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Abstract. A quadrilateral element with smoothed curvatures for Reissner-Mindlin struc­
ture plates is proposed. A curvature matrix at an a rbitrary point is normalized by a 
non-local approximation over a smoothing function . By choosing a constant smoothed 
function and applying the divergence theorem, the bending stiffness matrix calcu lated on 
boundaries of smoothing elements (smoothing cells) instead of on their interior. Several 
numerical results are analyzed to demonstrate high reliability and free locking of the 
proposed method. 

1. INTRODUCTION 

The plate structure has been played a significant important role in the application 
to engineering analysis. The study of its behaviour has been for long time and the plate 
bending in which it contains complex problems still continuous to be discussed by engineers 
and scientists. In the theory of plates there are two different cases of plates that are the 
Kirchhoff and the Reissner - Mindlin plate. In the intuitive answer, engineers normally 
will choose t he Reissner - Mindlin plate as being to use t he conforming C0 ·- elements for 
approximations. An advantage of the Reissner -:tvlindlin model over the biharmonic plate 
model is that the energy involves only first derivatives of the unknowns and so conforming 
finite element approximations require the use of c0 - class element instead of t he required 
C 1 - element for the biharmonic model. As shown in the literatures, the numerical analysis 
of the Reissner - Mindlin theory has to use a specia l care in order to avoid t he so-called 
shear locking phenomenon due to the limit of the small thickness. The development of 
general procedures to overcome th is drawback is an active research area. As the t hickness 
tends to zero, the Krichhoff constraint appears in the Reissner - Mindlin model and locking 
phenomenon is frequently met if low-order elements are employed. There are many ways 
to overcome shear locking phenomenon and stabili ty such as a reduced integration or a 
selective reduced integration, see Reference [1], on other terms of t he strain energy. For 
an example with a four-node quadrilateral element , the 2 x 2 Gauss point integration is 
considered for the bending strain energy and the 1 x 1 Gauss point integration is used for 
the shear strain energy. Concerning on this research topic, a lot of publications has found 
in the literatures [2 , 3]. 

Considering a general quadrilateral plate element, a start of work is to interpolate 
the deflection and the two rotations of four-nodal element . An approach used collocation 
constrain of shear approximation on boundary element then was proposed by Bathe et al. 
[5] for bilinear plate element. Here the discretized fields consist of the later displacement , 
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the rotations and shear strain. While the deflection and the rotations continuous employing 
c0 - approximation, the shear strain is interpolated by points on the edges of element . 
This method give a good result and free locking . It is known as MITC4 or Bathe-Dvorkin 
element [5]. Many versions then have been developing this method for the high degree of 
approximate fields, see e .g the textbook [3] . 

To resolve shear locking in mesh-free methods for the Reissner - Mindlin model , a 
stabilized conforming nodal integration (SCNI) has been proposed as a normalization for 
nodal integration [8, 9] of meshfree Galerkin weak form. In this approach , the strain 
smoothing stabilization has been introduced in SCNI to meet integration constraints and 
thus fulfills the linear exactness in the Galerkin approximation of the second order partial 
differential equations. Then Wang and Chen (2004) [4] also have shown that the cause of 
shear locking in Mindlin - Reissuer plate formulation is due to inability in the approxima­
tion functions to reproduce Kirchhoff mode, and the incapability of the numerical method 
to achieve pure bending exactness (BE) in the Galerkin approximation. In this paper, a 
curvature smoothing method ( CSM) is proposed to normalize strain fields . 

In the mesh-free methods using stabilized nodal integration, the entire domain is 
discretized into cells defined by the field nodes, such as the ceJJs of a Voronoi diagram 
[8, 9]. Integration is performed along the edges of each cell. Although meshfree methods 
obtain good accuracy and high convergence rate, the non - polynomial or usually complex 
approximation space increases the computational cost of numerical integration. Recently, 
applications of the SCNI to the FEM had been developed by authors such as Liu et al. [6], 
Nguyen et al. [7] for 2D problems. It shown that the FEM with smoothed techniques gives 
stabilized results and high accuracy. 

The aim of this paper is to extend the applicat ion of the SCNI to the FEM for plates. 
A curvature smoothing technique is utilized to compute the bending strains. The shear 
strains is approximated by an independent interpolation fields in the natural co - ordinate 
system. A new element that overcomes the shear locking is proposed. 

