphite/epoxy and glass/polyester 
are analyzed with the present element. Moreover, the element has been very effective in 
analysis of both thin and moderately thick plates . The finite element results compare 
well with experimental ones. It is recommended that the present formulation can be used 
to determine the fundamental frequencies required in the design and analysis of eccentric 
composite stiffened plates. 

This publication is the results of National Basic R esearch Project supported by Ministry 
of Science and Technology. 
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MQT LO~I PHAN TU TAM GAN MOI TRONG PHAN TICH DAO 
A ' ,,.! , A ' 

DQNG Tl/ DO CUA TAM COMPOSITE CO GAN GIA CUCTNG 

Bao cao gi&i thi~u m<)t 101~1i phan tu tam gan gia cuang m&i de phan tich dao d<)ng tv 
do cua tam composite c6 gan gia cucmg dlfa vao ly thuyet bien de;mg cua Mindlin. Phan 
tu tam gan duqc xem Ia to hqp cua phan tu tam tam giac 6 nut va dam (khong phai 
phan tu dam) . Phan tu tam gan chap nh<%tn s6 gan bat ky va hu&ng cua gan tuy y trong 
n6. Dieu nay cho phep ta ch9n lu&i phan ttr tuy y cho tam gan de tinh toan. Ket qua 
tinh toan tan s6 dao dc~mg t\r do cua tam gan composite l&p bang .cac phan tu n6i tren 
rat tuang dong v&i m<)t so ket qua da cong bo cua cac tac gia khac. Ket qua tinh toan 
dao d<)ng cua tam gan thuy tinh/polyester ch!u cac lien ket khac nhau bang phan tu huu 
lwn phu hqp v&i ket qua thvc nghi~m . 


