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Abstract. A rectangula r non- conforming element based on Reddy's higher-order shear 
deformation plate theory is developed. Although the plate theory is quite attractive 
but it could not be exploited as expected in finite-element analysis. This is due to 
the difficulties associated with satisfaction of inter-elemental continuity requirement and 
satisfy zero shear stress boundary conditions of the plate theory. In this paper, the 
proposed element is developed where Reddy 's plate theory is successfully implemented. 
It has four nodes and each node contains 7 degrees of freedom. The performance of the 
element is tested with different numerical examples, which show its precision and range 
of applicability. 

1. INTROD U CTION 

The use of composite materials in structural components are increasing due to their 
attractive properties such as high strength-to-weight ratio, ability to tailor the structural 
properties, etc. Plate structures find numerous applications in the aerospace, military 
and automotive industries. The problem of shear deformation has got a good amount 
of attention after the popularity of fiber reinforced laminated composites, which is now 
one of the major areas of research in recent times. Actually, the role of transverse shear 
is very important in composites, as the material is weak in shear due to its low shear 
modulus compared to extensional rigidity. In this context a number of plate theories have 
been developed where the major emphasis is to model the shear deformation in a refined 
manner. Amongst these plate theories (higher-order shear deformation theories - HSDT) , 
only a representative selection is made in reference [2- 9] . 

In single layer displacement-based theories, the plate theory proposed by Reddy [7] 
is most simple, elegant and useful in the context of present problem. It allows parabolic 
variation of transverse shear stress along the plate thickness and satisfies zero shear stress 
boundary conditions at the top and bottom of the plate. This has helped to eliminate 
the necessity of any arbitrary shear correction factor like that, which is required in FSDT. 
Moreover Reddy's plate theory [7] does not involve any unknown, which does not have any 
physical meaning like that found in some plate theories (e.g . [10, 11]). The plate theory 
[7) has all positive features except one drawback, which is found in a situation when finite 
element is applied to this plate model. The problem is concerned with the continuity 
requirement of w at the common edges between two elements . It requires C1 continuity of 
w as the strain terms contain second-order derivatives of w. This problem is identical to 
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that experienced in the development of thin-plate elements as mentioned earlier. This has 
rather put the main constrain in exploiting such an elegant plate theory in finite element 
analysis as expected [4] . 

In this context, A. H. Sheikh and A. Chakrabarti [4] has developed a triangular ele­
ment. The basic element [4] has six nodes (three corner nodes and three mid-side nodes) 
where each node contains u; v; w; Bx , By , 'Yx and 'Yy as the degrees of freedom. In this 
element, the field variables are u; v; w, 'Yx and 'Yy where all the field variables except w are 
approximated by a complete quadratic polynomial having six unknowns. The transverse 
displacement w is approximated by a truncated quintic polynomial having 18 unknowns . 
The element is quite complicated, unfortunately, they [4] didn't show the Hermite inter­
polation funtions. 

Keeping all the aspects in view, an attempt has been made to develop a rectangular 
element based on higher-order shear deformation theory of Reddy [7]. It has four corner 
nodes, where each node contains u; v; w; Bx; By; "fx and "(y as the degrees of freedom. In this 
element, the field variables are u; v; 'Yx and 'Yy where all the field variables are approximated 
by a complete quadratic polynomial having four unknowns. The transverse displacement w 
and Bx, By are approximated by a truncated quintic polynomial having 12 unknowns. With 
all these efforts, it is found that the element does not satisfy the continuity requirement 
of normal slope. Thus, the proposed element is non-conforming but the performance of 
the element is excellent in a wide range of problems, which include different boundary 
condition, plate geometry, aspect ratio, stacking sequence, load distribution and so on. 

