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Abstract. This paper presents an algorithm for solving the inverse dynamics problem 
of redundant manipulators using MAPLE software. The method has the advantage of 
generating efficient symbolic solutions which reduces the computational cost. The influence 
of trajectories on the joint torques of redundant manipulators is considered. The theory is 
illustrated by the numerical simulation of a redundant four-link planar manipulator. 
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1. INTRODUCTION 
The operation tasks of today's robot manipulators become more sophisticated and 

require that manipulators possess more and more degrees of freedom (DOF) to offer greater 
flexibility. The kinematic redundancy occurs when the DOF of a manipulator is more 
than the minimum number necessary for executing a giyen operation task [1]. The extra 
DOF presented in redundant manipulators can be used to avoid obstacles and kinematic 
singularities, to increase the workspace or to optimize the motion of the manipulator 
relatively to a cost function. There is widespread interest in redundant manipulators due 
to such advantages. 

A significant number of paper has been published concerning the problems of kinematic 
redundancy and much achievement has been reviewed by [2]. Recently, there have been 
several scientific papers focused upon kinematic analysis , motion planning and controls of 
redundant robot manipulators [1-9]. However, it should be pointed out that the develop
ment on the theory for solving the inverse dynamic problem of redundant manipulators is 
still limited and the literature on this respect therefore is little. 

In this paper, the inverse problem of kinematics of redundant manipulators is briefly 
addressed. We have proposed an · efficient calculating method to find the joint variables 
which give the desired workspace trajectory of the end-effector. The inverse dynamics 
problem is considered to study the influence of trajectories on the joint torques of re
dundant manipulators. In the example, the developed method is employed to. the inverse 
dynamic analysis of a redundant four-link planar manipulator. A specialized program has 
been developed on the MAPLE computing environment for this study. 
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2. INVERSE DYNAMICS OF REDUNDANT MANIPULATORS 

The robotic systems under study are n DOF serial manipulators. We consider the 
redundant systems which have more DOF than needed to accomplish the operation task, 
i.e. the dimension of the joint space n exceeds the dimension of the t ask space m. Let 
the configuration of the manipulator be represented by vector q of n joint positions, and 
the end-effector position and orientation by m-dimensional vector x of task positions and 
orientations. The joint and task positions are related by the following expression 

x = f(q), (2 .1) 

wJiere f ism-dimensional vector function representing the manipulator forward kinematics 
and the vectors q and x are defined by 

X = [x1, ... , Xm]T , q = [q1 , .. · , qnf · (2.2) 

D'ifferentiating Eq. (2.1) with respect to time, we obtain the relation between velocities 

x=Jq, (2.3) 

where J = ~: is them x n manipulator Jacobian matrix. 

In the case of redundant manipulators, there can exist also an internal motion which 
does not contribute to the motion of the end-effector. Hence, the general solution of Eq. 
(2.3) can be given as follows [4], [7] 

q = J+x + (En - J+ J) y, (2.4) 

where J+ E Rnxm is the pseudo-inverse of matrix J [6], y E Rn is an arbitrary vector , 
and En E Rnxn denotes an identity matrix. If the exact solution does not exist , Eq. (2.4) 
covers all the least-squares solutions that minimize II* - JC:tll · Therefore, J(q) will always 
have a full rank, so that rank (J) = m. Note that the solution according to Eq. (2.4) gives 
the minimum joint velocities for the desired workspace velocity [4]. 

Differentiating Eq. (2.3) again with respect to time, we obtain the relation between 
joint space and task space accelerations as · 

x = Jq + j4, 

Hence, Eq. (2 .5) becomes [4], [7] 

q = J+ ( x - j q) + (En - J+ J) z, 

(2.5) 

(2.6) 

where z E Rn is an arbitrary vector. The joint angles can then be calculated by the finite 
difference methods. For example, using the difference approximation produces 

. qk+l - qk 
qk = .6.t (2 .7) 

• Xk+l - Xk 
Xk = 

.6.t 
(2.8) 

Substituting Eqs. (2.7) and (2.8) into Eq. (2.4), one obtains 

qk+l = qk + J+(qk) (xk+l - Xk) + [En - J+(qk) J(qk)] Zkflt. (2.9) 
Eqs. (2.4), (2.6) and (2.9) form a basis of the inverse kinematics of a redundant 

manipulator. 