The outline of the paper is organized as follows. In the next section we present the 
basic equations of plate problem and weak form. The curvature smoothing stabilization 
and the finite element discretization using the CSM are introduced in section 3. Several 
numerical examples are given in Section 4 . Finally, Section 5 closes some conclusions and 
further works. 

2. GOVERNING EQUATIONS AND WEAK FORM 

Let D be the region in R2 occupied by the middle plane of the plate. w and f3 = 
(f3x, {3y)T denote the transverse displacement and the rotations in the x-z and y-z planes, 
see Fig. 1, respectively. For simplicity, we will consider problems with the hard clamped 
boundary conditions . However, it can do well for several other boundary conditions. 
Assuming that the material is homogeneous and isotropic with Young's modulus E and 
Poisson ratio v, the governing differential equations of Reissner-Mindlin plate are of the 
form, 

- divCbK.(/3) - >..t"t(/3) = 0 in D, 

- )ddiv('Y) = p in D, 

w = w, f3 = f3 on r = an, 

(2.1) 

(2 .2) 

(2.3) 
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where t is the plate thickness, p = p(x, y) is t lie transverse loading per unit area, ,\ = 
kE k = ~ is the shear correction factor and Cb is the tensor of bending moduli, "' 

2(1 + v)' 6 
and 'Y are the bending and shear strains, respectively, defined by 

"' = 

8 f3x 

- ~}Jy 
8y 

8 f3x _ 8(3y 

8y ax 

[ 
ow 1 - +f3x 

' 'Y = &t; - . 
8 

(3y 
y 

(2.4) 

The Equations (2.1) - (2.3) correspond to the minimization of the total potential 
function 

II = - Cb : "" : n,dD. + - c s : / : 1dD. - wpdD.. 11 lj' j' 
2 0 2 0 0 

(2.5) 

© 

Fig. 1. Assumption of shear deformations for quadrilateral plate element 

Assumed that the bounded domain n is discretized into ne finite elements, n :::::::: n1i = 
ne 
:z::= 0,e . The finite element solution uh = [w f3x (Jy]T of a displacement model for Reissner-

e=l 
Mindlin plate is expressed as follows 

uh= t [ ~i 
i=l 0 

ioi l q ;, 
Ni 
0 (2.6) 
0 

where np is total the number of element nodes, the Ni's are the bilinear shape interpolation 
functions associated to node i, the qi = [wi Bxi Byi]T are the nodal degrees of freedom of 
the variables uh = [w f3x (3y]T associated to node i. Then, the discrete curvature field is 

(2 .7) 
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where Bb defined below is the curvature to nodal displacement matrix. The approximation 
of shear strain is written by 

--./ = B sq, (2.8) 

where 

Bi = [ Ni ,x 0 Ni ] . (2 .9) 
Ni ,y - Ni 0 

By substituting Eq. (2.6) - Eq. (2.8) into Eq. (2 .5) and minimization, we obtain a linear 
system of an individual element for the vector of nodal unknowns q , 

Kq = g, 

with the element stiffness matrix given by 

K = ( (Bbf CbBbdD + ( (B 8 f C 8 B 8 d0 
Joe Joe 

and the load vector by 

where 

Cb = Et3 
12(1 - z;2) 

g, ~ fn, N ; [ ~ l dCT, 

[ 

1 lJ 

lJ 1 

0 0 

0 
0 

1 - lJ 

2 l cs _ Etk [ 1 O ] 
2(1+v) 0 1 · 

(2 .10) 

(2.11) 

(2.12) 

(2 .13) 

The element stiffness matrix K is symmetric, positive definite. Using a low-order element 
as np is equal to four, the elements are locked in the limitation of thin plate. Therefore, 
there are various approaches for eliminating locking found in the literatures [2, 3] . The 
aim of this paper is to propose a stabilized integrat ion for a quadri lateral plate element 
such as: (1) apply the curvature smoothing method that is originated with a mesh-free 
stabilized conforming nodal integration [4] to the first term of Eq. (2 .11 ) ; (2) approximate 
the shear strains with independent interpolation functions (namely the MITC4 [5]) into 
the second term. 

By associating the conventional FEM and the CSM developed for mesh-free nodal 
integration, the presented method for plates is the idea being as follows: ( 1) elements 
are present, as in the FEM, but smoothing cells is considered by partitioning element 
into many sub-cells (2) integration is carried out either on t he elements themselves , or 
over smoothing cells, forming a partition of the elements (3) applying the CSM on each 
smoothing cell to normalize local curvature and calculate the bending stiffness matrix ( 4) 
approximating the shear strains with independent interpolation functions (mixed interpo­
lated tensorial components) proposed by Bathe et al. [5] and then compute the shearing 
stiffness matrix. 