2. ELASTICITY EQUATIONS 

According to Reddy plate theory [7], the displacement components of a point at a dis­
tance of z from the reference plane may be expressed in terms field variables (displacement 
parameters at the reference plane) as: 

u(x, y, z) = u
0 

(x, y) - z [ ( ~: + 'Yx) - ~ (~) 
2 

'Yx] , 

v(x, y, z) = v
0 

(x, y) - z [ ( ~; + "(y) - ~ (~)2 "(y] , 

w(x, y, z) = w0 (x, y). 

(2.1) 

According to Reddy's plate theory [7], the strain vector { €} may be expressed as: 

Ox l r~ kx 0 

f + z' j ~:, 
0 k 0 €y €~ y 

{t:} = { "fxy = "(fl +z kxy + z2 0 » (2.2) 

'Yyz 'Y~z 0 Xyz 
'Yxz 'Yxz 0 Xxz 

where 

{ 0 } { 0 } { kx } { W'xx +fx'x } 
ex u,x 

0 0 
ky = - W'yy + "fy'y ; c] = v,(j ; 

"fxy u,Y + v9x kxy 2W1xy + /x'y + /y'x 
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/x'x 

/y'y 

/x'y + /y'x 
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(2 .3) 

The above equations show that the transverse shear strains: /xz and /yz have parabolic 
variation along z and they are zero at the top and bottom (z = ±h/2) of the plate as 
mentioned earlier. The linear constitutive equation of the kth layer is given by: 

CJx Cf 1 Cf 2 Cf 5 0 0 ex 

cry C~2 C~2 c~6 0 0 €y 

CJxy c~6 c~6 c~6 0 0 /xy (2.4) 
CJyz 0 0 0 C~4 C~s /yz 

CJxz k 0 0 0 C~s C£s k /xz k 

T he rigidity matrix [c:jJ in the above equations can be evaluated with the material 
properties (E1, E2, E3, v12, v13, v23, G12, G13 and G23) and fibre orientation of the lam­
ina. The details are not presented, as it is available in any standard text on mechanics of 
laminated composites [1]. 

By integrat ing the stresses through the plate thickness, we obtained the generalized 
force-strain relation: 

N A B E 0 0 co 
M B D F 0 0 k 
p E F H 0 0 T/ (2.5) 
Q 0 0 0 A' D' ,o 
w 0 0 0 D' F' x 

where different quantities of the rigidity matrix in Eq. (2.5) can be derived as follows: 

n hk 

(Aj Bij Dij Eij Fij Hij) = L j (CL)k(l z z2 z3 z4 z 6 )dz, 

k= lhk-1 

n hk . 

(A~j D~j Ffj) = L j (c:jt)k(l z2 
z

4
) dz, 

k= lhk-1 

i, j = 1, 2, 6. 

(2.6) 

i, j = 4, 5. 

3. FIN ITE ELEMENT FORMU LATION 

The formulation is based on the assumptions followed in Reddy's plate theory [7]. T he 
middle plane of the plate is taken as the reference plane. 

According to (2.2), there are 7 displacement components on a node. We have a nodal 
displacement vector: 

di= { u? v? w? (~:) i (~:) i (/y)i bx)i }T, (3 .1) 
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7 components are 7 freedoms of a node, respectively: 

- T 
di= {qi, qi+l1 qi+2 1 qi+3 1 qi+4, qi+51 qi+6} . 

Therefore, the element nodal displacement vector are presented by: 

a= { df dT2 .. . dT dT }T 
- i n (3 .2) 

and the displacement vector of element may be expressed as: 

d = { u0 v0 w0 Bx By Ix ly } T · (3.3) 

According to the discussions made in the previous section, the field variables i.e. , the 
independent displacement components at the reference plane may be expressed as follows : 

[ 

N N 
[ u0 v0 Ix ly ] T = fi Niu? iE Niv? 

