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A bst ract. Random turbulent loading on engineering structures which immersed in the 
atmospheri c turbulent flow is often represented as the multi-dimensional and/ or mul Li­
variate Gaussian random loading processes . Gust response prediction, however , usually 
burdens a lot of computational difficulties due to turbulent loading proj ection on the 
generalized structural coordinates. In these cases, the decomposition techniques must 
be required to decouple t he mul t i-variate turbulent load ing into t he independently gen­
eralized turbulent fo rces, t hen is associated with t he general ized structural modes . This 
paper will present the proper ort hogonal decomposition using t he spectral proper trans­
formation in the frequency domain to decouple t he mu lti-variate tur bulent loading pro­
cesses. New approach in t he gust response prediction of structures will be formul ated 
with numerical example of cable-stayed bridge. 

1. INTRODUCT ION 

Gust response prediction of structures subj ected to the turbulent-induced forces in 
the atmospheric turbulent flow requires as a must among wind effects and wind-induced 
vibrations. General formulat ion of gust response prediction of line-like structures has 
proposed by Davenport [6]. As a principle, the multi-degree-of-freedom (MDOF) motion 
equations of structures were decomposed orthogonally in the generalized coordinates and 
vibrational mode shapes thanks to the structural modal transformation (SMT). However, 
there were inevitable difficulties to generalize external turbulent forces, which t hen are 
associated with generalized coordinates . So far, the joint acceptance function (JAF) has 
been applied to determine the generalized turbulent forces and gust response analysis of 
bridges in both the frequency and time domains [4, 6]. 

Proper orthogonal decomposit ion (POD), known as Karhunen-Loeve expansion has 
been applied for many engineering fields such as discrete signal processing, random field 
decomposition and t urbulence analysis , data and image compression, system ident ification 
and control, probabilistic dynamic response and so on [2, 13, 14]. In t he wind engineer­
ing, the POD has been used in analysis of random pressure field [1 , 17], bluff-body flow 
identification and related physical phenomena [7], random field decomposition and sto­
chastic dynamic response [3, 12] . Basing upon a formulation of basic matrix in the proper 
transformation, the POD has been divided into two branches: i. the covariance-matrix­
based POD and covariance proper transformat ion (CPT) in t he time domain and ii. the 
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spectral-matrix-based POD and spectral proper transformation (SPT) in frequency do­
main [3, 5, 16]. In the former , the basic matrix is based on the zero-time-lag covariance 
matrix of turbulent loading processes in the time domain, whereas cross spectral density 
matrix of these processes used in the frequency domain in the later. It is generally agreed 
that almost literatures, however, have been discussed on the covariance-based POD and 
CPT in the time domain. The spectral-based POD and SPT is very promising to apply for 
stochastic response analysis, but it burdens much in complicated computation ratl'ler than 
the CPT. Recently, new approach of the gust response analysis of structures, so-called dou­
ble modal transformations (DMT) has been proposed by Carassale et al. [3], by which the 
structural modes decomposed by the SMT are associated with the so-called orthogonally 
turbulent loading modes decomposed by the SPT to determine the gust response in both 
the generalized and structural coordinates . Advantage of the POD applications on the gust 
response analysis of structures has hinged on comprehensive approach for the generalized 
gust force formulation in which the fully-correlated turbulent field is directed accounted. 
Especially, the lowest turbulent loading modes that have been decomposed from the fully­
correlated turbulent field thanks to the POD analysis can contribute dominantly on the 
structurally generalized responses of the lowest structural modes . The DMT using the the 
spectral-based POD and SPT has been applied for the gust response prediction of simple 
frames, buildings by some authors [3, 5, 16], and for that of bridges [9 , 18]. Time domain 
gust response analysis of bridges using the covariance-based POD and CPT has firstly 
presented by Le and Nguyen [10, 11] . In previous applications of spectral-based DMT, 
however, the simple quasi-steady theory has been accounted for the turbulent-induced 
forces . 

In this paper, the spectral-matrix-based POD and its SPT will be presented and ap­
plication to decoupling the multi-variate turbulent loading processes . New comprehensive 
approach on the gust response prediction of structures then will be formulated using the 
SPT with emphasis on numerical example of cable-stayed bridge. The turbulent-induced 
forces based on corrected quasi-steady theory with aerodynamic admittance also are used 
for more refinement. 

