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Abstract. Two approximation methods (the Green's theorem technique and the directional de­
rivative technique) of spatial derivatives have been proposed for finite differences on unstructured 
t riangular meshes. Both methods have the first order accuracy. A semi-implicit time matching 
methods beside the third order Adams-Bashforth method are used in integrating the water shallow 
equations written in both non-conservative and conservative forms. To remove spurious waves, a 
smooth procedure has been used. The model is tested on rectangular grids triangulari2jed after the 
8-neighbours strategy. In the context of t he semi-implicit time matching methods, the directional 
derivative technique is more accurate t han Green's theorem technique. The results from the t hird 
order Adams-Bashforth scheme are the most accurate, especially for discontinuous problems. In this 
case, there is a minor difference between two approximation techniques of spatial derivatives. 

1. INTRODUCTION 

Models simulating flow in rivers, coastal areas, . . . are needed to resolve many natural 
phenomena in such domains. Because natural phenomena range from small scales to large 
scales, meshes used in models must vary and depend on problem geometries. That's why 
unstructured meshes are more appropriate than structured, uniform meshes in modeling 
flows [7] . The popular methods using unstructured meshes consist of finite volumes and 
finite elements. A cell , e.g. a triangular, is a base element in such methods. The finite 
volume method is more preferable than the finite element method because its conservative 
form of equations implies the conservation of momentum and mass in the results . The key 
concept involves an algorithm specifying the fluxes between two cells. 

In finite differences, uniform meshes (usually equispace rectangular grids) are widely 
used. This may be derived from the approximation technique using the Taylor 's serie 
expansion. In this paper we try to approach spatial derivative approximation using other 
methods. Although the methods are simple, their application is directly consistence with 
unstructured meshes and easy in implementation. 

2. FORMULATION OF THE NUMERICAL M ODEL 

2.1. Fundamental equat ions 

The numerical model is based on the two dimensional Saint Venant equations in the 
non-conservative form [8] 

;... 
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or in the conservative form (Madsen, 1997) 
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where u, v: the depth-averaged current velocity; p, q: the volume flux; h: the instantaneous 
water depth; z: t he bed elevation; g: the gravity acceleration; diff: the diffusion term (the 
turbulent momentum transfer); l: the Coriolis parameter; p: the water density; Tbx, Tby: 

the bed stress; Twx, Twy: the wind stress. 
The diffusion terms are formulated as the second, fourth or sixth order turbulent mo­

mentum transfer scheme. With an appropriate scheme, the diffusion terms will damp spu­
rious waves occurring in the integration and guarantee the stability of numerical schemes. 

2.2. Approximations of spatial derivatives 

Supposed that f is a function we want to calculate its partial spatial derivatives. 
Suitable approximations of these derivatives are necessary because the model is designed 
for unstructured meshes instead of rectangular grids . There are two techniques enabling 
the calculations of spatial derivatives: the Green's theorem technique and the directional 
derivative technique. 

2.2.1. Green's theorem technique 

Let M be a point that its spatial derivatives have to be approximated and we will 
numerate the points that link with M in the unstructured triangular mesh in the sequence 
1, 2, .. , n (Fig. 1). The area of the polygon made of the edges 12, 23, .. , n 1 is S . Apply 
the Green's theorem for spatial derivatives off with an integration over S and denote the 
closed contour of the polygon by C we have 

ff~~ dS = f fcos(n, x)dC = f fdy (2 .3a) 

s c c 

ff~~ dS = - f fcos(n , y)dC = - f fdx (2.3b) 

s c c 
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Fig. 1. A sketch of unstructured grid points in Fig. 2. A sketch of unstructured grid points in 
formulating spatial derivative approximations formulating spatial derivative approximations 
after the Green's theorem technique after the directional derivative technique. 

Here n is the unit vector normal to the closed contour C. Now assuming a piece­
wise constant approximation to the spatial derivatives inside the polygon S, t he spatial 
derivatives at M can be calculated from the following approximations 

afl 1 f ax M = s fdy+ O(hx) 
c 

(2.4a) 

8fl 1 f - = -- fdx + O(hy) 
8y M S 

c 

(2.4b) 

in which hx, hy are the maximum distances from M to the vertices of the polygon S in 
x-axis and y-axis respectively. 