N N ]T iE Nnxi iE Ni/yi (3.4) 

- _ 0 (aw) (aw) 0 (aw) · (aw) w -H1w1 + H2 ax 
1 
+H3 ay 

1 
+ . . . +H3N- 2wN+H3N-l ax N +H3N EJy N' (3 .5) 

N N 
aw _ a ~ ( _ 0 (aw) (aw) ) ~ 

Bx = ax +Ix = ax L......t H3i-2wi + H3i- l ax i + H3i ay i + L......t Nnxi, 
i=l i= l 

(3 .6) 

N N 
- aw a ~ ( 0 (aw) (aw) ) ~ By = a + ly = B L......t H3i - 2Wi + H3i-l ax i + .fh a i + L......t Ni/yi, 

y y i=l y i=l 
(3.7) 

where N is the number of nodes of element, Ni are the Lagrange interpolations functions 
and Hi are the Hermite interpolation functions. 

The displacement vector is interpolated through element nodal displacement vector 
as: 

d= Ba, (3.8) 

where B is interpolation matrix and is defined by: 

N1 0 0 0 0 0 0 N2 

0 N1 0 0 0 0 0 0 
0 0 H1 H2 H3 0 0 - 0 

8 a a 
0 N1 B= Io 0 -H1 -H2 -H3 0 

acf acf 85 
0 0 -H1 -H2 - ·H3 Ni 0 0 

ay oy oy 
0 0 0 0 0 0 Ni 0 

0 0 0 ~ 0 0 Ni 0 0 

.... 
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Nn 0 0 0 0 0 0 
0 Nn 0 a 0 0 0 
0 0 H3N'_2 H 3N- l H3N 0 0 

0 0 
8 8 . 8 

NN [)H3N-2 [)H3N-l -H3N 0 

0 
lf lf 8g 

NN 0 BH3N-2 oy H3N-l - . H3N 0 
y oy 

0 0 0 0 0 {) NN 

0 0 0 0 0 NN 0 

Now the field variables (2.3) may be substituted in Eqs. (3 .2, 3.3) and (3 .8) to express 
the strain vector { c} in terms of interpolation through element nodal displacement vector 
as: 

{'y0} = L~d = L~Ba = B~a ; {x} = L;d = L;Ba = B;a, 

where L' and L are the operator matrices and can be presented by: 

L~ = - [ ~ 0 0 
0 0 

and 

0 
0 

ox 
0 

L1= 0 

8s 0 
By Bx 

0 0 1 
0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 ~ ] ; / 4 [ Q 
L2 = h2 0 0 0 0 

0 0 0 

0 L2 = - 0 0 

0 0 0 

00000 0 ° 
ox 

0 

0 

0 

4 8 
£ 3 = 3h2 0 0 0 0 0 8s 

0 0 0 0 0 

0 

0 
ox oy 

0 1 
0 0 

0 
0 

ox 
0 

0 

8s 0 
oy Bx 

(3. 10) 

~ ] (3 .11) 

0 0 

0 0 

0 0 

Similar to strain vector { c}, the transverse displacement w may be expressed in terms 
of nodal displacement vector {a }, with the help of Eqs . (3. 1), (3 .2) and (3 .5) as 

T ' T w(x, y) = Bpa ={a} [0 0 H1 H2 H3 0 0 · · · 0 0 H3*N-2 H3*N-1 H3*N 0 OJ . (3.12) 

The present element may have any rectangular shape. This is mapped in a different 
plane (~ - rt), which gives a rectangular shape. The relationship between these two axes 
system is as follows: 

c - 2(x-xc) . _ 2(y -yc) (3.13) 
"' - a _, T/ - b ' 

where a and bare the sides of the rectangular element; (xc, Ye) are the global coordinates 
of the center of element. 
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The interpolation functions of four-node rectangular element are determined by: 

1 - (. " 2 2\ 1 ( 2) H1 = 8 (1 - ~) (1 - 'Tl) \2 - ~ - T7 - ~ - T7; ; H2 = 8 (1 - ~) (1 - 'Tl) 1 - ~ ; 

H3 = ~ (1 - ~)(1 - 'Tl) (1 - T72) H4 = ~ (1 +.;) (1 - 'Tl) (2 + ~ - T7 - e - Tl~; 
81 ~ 