3. THE CURVATURE Sl\100THING METHOD 

The CSM was proposed by Wang et al. [4] as the normalization of local curvature. A 
curvature smoothing stabilization is created to compute nodal curvature by a divergence 
estimation of a spatial averaging of curvature fields. This curvature smoothing avoids 
evaluating derivatives of mesh-free shape functions at nodes and thus eliminates deflective 

.A 

.., 

) 

l 
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modes. The motivation of this work is to develop the curvature smoothing approach for 
plate structures in the FEM. A curvature smoothing at an arbitrary point is modified in 
this paper by 

(3.1) 

where <I> is a smoothing function that generally satisfies the following properties [4, 9] 

<I> 2: 0 and { <I>dO = 1. (3.2) lo.h 
For simplicity, <I> is assumed to be a step function defined by 

..n ( _ ) _ { 1 I Ac, x E Oc 
'*' x xc - 0, x rt Oc , (3.3) 

where Ac is the area of the smoothing cell, Oc c oe c Oh, as shown in Fig. 2. 

Smoothing cells ( I to 4 quadnlatcrals) 
Support do~n of nod~ -~- - - · · · -·· · ·-· · -··· -· · · -· · -----_ . ·-

~// 7 6 ' . 
9 

'"'--- .. ___ ; -- Element 

Fig. 2. Example of finite element meshes and smoothing cells 

Substituting Eq. (3 .3) into Eq. (3.1), and applying the divergence theorem, we obtain 

_ h 1 J ( ae? aej ) 1 J h 1i ) "'-dxc) = -- -- + - dO = -- (Bi nj + Bjni df. 1 2Ac D.c OXj OXi 2Ac re 
(3.4) 

nb 
Next, we consider an arbitrary smoothing cell, De with boundary fc = LJ r~, where r~ 

b=l 
is the boundary segments of Oc, and nb is the total number of edges of each smoothing 
cell. The relationship between the smoothed curvature field and the nodal displacement 
is written 

(3.5) 
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The smoothed element curvature stiffness matrix is obtained by the following form 

I(b = f (BbfcbJ3bdD = f (Bbf(xc)CbJ3b(xc)Ac, (3.6) 
Jne C=l 

where nc is number of smoothing cells of the element, see Fig. 3. 
Here, the integrands are constant over each De and the non-local curvature displacement 
matrix reads 

l { ( 0 0 Ninx ) Bf (xc) = Ac Jr 0 -Niny 0 df. 
f'c 0 - Ninx Niny 

(3.7) 

From Eq. (3.7) , we can use Gauss points for line integration along each segment off~;­
In approximating bilinear fields , if the shape function is linear on each segment of a cell's 
boundary, one Gauss point is sufficient for an exact integration. 

1 nb ( 0 0 Ni(xf)nx ) 
-b G C 

Bi (xc) = Ac L 0 - Ni(x1G)ny Oc lb , 
b=l 0 - Ni(xb )nx Ni(xb )ny 

(3.8) 

where xf and lf are the midpoint (Gauss point) a~d the length of rf, respectively. 
The smoothed curvatures lead to high flexibility such as arbitrary polygonal elements, and 
a slight computational cost reduction. The element is subdivided into nc non-overlapping 
sub-domains also called smoothing cells. Fig. 3 is the example of such a division with nc = 
1, 2, 3 and 4 corresponding to 1-subcell, 2-subcell, 3-subcell and 4-subcell elements . Then 
the curvature is smoothed over each sub-cell. 