2. SPECTRAL PROPER TRANSFORMATION 

The main idea of the POD is to find out a set of orthogonal vector basis which can 
represent a multi-variate random process into a sum of products of these basic orthogonal 
vectors and single-variant uncorrelated random processes. The spectral-based orthogonal 
vectors are found as the eigenvector solutions of the eigen problem of the cross spectral 
density matrix as: 

Sv(n)Wv(n) = Av(n)Wv(n), (2.1) 

where Sv(n): cross spectral density matrix formed from multi-variate random process 
v(t); Av(n), Wv(n): spectral eigenvalue and eigenvector matrices Av(n) = diag(Av1(n) , 
Av2(n), ... AvN(n)), '11v(n) = ['l/Jv1 (n), 'lf!v2(n), .. . 'lf!vN(n)]; n: frequency variable; 'l/!vj(n): 
spectral eigenvector associated with spectral eigenvalue Avi ( n). 

Since the cross spec;t~:/11 density matrix Sv(n) is a Hermitian and positive definite one, 
thus its spectral eigenvalues are real and positive, its spectral eigenvectors are generally 
complex, satisfy the orthonormal conditions as follows: 

W~T (n)Wv(n) =I; iir~T (n)Sv(n)iirv(n) = Av(n). (2.2) 

,, 
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Thus, the Fourier transform and the cross spectral density matrix of v(t) can be 
represented in terms of the orthogonal eigenvectors Wv(n) as follows: 

N 

v(n) = \Jlv(n):Yv(n) =I: 'l/Jv1(n):Yv1(n), (2 .3a) 
j=l 

N 

Sv(n) = Wv(n)Av(n)\ll~T (n) = L 'l/Jv1(n)Avj(n)'l/J~)(n), (2.3b) 
j = l 

where Yv(n) : turbulent principal coordinates as rourier transforms of uncorrelated single­
variate random processes; N: dimension of cross spectral matrix Sv ( n); *, T: denote to 
complex conjugate and transpose operation. 

The spectral-based quantities can be approximately reconstructed by using limited 
number of the lowest spectral eigenvectors (assumed that the spectral eigenvectors rear­
ranged in reduced order of their corresponding spectral eigenvalues) as follows: 

l\l 
v(n) =I: 'l/Jv1(n)iJv1(n ); 

j=l 

i f 
Sv(n) = L 'l/Jvj(n) Avj(n) 'l/J~J(n), 

j=l 

(2.4) 

where M: number of truncated spectral eigenvectors (NI < N) . This approximation is 
known as the spectral proper transformation (SPT) in the frequency domain. 

3. SPATIALLY-CORRELATED TURBULENT FIELD AND 
TURBULENT-INDUCED FORCES 

Fig.1. Turbulent loading processes Fig. 2. Sectional tubulent forces 

Considering a line-like structure horizontally immersed in an atmospheric turbulent flow , 
the turbulent-induced loading that discretized at the structure's nodes are mainly induced 
by longitudinally and vertically turbulent fluctuations u(t), w(t) (laterally turbulent com­
ponent v(t) is omitted due to very small effect) . These turbulent components, furthermore, 
are considered as uncorrelated with each other. Thus, the random turbulent field acting 
on the structure's N - nodes can be represented as two N - variate zero-mean Gaussian 
random processes, see Fig. 1: 

u(t) = {u1(t),u2(t), ... ,uN(t)}T; w(t) = {w1(t),w2(t), ... ,wN(t)}T. (3.1) 
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Spatially-correlated N-variate random turbulent field, in which elements at two sepa­
rated points are spatially coherent together can be represented by symmetrically-squared 
cross spectral matrix: 

Sv = l 
Sv1v1 (n) 
Sv2v1 (n) 

SvNvi (n) 

Sv1v2(n) 
Sv2v2(n) 

SVNV2 

= [Svmvk(n)](NxN)i 

Sv1vN (n) l 
Sv2vN (n) 

SvNvN (n) (3 .2) 

rn, k - 1,2, ... ,N, 

where v denotes u(t) or w(t); Sv: cross spectral matrices; Svmvk(n): cross power spectral 
elements between vm( t) and vk(t) at nodes m, k; N : number of structure's nodes . Cross 
spectral elements are determined from available auto spectral densities as: 

Svmvk (n) = V Svmvm (n)Svkvk(n)cohv(n, b..mk), (3.3) 

where Svmvm (n), Svkvk (n): auto spectral densit ies of v(t) at nodes m, k, respectively; 
cohv(n , ~mk): coherence function between two spectral components at separated nodes 
m , k along structure's axis which can be obtained due to t he avai lable empirical model 
such as· [6, 15]: 

( 
Cvn lym - Ykl) 

cohv(n, b..mk) = exp - 0.5(Um + Uk) ' (3.4) 

where Um, Uk: mean velocities at nodes m, k; Cv: decay factor; b..mk = IYm - Ykl: distance 
between nodes m and k; Ym, Yk: longitudinal coordinates of m, k along structure's axis . 