H s = - S (1 + ~) (1 - 77) (1 - e); H 5 = - (L+ ~) (1 - 77) (1 - 77 2
) 

1 
8 

1 
H1 = 8 (1 +.;) (1 +'Tl) (2 + ~ .+ T/ - e - T/~; H s = - 8 (1+0 (1 +'Tl) (1 - e) ; 

1 ( 2) 1 ( 2 2) Hg=--(1+0(l + T7) 1-'Tl H10 = - (l_- .;}(l+T7) 2-~ + T7-~ -'Tl ; 
f 8 

1 
Hll = 8 (1 - 0 (1 +'Tl) (1 - e); H12 = -8 (1 - ~) (1+17) (1 - T72) 

1 
Ni= 4"(1 + ~~i)(l + T/T/i) , (i = 1, 2, 3, 4) (3 .14) 

Finally, using the finite element analysis to analyze the static behavior of the plate, 
the global stiffn@Ss matrix, {K} , and the global force vector, {F}, are needed and the 
equilibrium equat ions of them can be· detBrmined through the element stiffness matrix, 
[Ke], and the nodal load vector, {P}. Where [Ke] and {P} are presented in compact form 
as the following: 

[K] _ J E 1 AE1 + E 1 EE2 + E 1 EE3 + E 2 EE1 + E 2 DE2 + E 2 FE3 + E 3 EE1 + dS 
[

T T T T T T T ] . 

e - +ETFE +ETHE + E'T A'E' + E'TD'E' + E'TD'E' +· E'TF'E' 3 2 3 3 1 1 1 2 2 1 2 2 
s. 

(3.15) 
and: ff p(x, y)w(x, y)dS = aT ff [Ep] T {p(x , y)}dS = {a }T { P}. (3.16) 

s. • s. 
The integrations in the above equations are performed numerically following Gauss quad­
rature technique [9]. 

~· 

4. NUMERICAL RESULTS 
Numerical examples of composite plates having different feat ures are solved by the 

proposed element and the results obtained are presented with the published results for 
necessary comparison. 

Example 1. The problem of a three ply (0° /90° ;o0) square laminate; the material 
properties of each ply is assumed as: E1 = 175 GPa; E2 = E3 = 7 GPa; G12 = G13 = 

3.5 GPa; G23 = 1.4 GPa; v12 = v13 = 0.25; v23 = 0.01; simply supported at all the edges 
and subjected to uniformly distributed load , is studied for different thickness ratios (h/a) 
ranging from 0.1 to 0.01. The following nondimensionalized quantities at specific points 
are presented in Tables. 

-_ (a b) (E2h3
) w = lOOwo 2,-2 qa4 ; 

(
a b h) ( h

2 
) 

O'yy = <Yyy 2' 2' 6 lql b2 ; 

Cfyz = CTyz (~ 1 0,0) (;b) ; 

(
a b h) ( h

2 
) 

Clxx = Clxx 2' 2' 2 lql b2 ' 

O' xy = Clxy ( 0, 0, ~) ( q~
2

2) ; 
Cfxz = Clxz (o, ~,o) (:b) · 

~ 

.... 
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Table 1. Deflection (w) at the centre of a simply supported square laminate 
(0° /90° ;o0 ) under uniform load of intensity q 

References Thickness ratio (h/a) 
Present Theory 0.01 0 .02 0.05 0.10 0.25 
Mesh: 64 elements HSDT 0.6894 0 .7185 0.8959 1.4611 3.8317 
Mesh: 128 elements HSDT 0.6784 0.7072 0.8259 1.4363 3.p932 
Mesh: 192 elements HSDT 0.6764 0.7051 0.8228 1.4202 3.5164 
Mesh: 256 elements HSDT 0.6757 0.7044 0.8207 1.4023 3.3103 
Mesh: 384 elements HSDT 0.6752 0.7040 0.8166 1.3594 3.0929 
Mesh: 512 elements HSDT 0.6751 0.7039 0.8119 1.3105 3.0591 
Mesh: 640 elements HSDT 0.8068 1.2595 3.0537 
Mesh: 768 elements HSDT 0 .8012 1.2093 
Mesh: 896 elements HSDT 0.7955 1.1329 
Mesh: 960 elements HSDT 0.7926 1.1146 
Sheikh & Chakrabarti [ 4]. HSDT 0.6708 0.6841 0.7763 1.0910 2.9093 
Mesh size: 1024 elements FSDT 0.6707 0.6813 0.7588 1.0235 2.6608 
Reddy [7] HSDT 0.6705 0.6838 0.7760 1.0900 2.9091 