>-
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Fig. 1. A redundant four-link planar manipulator 

The dynamics of robot manipulators is generally represented by the following equation 
[10-12] 

M(q) q + h(q, q) + g(q) = r , (2.10) 
where M( q) E Rnxn denotes an inertia matrix, h( q , q) E Rn is a torque vector caused by 
centrifugal and Coriolis forces, g( q) E Rn is a gravity torque vector, and T E Rn represents 
a joint torque vector . 

Let x E Rm define the position and orientation of the end-effector in the task space. 
The joint angle, velocity and acceleration vectors can be determined by using Eqs. (2 .4) , 
(2.6) and (2.9). The joint torque vector T can then be calculated by Eq. (2.10). 

3. ILLUSTRATING EXAMPLE FOR THE INFLUENCE OF 
TRAJECTORIES ON THE JOINT TORQUES 

In the following example we introduce the application of the theory described above to a 
four-link planar robot manipulator shown in Fig. 1. The manipulator is connected directly 
to four high torque actuators. The first actuator drives link 1 and the fourth actuator 
drives link 4. As can be seen from the figure, the manipulator has two redundant DOF. 

The configuration of the manipulator can be described by four relative rotation angles 
qi, q2, q3 and q4. The kinematic relationships for the links of the manipulator can then 
be expressed in the form 

XE= l1 cos(q1) + l2 cos(q1 + q2) + l3 cos(q1 + q2 + q3) + l4 cos(q1 + q2 + q3 + q4), 
YE= l1 cos(q1) + l2 sin(q1 + q2) + l3 sin(q1 + q2 + q3) + l4 sin(q1 + q2 + q3 + q4), 

(3.1) 

where li denotes the length of the ith link, XE and YE are workspace coordinates of the eµd
effector E in the fixed coordinate frame {Oxy}. Using Eq. (3.1) we obtain the relationship 
between velocities in matrix form as 

x = J q, (3.2) 

in which x = [ XE YE f , q = [q1, q2, q3, q4]T and the manipulator Jacobian matrix 
J is given by 

(3.3) 
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where 

Ju = -l4sin(q1 + q2 + q3 + q4) - hsin(q1 + q2 + q3) - l2sin(q1 + q2) - li sinq1, 

Ji2 = -l4 sin(q1 + q2 ~ q3 + q4) - l3 sin(q1 + q2 + q3) - l2 sin(q1 + q2) , 

Ji3 = -l4 sin(q1 + q2 + q3 +q'h~ - l3 sin(q1 + q2 + q3), 

J14 = -l4 sin(q1 + q2 + q3 + q4), 

J21 = l4 cos(q1 + q2 + q3 + q4) + l3 cos(q1 + q2 + q3) + l2 cos(q1 + q2) + l1 cosq1, 

J22 = l4 cos(q1 + q2 + q3 + q4) + l3 cos(q1 + q2 + q3) + l2 cos(q1 + q2), 

J23 = [4 cos(q1 + q2 + q3 + q4) + l3 cos(q1 + q2 + q3) 

h4 = l4 cos(q1 + q2 + q3 + q4). 

(3.4) 

Based on the recursive rule expressed by Eq. (2.9) in the previous section, we can 
calculate the joint angles q for a given workspace position x of the end-effector. The 
angular velocities q and angular accelerations q can then be numerically determined by 
using Eqs. (2.4) and (2.6). Hence, the inverse kinematics problem for the four-link planar 
manipulator is essentially resolved. 