Uniform turbulent-induced forces per unit structural length (consisting of lift , drag, 
moment: Lb(t) , · Db(t) , Mb(t), see Fig. 2 are determined from random t urbulent field 
u(t), w(t) due to the corrected quasi-steady theory [6], in which frequency-dependant 
aerodynamic admittance functions are supplemented. 

1 2 2u(t) , w(t) 
Lb(t) = 2pu B[CL(ao)xLu(n)---U- + (CL(ao) + CD(ao))XLw(n)U ], (3 .5a) 

1 2 2u(t) / w(t) 
Db(t) = 2pu B[CD(ao)XDu(n)---U- + (CD(ao) - CL(ao))xDw(n)U], (3.5b) 

1 2 2 2u(t) / w(t)] 
!Vh( t) = 2pU B [CM(ao) XMu(n)u- + CM(ao)XMw(n)u ) (3 .5c) 

where CL, CD , CM: aerodynamic static coefficients at balanced angle of attack ao (usu­
ally a0 = 0°); CL C~ , C~ : first derivat ives with respect to angle of attack at balanced 

angle C~ = dC:;°') lao=O, F = L, D , M; XFv(n) (F = L , D , M; v = u, w): aerodynamic 
transfer functions between turbulent components and turbulent-induced forces (their ab­
solute magnitudes refer as aerodynamic admittance functions); p, B , U: air density, width 
and mean velocity, respectively. 

Then full-scale turbulent-induced forces acting on whole structure can be formulated: 

Fb(t) = ~pU B [C'uXuF(n)u(t) + C'wXwF(n)w(t)], 
2 

(3 .6a) 

) 

~ 
'\, 
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(3 .Gb) 

L = diag(Li); 

where Cu, Cw: full-scale force coefficient matrices; y: longitudinal structural coordinate. 

3. SPECTRAL-BASED GUST RESPONSE FORMULATION 

The MDOF motion equation of structure in the atmospheric turbulent flow subjected 
to the turbulent-induced forces is expressed: 

MU+ CU+ KU= Fb(t) , ( 4.1) 

where M , C, K: globally mass, damping and stiffness matrices, respectively; U, U, U: de­
flection vector and its derivative vectors; Fb(t): full-scale turbulent-induced forces. 

Decomposing into the mass matrix-based normalized generalized coordinates and the 
M 

structural mode shapes using the SMT (<I>TM<I> =I; <I>TK<I> = D; U =<I>~= I: </>i~i ), thus 
i=l 

lDOF motion equation in the ith generalized coordinate excited by generalized turbulent­
induced forces is obtained: 

(4.2) 

where <I>: modal matrix; <I> = [ </>1, </>2, .. ., </> M]; </>i: ith mode; fr ith generalized coordinates; 
wi, (i: circular frequency and damping ratio; M: number of truncated structural modes 
(M < N); I, D: unit matrix and diagonalized eigenvalue matrix. 

Power spectra of the generalized responses can be obtained thanks to the second-order 
Fourier transform of (3.5) with application of the SPT (2.4) : 

S~(n) = ( ~pU B) 2 

[ H(n)<I>C~Wu(n)Au(n)\JJ~TK(n) 2 <I>r H(n)*r 

+ H(n)<I>c; Ww(n)Aw(n)\JJ~1,YK(n) 2 <I>T H(n)*T], 

S~(n) = (~pUB) 
2 

[H(n)Au(n)Au(n)K(n) 2A~T(n)HT(n) 
+ H ( n) Aw ( n) Aw ( n) K ( n) 2 A';,,T ( n) H ( n) T] , 

M M 
Au(n) = L Auij(n) = L <f>f Cu'l/Juj(n); 

j=l j=l 

M M 
Aw(n) = L Awij(n) = L </>[ Cw1/Jwj(n) , 

j=l j = l 

(4 .3) 

( 4.4a) 

(4 .4b) 
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where Au(n), Aw(n): cross modal coefficient (CMC) matrices in which their elements 
Auij(n), Awij(n) imply for influence of Ph turbulent mode on ith structural one; H(n): 
frequency response function (FRF) matrix H(n) = diag(IH1(n)I, IH2(n)I, .. . IH111 (n)I) 
in which term of IHi(n)I denotes to FRF at natural frequency 

Ii( n2)2 n2] - l ni, IHi(n)l2= ~ 1- ni +4([ n! ; K(n) 2: squared aerodynamic admittance function. 