FSDT 0.6697 0.6807 0.7573 1.0219 2.6596 
Ghosh and Dey [12] HSDT 0.6823 - 0.7572 0.9650 -
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The plate is analysed with different mesh divisions and the deflection obtained at the 
plate centre is presented with the analytical solution of Sheikh & Chakrabarti [4]. Reddy 
[7] and Ghosh and Dey [12] in Table 1. which. shows that errors with HSDT results [7] 
for span to thickness ratio a/h = 100 are 0.68%; at the a/h = 50 are 2.8%; at the a/ h 
= 20 are 2%; at the a/h = 10 are 2.2% and a/h = 4 are 4.73. It is seen that the errors 
are reduced at higher a/h, and the present results have an agreement with the analytical 
solutions [4], [7]. This study shows that , the size of mesh and convergent speed of method 
has been involved by thickness ratio a/h; it is seen that the size of mesh is needed to 
increase and the convergent speed is reduced at higher h/ a. 

Example 2. A comparison of maximum defle'ction and stresses components with other 
studies using FSDT with correction factor of k = 5/6, HDST and third-order shear defor­
mation theory (TSDT) for a symmetric cross-ply by different number of layers and with 
the same boundary conditions and the material properties as previous examples, under 
sinusoidal distributed load. The results are shown in Table 2. 

There is a good agreement between the results obtained from other sources. To assess 
the improvement of HSDT over FSDT, the three-dimensional elasticity solution of Pagano 
[13] is also presented in these tables. In addition to the above results finite-element solution 
of Sheikh & Chakrabarti [4], Reddy [2] (HDST), Rastgaar Aagaah, M. Mahinfalah, G. 
Nakhaie .Jazar [5] (TSDT), Panda and Natarajan [6] (FSDT) and Mawenya [14] (HSDT) 
are included in Table 2 (b / a = 1). 
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Table 2. Deflection (w) and stresses (O' xx, O' yy , O' xz, (J yz and <f xy) at the important points of a 
simply supported square laminate (0° /90° /0°) under sinusoidal load of amplitude q 

h/a References w a xx 17yy l7 xz 17yz l7xy 

Present element HSDT 
128 elements 2.3878 1.1783 0.5495 0.2906 0.3872 0.0757 
256 elements 2.1417 1.1058 0,5734 0.2160 0.3020 0.0572 
320 elements 1.9965 1.0604 0.5738 0.1988 0.2511 0.0488 
384 elements 1.9525 1.0139 0 .5657 0.1901 0.2043 0.0417 

0.25 Sheikh & Chakrabarti [4] HSDT 1.9230 0.7500 0.5080 0.2023 0.1831 0.0499 
Mesh size: 512 elements FSDT 1.7770 0.4430 0.4843 0.1440 0.1569 0.0371 

Reddy [7] 
HSDT 1.9220 0.7345 - - 0.1832 -

FSDT 1.7760 0.4369 - - 0.1562 -

Rastgaar Aagaah, ... [5] TSDT 1.9700 0.7392 0.1884 
Pagano [17] ESL - 0.7550 - - 0.2170 -