The next step will be the formulation of the differential equations of motion of the 
manipulator according to Eq. (2.10) . Let Ii and r i be, respectively, the inertia matrix 
of the ith link referred to the center of mass C and the position vector of Ci in the fixed 
coordinate frame , and let mi be the mass of the ith link. The reduced inertia matrix M 
is given by [12] 

4 

M = L [J~imi J ri + iki Ii J Ri], (3.5) 
i=l 

where Jri( q) and J Ri( q) denote the Jacobian matrices that relate velocity ri and angular 
velocity wi of the ith link to the joint velocity q 

8ri 8wi 
Jri(q) = ~' J Ri(q) = ~· uq - uq 

(3 .6) 

For simplicity, we assume that the center of mass Ci of ith link is positioned in the 
middle. of the link line. Then, the matrix M can be determined without difficulty by using 
Eq. (3.5). For example, we obtain the following expressions with link 2 

[ 11 cos(q1) + ~ cos(q1 + q2) I 
[ 0 l r - l2 W2 = 0 2 - li sin(q1) + 2 sin(q1 + q2) ' 

Qi+ Q2 
0 

[ -1, sin( q1) - ~l, sin( q, + q2) 
1 . 

0 

~ l ' - -l2 sm(q1 + q2) 
_ 8r2 _ 1 1 2 

JT2 - oq - licos(q1)+2l2cos(q1+q2) 
2

z2 cos(q1 + q2) 0 

0 0 0 

[ 0 
0 0 n 8w2 

JR2 = oq = ~ 0 0 
1 0 
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The total kinetic energy of the manipulator is given by 

T l .yM. = -q q 2 . 

The total potential energy stored in the manipulator is 

4 

II= - 2.:.:migTri , 
i=l 
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(3.7) 

(3.8) 

where g = [O, -g, 0 ]T. We consider the case in which actuators exert torques T1 = 
Mo,1, 72 = M1,2, 73 = M2,3, 74 = M3,4 at the joints and an external force Fis applied 
at the end-effector as shown in Fig. l. Then the virtual work produced by these forces 
and torques is 

(3.9) 

Using Eqs. (3.1) and (3.9), we get the generalized forces as follows 

Qr = T1 - Fx [li sin q1 + l2 sin( q1 + q2) + l3 sin( q1 + q2 + q3) + l4 sin( q1 + q2 + q3 + q4)] 

+ Fy [li cos q1 + l2 cos(q1 + q2) + l3 cos(q1 + q2 + q3) + l4 cos(q1 + q2 + q3 + q4)], 

Q; =T2 - Fx [l2 sin(q1 + q2) + l3 sin(q1 + q2 + q3) + l4 sin(q1 + q2 + q3 + q4)] 

+ Fy [hcos(q1 + q2) + l3cos(q1 + q2 + q3) + l4cos(q1 + q2 + q3 + q4)], 

Q4 =T3 - Fx [l3 sin(q1 + q2 + q3) + l4 sin(q1 + q2 + q3 + q4)] 

+ Fy [l3 cos(q1 + q2 + q3) + l4 cos(q1 + q2 + q3 + q4)], 

Q3 =74 - Fx [l4 sin(q1 + q2 + q3 + q4)] + Fy [l4 cos(q1 + q2 + q3 + q4)]. 
(3.10) 

The dynamic equations of motion of the redundant manipulator can be derived by 
using Lagrangian formulation 

d BT BT aII * . 
-d (-8. )- -8 = --8 +Qi, i = 1, .. . , 4. 

t qi qi qi 
(3 .11) 

If the solution of the inverse kinematics problem is known, then the joint torques can 
be determined from the dynamic equations of motion as 

d 8T 8T 8II 
71 =-(-)- - +-

dt 8q1 8q1 8q1 
+ Fx [l1 sinq1 + l2 sin(q1 + q2) + l3 sin(q1 + q2 + q3) + l4 sin(q1 + q2 + q3 + q4)] 

- Fy [li cosq1+12 cos(q1 + q2) + l3 cos(q1 + q2 + q3) + l4 cos(q1 + q2 + q3 + q4)], 
(3 .12) 

d 8T 8T 8II 
T2 =dt(~)- -8 + ~ uq2 q2 uq2 

+ Fx [l2 sin(q1 + q2) + l3 sin(q1 + q2 + q3) + l4 sin(q1 + q2 + q3 + q4)] 