Spectra and root mean square (RMS) of the global responses are obtained: 

Su(n) = <I>S~(n)<I>T; ( 4.5a) 
00 

ai = j Su(n)dn ( 4.5b) 

0 

where Su(n) , ai: spectra and root mean square of global responses, respectively. 
Finally, global responses with respect to vertical , longitudinal and rotational directions 

can be combined from single-modal responses due to the principle of the squared root of 
the sum of the squares (SRSS) : 

Mr 

ar(n) ='\I L::a;,i ; r = h, p, a (4 .6) 
i=l 

where r denotes to displacement components: vertical (h) , longitudinal (p), rotational (a) ; 
Mr: number of component modes in response combination; 

5. NUMERICAL EXAMPLE AND DISCUSSION 

A cable-stayed bridge was taken for numerical example and investigation using the 
above-mentioned computational procedures. Bridge was spanned by 40.5+97+40.5= 178 
m. Three-dimensional frame model was built thanks to the finite element method (FEM) . 
Total 30 nodes were on bridge deck, while nodes 8, 23 at pylons. First ten structural modes 
were analyzed (see Fig. 3). Damping ratios of each structural mode were assumed to be 
0.005. Mean wind velocity was taken at 20 m/ s. It also assumed that the turbulent-induced 
forces act on deck only, those on towers and cables are negligible as usual. Aerodynamic 
static coefficients of cross section at balanced angle ( a 0 = o0 ) and their first derivatives 
were experimentally determined as follows: CL = 0.158, CD = 0.041, C111 = 0.174, c~ = 
3.73, Cb ~ 0, C~ = 2.06 (Le, 2004). One-sided auto spectral density functions of u(t) , 
w(t) were obtained due to the Kaimail 's and the Panofsky's models [15]: 

Suu(n) = 200Ju; 
n (l + 5,0J)5/3; 

3.36f u; 
Sww(n) = n (1+10j5/3)' (5.1) 

where f; non-dimensional coordinates (J = nz/U); · z: deck elevation (z = 10 m); u*: 
friction velocity; k, zo: scale factor, roughness length (k = 0.4, zo = D.025 m). Coherence 
function follows the equation (3.5) with decay factors: Cu=lO, cw= 6.5 [18]. Squared 
aerodynamic admittance functions used the Liepmann's function: 

2 1 
lx(n) I = 1+27r2nB/u · (5.2) 

'-
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Cross spectral matrices S
11
(n), Sw(n) of spatially-correlated turbulent field u(t), w(t) 

(acting on 30 deck nodes) were constructed. Spectral-based POD analysis was carried out 
to find entire 30 pairs of spectral eigenvectors and associated eigenvalues . Because the 
eigenvectors are orthogonal each other at each frequency, thus called as turbulent modes . 
Fig. 4 shows the first five spectral eigenvalues >-1(n)-:- ,\5(n) on frequency band 0.01-:- 10 
Hz. It is observed that the first spectral eigenvalue ,\1 (n) exhibits much higher than 
the others on the very low frequency band 0.01 -:- 0.2 Hz with the case of u-component, 
0.01 -:- 0.5 Hz with that of w-component, however, all spectral eigenvalues seem not to 
differ beyond these frequency thresholds. This can imply that only first pair of eigenvalue 
and eigenvector seems to be enough for representing and simulating the whole turbulent 
field at the very low frequency bands, however, many more pairs are required at higher 

frequency bands. 
The first three spectral eigenvectors 'l/Jv1 ( n), 'l/Jv2( n), 'l/Jv3 ( n); v = u, w (the turbulent 

modes) on the same spectral band 0-:-lOHz is expressed in Fig. 5. It can be seen that 
the t urbulent modes of u-,w- components look like as symmetrically and asymmetrically 
sinusoidal waves, in which number of wave halves increases incrementally with the order 
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of eigenvectors. Shapes of the spectral eigenvectors of u-, w- t urbulent components, 
however, are unchanged during structurally natural frequency band (0.61-;-1.85 Hz). 
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Fig. 6 shows reconstruction of auto power spectra of u, w -turbulen_ces at mid-span 
node 15 using limited number of truncated turbulent modes (due to Equation 2.4 with 
M = 1; 3; 5; 10; 30, here totally 30 turbulent_ modes imply for targeted value). Auto 
spectral values using truncated turbulent modes differ with increase of frequency band. 
At very low frequencies , only first or few turbulent modes are sufficient to reconstruct the 
auto spectral densities of turbulent field, however, many turbulent modes should be used 
at high frequencies. This finding is similar t o that comment from Fig. 4 . 