Now we approximate the shear strains with independent interpolation fields in the 
natural coordinate system. It comes as follows [2]: 

[ 
Ix ] = J-1 [ _:;f. ] , 
ly lri 

(3.9) 

where 
1 1 

'YE,= 2[(1 - T/hf + (1 + Tlhf], ITJ = 2[(1 - ~h¢ + (1 + ~h~], (3 .10) 

with J is the Jacobian matrix and the midside nodes A, B, C, D are given in Fig. l. 
Presenting if, if and 1¢, I~ based on the discretized fields uh, we obtain the shear 
matrix in the following form 

where 

BS = J-1 
i [ 

Ni,f. 
Ni,TJ 

- bf 2 Ni ,f. 
b22N· - i i ,1] 

b
11 

Ni ,f. ] 
i ' b21N· 
i i, TJ 

(3 .11) 

11 M bl2 c M b21 L b22 L (3 12) bi = ~ix,f,, i = i.,iY,f, , i = T/iX,TJ' i = T/iY,,,, , · 
with ~i E {- 1, 1, 1, - 1}, T/i E {-1, -1, 1, l} and (i, M, L) E { (1 , B , A); (2 , B, C); (3, D, C); 
(4,D,A)} 

Thus the smoothed element stiffness matrix can be obtained as follows: 

K = I(b +K8 =f(BbfCbBbAc +1 (Bs)TcsBsdn, (3.13) 
C=l fl• 
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Fig. 3. Division of an element into smoothing cells (nc) and the value of the shape 
function along the boundaries of cells: k-Subcell stands for the shape function of 
the MISCk element, k = 1, 2, 3, 4 
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where the shear term, K 8 is still computed by using 2 x 2 Gauss points while the element 
bending stiffness, Kb in Eq. (2 .11 ) is replaced by smoothed curvature technique on each 
wise-smoothing cell of the element. 

4. NUMERICAL RESULTS 

To coin four-node quadrilateral plate element with stabilized conforming nodal in­
tegration, we label to be MISCk (a Mixed Interpolation with Smoothed Curvatures for 
four-node quadrilateral Reissner- Mindlin plate element) - with smooth k E {1, 2, 3, 4} 
subcell on the bending terms. For instance, the MISCl element is the result of stabilized 
conforming nodal integration in which only one subcell is used to integrate the bend­
ing part of the element stiffness matrix. We also use the reduced/selective integration 
quadrilateral element (Q4-R) for comparison with the MITC4 and the MISCk elements. 

4.1. Patch test 

First we investigate the element behaviour with the patch test. This is a numerical 
technique to prove that the proposed method will or will not converge. A plate with 
five quadrilateral elements is given in Fig. 4. The boundary deflection is assumed to be 
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w = ~(1 +x+2y +x2 +xy+y2
) [10]. The results shown in Table 1 enjoy that the MITC4 

element and the MISCk element pass the patch test while the element Q4-R fails. Also, 
note that the element Q4 that uses full numerical integration on both bending and shear 
terms cannot pass patch test. 

s:l 
c:i 

y 

0.24 
1.--~~~~~~~~~~~~~~3 

8 7 

6 
5/ 

2 x 

Node coordinates 

1 0.0 0.0 

2 0.24 0 .0 

3 0.24 0.12 

4 0.0 0.12 

5 0.04 O.D2 

6 0.18 0.03 

7 0.16 0.08 

8 0.08 0.08 

Fig. 4. Patch test of elements 

.:1 
Table 1. Patch test 

Element W5 Bx 5 By5 m x 5 my5 m x y5 

Q4-R 0.5440 1.0358 -0.676 
MITC4 0.5414 1.04 -0.55 -0.01111 -0.01111 -0.00333 
MISCl 0.5414 1.04 -0.55 -0.01111 -0.01111 -0.00333 
MISC2 0.5414 1.04 -0 .55 -0 .01111 -0.01111 -0 .00333 
MISC3 0.5414 1.04 -0 .55 -0.01111 -0.01111 -0 .00333 
MISC4 0.5414 1.04 -0.55 -0.01111 -0.01111 -0.00333 
Exact 0.5414 1.04 -0.55 -0.01111 -0.01111 -0.00333 

- no constant moments 

4.2. A simply supported square plate. 

A simply supported square plate is given in Fig. 5 subjected to a uniform load . The 
geometry and material parameters are given as length L = 10, thickness t = 0.1 , Young's 
modulus E = 1092000, Poisson's ratio v = 0.3 and p = 1. The series solution considered 
as analytical solution of Kirchhoff theory is given in [11]. Although a shear correction 
factor now is chosen to be a large value k = 1000 that the finite element solutions often 
converge against the Kirchhoff solution, the convergence behaviour of the MISCk elements 
in this case is very good for the deflection and the bending moment, see in Fig. 6. 