- Fy [l2 cos(q1 + q2) + l3 cos(q1 7- q2 + q3) + l4 cos(q1 + q2 + q3 + q4)] , 

(3.13) 
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d BT BT BIT 
T3 =-(-)- - +-· 

dt oif.3 oq3 oq3 

+ Fx [l3 sin(q1 + Q2 + q3) + 'l4 sin(q1 + Q2 + q3 + q4)] 

- Fy [l3 cos(q1 + Q2 + q3) + l4 cos(q1 + Q2 + q3 + q4)] , 

d 8T 8T 8IT 
T4 =_:_(-) - - + -

dt 8q4 8q4 8q4 

+ Fx l4 sin(q1 + Q2 + q3 + q4) - Fy l4 cos(q1 + q2 + q3 + q4). 

Table 1. Parameters of the manipulator · 

m1 l1 Iz1 m2 l2 Iz2 m3 l3 I z3 m 4 Lt I z4 
(kg) (m) (kgm2) 
4.0 0.3 0.03 3.0 0.5 0.06 2.0 0.4 0.03 2.5 0.5 0.05 

(3.14) 

(3.15) 

A computer program on the MAPLE environment is developed to solve the inverse 
dynamics of the manipulator. The manipulator parameters are given in Table 1. 

For the first case, the end-effector is assumed to move along the y-direction from point 
A to point B with a constant velocity (see Fig. 1) for a period of 10 seconds. A constant 
external · force F is applied at the end-effector, that is, Fx = -5 (N), Fy = - 4 (N). The 
workspace coordinates of the end-effector Eare given by 

XE= 0.9, 
YE= 0.2 + 0.lt, 

(3.16) 

The following initial values are chosen for the joint angles q: q1 (0) = 0.524, q2(0) = 
1.047, q3(0) =3.516, q4(0)=1.040 (rad). Fig. 2 shows the calculating results of the inverse 
dynamics corresponding to the given trajectory of the end-effector. 
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Fig. 2. Joint torques versus time for the first case Fig. 3. Trajectory of the end-effector 

For the second case, the end-effector moves along a circular trajectory as shown in 
Fig. 3. The workspace coordinates of the end-effector are given by 

XE =0.8 + 0.1 cos(t) , 

YE =0.8 + 0.1 sin(t) . 
(3.17) 
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The initial values of the joint angles q are chosen as 
q1(0) = 1.048, q2(0) = 0.582, q3(0) =4.118, q4 (0) = 1.048 (rad). Fig. 4 displays calcu

lating results of the joint torques for this case. 
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Fig. 4. Joint torques versus time for the second case 

4. CONCLUSIONS 

A kinematically redundant manipulator is a robot system that has more than the 
minimum number of DOF which are required for a specified task. In the paper, the 
influence of trajectories on the joint torques of redundant manipulators was considered. 
The manipulators under study are redundant with n DOF. The torques in the joint space 
and in the null space were defined corresponding to the desired trajectories of the end
effector. 

The influence of trajectories on the joint torques is illustrated using the numerical 
simulation with a redundant four-link planar manipulator. The obtained results may be 
a base for motion controls of kinematically redundant manipulators : 
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ANH HUONG CUA cAc D.i;\.NG qv-Y D.i;\.O DEN M6MEN PHAT DQNG CUA 

TAY MAY ROBOT DU DAN DQNG 

Bai bao nay trlnh bay m(>t thu~t toan giai bai toan d('mg It.re h9c ngll'qc cua Robot dl.l' clan 
d(mg, trong do co si'r di.mg phan mem MAPLE. Phll'ang phap neu ra co ll'U diem la gi~m dtrqc 
khOi lll'qng tinh toan. Anh htr&ng CU.a cac quy di;io len cac momen phat d('mg da dirge kMo sat. 
Cac ket qua ly thuyet al.l'qc minh ho~ b~ng m(>t thi d\l tinh toan mo phong so v&i Robot ph~ng 4 
khau dll' clan d(>ng 