Two integrations over the closed contour C in the equation (2.4a, b) are the sum of 
the integrations over the edges 12, 23, ... , n1 and with a simple linear approximation on 
each integration, they become 

f fdy = J fdy+ J fdy+ .. . + J fdy . 
C 12 23 nl (2 .5a) 

h+h h+h h+h ) 
(y2 - yi) + " (y3 - Y2) + · · · + " (Y1 - Yn 

f fd x = j fdx+ j fdx+ ... + j fdx 
C 12 23 n l (2 .5b) 

Ji + h ( h + h ( ) Jn +Ji 2 X2 - x1) + 2 X3 - X2 + ... + 2 (x1 - Xn) 

For the area S, we can also apply the Green's theorem 

S = j j dS = f xdy = - f ydx (2 .6) 

s c c 

and it has the same formula as in (2.5a, b) where f should be x or y. 
All the higher order spatial derivatives can be estimated in the same way. To calculate 

the nth spatial derivatives, we have to compute all ( n- l) th spatial derivatives for all points 
in the domain then apply the formula (2 .5a, b) with f becoming j (n- l). . 

A 
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2.2.2. Directional derivative technique 

If n is a vector and the angle between n and the unit vector on the x axis i is a, the 
following formula is always true for the spatial derivative of f in the direction of n 

, of af . f- = -cosa+-smo: (2 .7) 
n OX Oy 

Suppose that 0 is the point where we want to calculate the spatial derivatives. To ap­
proximate its spatial derivatives, two spatial derivatives at the point 0 with respect to 
two next points P and Q will be considered (Fig. 2) . Taken as the two vector OP and 
OQ, then denote their angles with the vector i by -- --____, ---* -----) ---* 

ap = OP, i ; aQ = OQ, i 

Applying (2 .7) for the two directions OP and OQ we have 

I Oji Oji . fp-fQ 
fQ? = ox 

0 
cosap + oy 

0 
smap = OP + O(OP) (2.8a) 

, a11 a11 . fQ-fo 
foQ = ox 0 COSctQ + 8y 0 SlllctQ = OQ + O(OQ) (2.8b) 

Neglecting the high order terms in (2.8a, b), the equations become a linear system. 
some simple steps, we retrieve the solution 

After 

a1 I 1 ox 
0 

= 2S[jo(yQ -yp) + fp(yo -yQ) + fQ(YP -yo)] (2.9a) 

of I 1 oy 
0 

= -
28 

[fo(xQ - xp) + fp(xo - XQ) + fQ(xp - xo)] (2:9b) 

Now return to the Fig. 1 and apply (2.9a, b) for all triangulars M12, M23, .. . , Mnl we 
get n estimations for each spatial derivative at the point M. The simplest way to calculate 
a spatial derivative is t o average all estimations 

~~lo = ~ ( ~~IM12 + ~~IM23 + ... + ~~MnJ (2.lOa) 

ofj i (afj ofj of ) 
f)y 0 = -:;;, f)y Ml2 + oy M23 + .. . + oy Mnl (2 .lOb) 

Calculating the higher order spatial derivatives has the same approach like the Green's 
theorem technique in 2.2 .1. 

2.3. Time matching methods 

There are many time matching methods (see for example in Lomax, 1999) and we can 
choose an appropriate method with spatial derivative approximations in (2 .2). The third 
order Adams-Bashforth scheme is a good candidate because its highly accurate (third 
order in time) and economical (explicit method) property. This scheme will be used for 
the equations in the conservative form (2 .2) . Suppose that f is a function varied in time, 
then the value of f in the future can be updated from the current value and the time 
derivatives in the past 

r+l = r + .!_ (23 0 f n - 16 a f n - 1 + 5f)1n- 2 )~t (2.11) 
12 at at at 



234 Nguyen Due Lang, Tran Gia Lich, and Le Due 

For the non-conservative form, the semi implicit approach is taken in handling the advec­
tion terms. These nonlinear terms always request special attentions. Here are three semi 
implicit integrating method. 

Rewriting the equations (2.la, b, c) 

au au 
- + u- =Fu (2.12a) at ax 
av av 
at+ v ay = Fv 

ah h (au av) = F 
at + ax+ ay h 

and discretizing all terms in the following form 

n n-1 !:i ,n-1 Ui - ui n ~ _ pn-1 
6..t + ui ax . - ui 

i 

Vn - vn- l · !:i ,n-1 
i i UV 

f:i..t +vi - = pn- 1 ay i v i 

h'i - hn- 1 
___ i,___ + hn 

f:i..t i (au av) ,n-1 -+- = Fn- 1 ax ay . hi 
i 

(2 .12b) 

(2.12c) 

(2 .13a) 

(2.13b) 

(2.13c) 

As usual in the CFD context, subscript indices denote space indices while superscript 
indices denote time indices. All spatial derivatives in ( 2. l 3a, b, c) are estimated from the 
methods in the part 2.2. The explicit solutions for the equations (2 .13a, b, c) can be easily 
found and are not shown here. 