4.3. Razzaque's skew plate model 

A rhombic plate with skew angle 60° simply supported soft( w = 0) on two opposite 
edges and free on the remainder two edges. This plate which was originally mentioned by 
Razzaque [12] subjected to a uniform load p = 1. Problem model and initial mesh with 

.. 
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Fig. 5. A simply supported square plate subjected to a uniform load 
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Fig. 6. Normalized deflection and moment at center of simply support square 
plate subjected to uniform load 
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4 x 4 elements are illustrated in Fig. 7a. Data is given as follows: L = 100, t = 0.1 , E = 
1092000, v = 0.3. The results obtained in Table 2 show that the accuracy of the presented 
method is always better than that of the MITC4 element. 

- 5. CONCLUSION 

A quadrilateral plate element based the mixed interpolation with smoothed curvatures 
has been proposed. Except the MISCl element that exists two zero energy modes, the 
MISC2, MISC3 and MISC4 elements maintain a sufficient rank. Moreover all proposed 
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Fig. 7. A simply supported skew plate subjected to a uniform load 

Table 2. Central deflection and moment of the Razzaque's skew plate 

Mesh MITC4 MISCl MISC2 MISC3 MISC4 

(a) Central deflection wc/104 

2x2 0.3856 0.3648 0.3741 0.3781 0.3816 
4x4 0.6723 0.6702 0.6725 0.6725 0.6724 
6 x 6 0.7357 0.7377 0.7377 0.7370 0.7364 
8 x 8 0.7592 0.7615 0.7610 0.7604 0.7598 

12x12 0.7765 0.7781 0.7776 0.7772 0.7769 
16x 16 0.7827 0.7838 0.7834 0.7832 0.7830 
32x32 0.7888 0.7892 0. 7891 0.7890 0.7889 

Reference [12] 0.7945 

(b) Central moment My/103 

2x 2 0.4688 0.4688 0.4688 0.4688 0.4688 
4x4 0.8256 0.8321 0.8301 0.8284 0.8269 
6x6 0.8976 0.9020 0.9005 0.8994 0.8984 
8x8 0.9242 0.9272 0.9260 0.9254 0.9245 

12x12 0.9439 0.9454 0.9448 0.9445 0.9442 
16x16 0.9510 0.9518 0.9515 0.9513 0.9511 
32x32 0.9577 0.9580 0.9579 0.9578 0.9578 

Reference [ 12] 0.9589 

elements do not exhibit shear locking in limitation of thin plate. It is also shown that 
the MISCk element passes patch test. The present method gives a simple computation 
and gains the slightly high accuracy. Through ~umerical results we can purify the best 
element that is the MISC2 element. 

Another advantage of the method, emanating from the fact that the bending stiffness 
matrix is integrated on element boundaries instead of on their interiors is that the proposed 
formulation still gives accurate and convergent results for extremely distorted meshes . 

Our results only derive from computing a uniform refinement of the mesh. Singular 
problems such as above skew plate or corner plate consume a deal of computational cost 
with uniform meshes because the convergence is slow. Thereby; a sound knowledge is 
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Fig. 8. A distribution of von Mises and level lines for skew plate using MISC4 element 

necessary to generate finite element meshes based on cost-effective and accurate solutions. 
We thus should combine our method with an adaptive local refinement procedure in order 
to improve the cost effectiveness of the error bound evaluation. 

In addition to the above points, the authors believe that the curvature smoothing 
technique herein is seamlessly extendable to complex problems such as non-linear material 
and geometric problems, rid of shear locking in shell formulations . 

The above points will be treated in forthcoming papers. 
Acknowledgements. The financial support of the Basic Research Project from the 
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UNG DlJNG KY THU~T TRON HOA BIEN D~NG VON CHO PHAN TV TAM 
REISSNER-MINDLIN TU GI.AC 

Pha n tt'r tu giac cho tam Reissuer - Mindlin v&i ky tlrn i~t twn hoa bien d1;\ng uon dll'qc 
de nght. Ma tr~n d(> cong t~i m(>t diem bat ky dm;rc chua'.n hcSa b&i ham lam twn trong Ian c~n 
coa diem khao sat. Khi ham trcm dU'qc ch9n la hang so, ma tr~n d(> ci'.rng uon QU'<;>'C tinh tren bien 
phan ti'r thay vl ben trong nhll' each tinh thong thm'mg. Cac ket qua so cho thay plmcmg phap 
de nghj d1;\t chinh xac cao han phll'ang phap phan tt'r hfru h1;\n truyen thong ma khong lam tang 
chi phi tinh toan. 