Present element HSDT 
768 e lements 0.7885 0.6628 0.3040 0.2453 0.1398 0.0249 
832 elements 0.7724 0.6590 0.2998 0.2216 0.1257 0.0244 
896 e lements 0.7569 0.6552 0.2955 0 .2009 0.1128 0.0241 
960 e lements 0.7420 0.6514 0.2913 0.1828 0.1012 0.0239 
Sheikh & Chakrabarti [4] HSDT 0.7140 0.5806 0.2722 0.2437 0.1015 0.0279 

0.1 Mesh size: 512 elements FSDT 0.6700 0.5219 0.2582 0.1623 0.0918 0.0254 
Reddy [2] HSDT 0.7130 0.5684 - - 0.1033 -

FSDT 0.6690 0.5172 - - 0.0915 -

Rastgaar Aagaah, .. [5] TSDT 0.7730 0.5713 0.1082 
Pagano [13] ESL 0.7405 0.5900 - - 0.1230 -

Panda and Natarajan [6J FSDT 0.6274 0.5320 - - - 0.0250 
Mawenya [14] HSDT 0.8813 0.5420 - - - 0.0292 
Present element HSDT 
Mesh: 8 x 8 elements 0.4273 0 .5367 0 .1788 0.2062 0 .1231 0.0178 
Mesh: 12 x 12 elements 0.4333 0.5400 0.1812 0.2221 0.1068 0.0193 
Mesh: 16 x 16 elements 0.4358 0.5417 0.1820 0.2296 0.0983 0.0199 
Sheikha & Chakrabarti [4] HSDT 0.4350 0.5496 0.1828 0.2401 0.0749 0.0215 
Mesh size: 512 elements FSDT 0.4350 0.5490 0.1825 0.1568 0.0709 0.0202 

0.01 Reddy [2] HSDT 0.4340 0:5390 - - 0.0750 -

FSDT 0.4340 0.5384 - - 0.0703 -

Rastgaar Aagaah , .. [5] TSTD 0.4630 0.5426 0.0463 
Pagano [13J ESL 0.4368 0.5520 - - 0.0938 0.0214 
Panda and Natarajan [6] FSDT 0.4346 0.5660 - - - 0.2230 
Mawenya [14] HSDT 0.4398 0.5510 - - - 0.0219 

Example 3. A four-ply (0° /90° /90° /0°) square; h/a = 0.25; laminate with equal thick­
ness layers has been subjected to a uniformly distributed transverse load on top plane and 
the .results are presented in Table 3 and Figs. 1-4. The material properties and boundary 
conditions are as Example 1. 
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Tab le 3. Deflection (w) and stresses (O'xx, Ziyy, Zixz, Ziyz and O'xy) at the important points of a 

simply supported square plate (0° /90° /90° /0°) under uniformly 
distributed transverse load of amplitude q. 

h/a R e fe r ences w <7xx <7yy <7xz <7yz <7xy 

P resen t e lement HSDT 1.9241 1.0133 0.7300 0 .1824 0 .2530 0.0461 
0.25 Pagano [13] ESL 1.9500 0.7200 0.6630 0.2190 0.2920 0.0467 

Rastgaar Aagaah, .. . [5] TSDT 1.9000 0.6810 0.6470 0.2190 0.2440 0.0451 
P resent e lement HSDT 0 .7429 0.6475 0 .4269 0 .2814 0.1775 0 .0247 

0.1 Pagano [13J ESL 0.7430 0.5590 0.4010 0.3010 0.1960 -- 0.0275 
Rastgaar Aagaah. . . [5] TSDT 0.7320 0.5510 0.3940 0.2110 0.1630 0.0451 
Present e lement HSDT 0.4363 0 .5417 0 .2732 0.2876 0 .1318 0 .0206 

0.01 Pagano [13] ESL 0.4370 0.5390 0.2760 0.3370 0.1410 0.0216 
Rastgaar Aagaah, .. [5J TSDT 0.4350 0.5390 0.2750 0.3080 0.1290 0.0216 
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In Figs . 1 - 4, the nondimensionalized stresses at the important points are plotted. It is 
seen that the stresses are discontinuous and the transverse shear stresses vary parabolically 
along the plate thickness . The transverse shear stresses, O' xzand O' yz ,satisfy zero boundary 
conditions at the top and bottom surfaces of the plate. 