.... 

~ 

1 



Spectral proper trans/ ormation and application . .. 
33 

Effect of truncated turbulent d . . 
t t • 1 d. 1 mo es on spectra of generalized responses (vertical and 

ro .a wna isp acements) at mid-span node 15 of some fundamentally structural modes 
at is expressed in Fig. 7. · · 
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Fig. 8 shows the spectra of global responses at mid-span node 15 and effect of number 
of truncated turbulent modes. As can be seen from Figure 8 that no much different among 
cases of truncated turbulent modes, it is noted that first turbulent mode significantly 
contributes on spectra of responses. Spectral peaks or resonant responses, moreover, 
occur at structurally natural frequencies. 

Fig. 9 expresses the root mean squares (RMS) of global responses at all deck nodes 
with emphasis on effect of truncated turbulent modes. Important role of the first tur­
bulent mode on the global mwonse is also observed. For example, the first turbulent 
mode, first 5 modes, first 10 modes contribute 29 cm(88%), 32 cm(97%), 32.6 cm(993) on 
32.7 cm-maximum vertical displacement (totally 30 turbulent modes) and 0.032°(91 %), 
0.0330(97%) , 0.034°(100%) on 0.034°-maximum rotational displacement, respectively (see 
Fig. 9). 
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Influence of turbulent modes on structural ones has been investigated by cross modal 
coefficients defined in Equation 4.4b. Fig. 10 shows the cross modal coefficients between 
first 15 turbulent modes of u- , w-turbulent components and first 10 structural modes for 
lift or vertical displacement and moment or rotational displacement . It is found out that 
few t urbulent modes (in t his case, only first 9 turbulent modes) can excite structural 
modes, and higher turbulent modes are orthogonal to the structural modes. 
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For more detail, first heaving mode (l8t structural mode) and first torsional mode 
(3rd structural modes) are excited by the first and the third tu~bulent modes. Thus, gust 
response can be obtained by only accounting effective cross modal coefficients. 

· 7. CONCLUSION 

New and comprehensive approach on the gust response prediction of structures in 
the frequency domain using the proper orthogonal decomposition-based spectral proper 
transformation has been presented here. Spatially-correlated turbulent field has been rep­
resented due to orthogonally turbulent modes in which only limited number of lowest tur­
bulent modes dominantly contributes on structural gust response. Further developments 
including digital simulation of multi-variate turbulent field using the spectral proper trans­
formation as well as time-domain gust response prediction using the covariance-matrix­
based POD and covariance proper transformation are going to be discussed in next paper. 
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PHEP CHUYEN PHO RIENG VA AP DUNG TRONG XAC DINH DAP UNG 

Ne.Au NHIEN KHi DQNG L·vc cuA c6NG TRINH 

Tai tr9ng gi6 ngau nhien tac di..mg Ien ket cau cong trlnh nam trong dong khf r6i thong tlmcmg 
ol.l'qc bieu <lien dl.l'&i d~ng cac qua trlnh ,ngau nhien Gaussian oa chieu va oa bien. Tuy nhien, 
vi~c xac tfnh toan i'.rng ngau nhien do gi6 cua ket cau cong trlnh thll'ang giiip kh6 khan xuat phat 
tu vi~c chieu cac tai tr9ng gi6 ngau nhien nay len cac to~ d9 suy r(lng cua ket cau xac djnh tu 
phan tfch d~ng thong thll'ang. Trong tmang hqp nay thU'ang ap di,mg ky thu~t tach nhi'.im tach 
trnang tai tr9ng gi6 ngau nhien tha.nh cac tha.nh phan Ii.re o(lc l~p tr9ng to~ d(l suy r(lng cua ket 
cau. Sau 06 xac djnh oap i'.rng cua ket cau trong cac to~ d<) suy n)ng do kich d(mg cua cac tha.nh 
phan Ii.re suy r<)ng nay. Bao cao nay se trlnh bay vi~c ap d1,mg phep tach tn,rc giao rieng tren w s& 
phep chuyen ph5 rieng trong mien tan so nham tach cac qua trlnh Ii.re gi6 ngau nhien oa chieu tir 
tmang gi6 tmmg quan khong gian thanh cac d~ng tai tr9ng ngau nhien tn.rc giao, theo 06 xac l~p 
m(lt each tiep c~n m&i trong tfnh toan oap ung ngau nhien khf o(lng Ive cua ket cau cong trlnh . 
Tinh toan va khao sat vi d1,1 cho ket cau cau day vang. 