I 0.5 I 

I 
i 

I 0.25 
I 

1 ~ 0 

I 
I 
I 

-0.25 

-0.5 

Fig. 1. 'Nondimensionalized normal stress 
O' xx through the thickness 

~ 0 

Fig. 2. Nondimensionalized normal stress 
O' yy through the thickness 

-~~
2

: + --- ----~- --- I 1-
0

: : ===J2~= -=-=== 
I 11 I 
LI -0. 1 0 0.1 0 .2 0.3 0.4j I -0.1 0 0.1 0.2 0.3 
-------- -·- ----·--- ---··-·---- ------·---- -·- -- - ---- ..__ --- ·----------·-- -------- -- -- ----~------·--------·---~ 

Fig. 3. Nondimensionalized normal stress Fig. 4. Nondimensionalized normal stress 
O' xz through the thickness O' yz through the thickness 
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5. CONCLUSIONS 

A new rectangular element based on Reddy's simple higher-order shear deforma­
tion theory is presented. The element has four corner nodes, where each node contains 
u; v; w; Bx , By, Ix and ly as the degrees of freedom. Thus the element is quite elegant from 
computational point of view. The formulation is based on displacement approach where 
u; v; w; Ix and ly are taken as the independent displacement components . The element 
is tested numerically in a wide range of problems covering different boundary conditions, 
loading, material property, stacking sequence and so on. It shows the performance of the 
element in terms of accuracy, rate of convergence, applicability and so on. The el_ement is 
free from shear lscking problem and it does not possess any spurious modes . 

This study shows that, the size of mesh and the convergence of method have been 
involved by thickness ratio h/ a. It is seen that the size of mesh is needed to increase and 
the convergent speed is reduced at higher h/ a. 

Based on these observation~, the element can be recommended for the analysis of 
composite plates -having any thickness to predict the deflection and stress with sufficient 
accuracy. 

This paper is completed with financial support by the National Council for Natural 
Sciences. 
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MO HiNH HOA PHAN TU HUU H~N TAM COMPOSITE LOP SU DlJNG LY 

THUYET BIEN D~NG CAT B~C CAO 

Nghien ClrU nay t~p trung vao vi~c phat trien phan tit tu giac kh6ng tuang thich <lira tren ly 
thuyet tam bien dc;i.ng cat b~c cao cua Reddy. M~c duly thuyet nay duqc danh gia la kha phu hqp 
doi v&i cac bai toan ca h9c ket cau tam, nhung thirc te n6 chua dm7c khai thac m9t each hi~u qua 
khi ap di,mg phuang phap phan tit hfru hc;i.n trong cac lai giai so. KhcS khan nay & cho ly thuyet 
GUQ'C xay dirng d11a tren gia thiet thoa man dong thai cac aieu ki~n Ve tinh lien t\jC cua G<;l-0 ham 
thanh phan d9 vong t<;i.i cac nut chung cua cac phan ti'r va dieu ki~n bien ve (rng suat cat t~i m~t 
tren va du&i cua tam. V'i v~y, Il1\jC d!ch clU'Q'C di;it ra trong bai bao nay la phat trien mo hlnh phan 
tt'r <lira tren ly thuyet tam cua Reddy neu tren. Phan tt'r duqc phat trien c6 d<;i.ng ti'.r giac 4 nut , 
moi nut c6 7 b~c tir do. Ti.r d6, thu~t toan PTHH va chuang tr!nh may tinh da duqc xay d11ng, 
cho phep thirc hi~n m<;>t l&p cac bai toan. Ket qua so cua chuang trlnh da duqc so sanh v&i m<?t 
so ket qua da cong bo khac cho thay tinh chinh xac va ph<;i.m vi ap d\jng cua phan ti'r da de xuat . 