Actually the semi-implicit method are more complex than the above description. For 
each time step an iterative procedure is done to promote the accuracy of solutions. With 
an error percentage is 1, the number of iterative steps is from 2 to 5. 

2.4. Boundary conditions 

Without the diffusion term, the equations (2.1) can be transformed into the symmetric 
form which is quasi-linear hyperbolic. The eigenvalues of the flux Jacobian matrix are 
phase speeds of waves travel in or out the domain. The wave speeds depend on the normal 
velocity Un and the gravity wave velocity c. The number of boundary conditions is the 
same the number of waves traveling in the domain. So the number boundary conditions 
are problem-oriented and we need a general frame in implementing boundary conditions. 
Here are boundary conditions supported in the model 

Imposed boundary conditions which may be flow velocity u , v, discharge p, q or water 
depth h. 

Solid boundary conditions. 
Radiative boundary conditions. 
Depending on the number of boundary conditions, the complementary equations have 

to be specified on the boundary or not . Using the characteristics method, Tran et al. [8] 
founded these equations when the boundary is parallel to the coordinate axis. Because the 
model is based on unstructured triangular meshes, these supplementary equations can't 
be applied directly and we will chose a more simple approach. If a variable is not specified 
on the boundary, its value is calculated from its difference equation. 
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2.5. Smoothing 

In testing the model with shock waves or supercritical flows, high frequency oscillations 
occur in the solutions, amplify very fast and overcome all slow waves: To smooth out such 
waves from solutions, we use a smooth procedure. Smoothing will be carried out at a 
given time for all points after a given step. For a field like h, after each smooth step, its 
value at a point M (Fig. 1) will ·be 

hM = (1 - w) * hM + W * hM (2 .14) 

where w is the smooth weight (0.02 in this model) and the average of his computed from 
the surrounding points 

(2.15) 

With the smooth formulation (2 .14) the conservation of mass may be violated but we 
found that it is not significant in practice as shown in the following section. 

3. MODEL TESTING 

In the following section some tests are carried out to validate the model performance. 
To simplify the output handling, all computational points will be chosen from vertices of 
a rectangular grid. However, all are considered in the context of unstructured triangular 
meshes. Fig. 3 shows some strategies generating a triangular mesh from points in a 
rectangular grid. All tests are based on the 8-neighbours strategy. 

Fig. 3. Three strategies generating unstructured triangular meshes from rectan­
gular grids: 6-neighbours (left), 4-8-rieighbours (center), 8-neighbours (right) . 

Two spatial derivative approximation techniques, the Green's theorem and. the direc­
tional derivative, will be denoted by Sl and 82 respectively. Tl is a short symbol for 
three semi-implicit time matching methods represented in 2.3 . T2 is for the third order 
Adams-Bashforth scheme. In all figures, the analytical solution (optional) will be shown 
by a dash line and the numerical solution a solid line. Dashed lines are also used for bed 
elevations in some figures . A local context will make the meaning obvious. 

3.1. Dam break over a wet or dry bed 

The problem configuration is shown in Fig. 4 (left). There is a dam between two 
water layers with the depths are hr and h1 respectively. The dam is supposed to vanish 
instantaneously. This problem enables testing the treatment of the free surface gradient 
and the wetting - drying handling. Fig. 4 (right) plots the analytical solution in the wet 
bed case without friction. 

In testing we set h1 = 6 m, hr = 2 m. The channel length is 1000 m, the channel 
width is 4 m and the distance between two successive points is 2m. The .. zero discharge 
is imposed in left and right boundaries. No friction ang ~<:UffJJsipµJorces are included. 
The numerical solution compared to the numerical solutions after 30 s from all spatial 

' ' 
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Fig. 4. The geometry of dam breaks over a wet bed (left) and the analytical 
solution of dam breaks over a wet bed when bottom frictions are ignored (right) . 
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Fig. 5. The numerical solutions compared to t he analytical solutions after 30s for 
dam break over a wet bed, which result from the semi-implicit approach. The 
results with the spatial scheme Sl are in the left and S2 in the right. 
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derivative techniques combined with the semi implicit integrat ion methods and t he t hird 
order Adams-Bashforth scheme is shown in Figs, 5 and 6. The time step is 0.1 sand the 
number of smoothing is 5 for each time step . 
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Fig. 6. The numerical solutions compared to the analytical solutions after 30. s 
for dam break over a wet bed, which result from the third order Adams-Bashforth 
approach. The results with the spatial scheme Sl are in the left and S2 in the right . 
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Using any semi-implicit method, the numerical solution phase is slower than the nu­
merical analytical phase. However, the numerical solutions from S2 are more accurate 
than those from Sl. But this is not true in case of the third order Adams-Bashforth 
scheme (T2) as in the Fig. 6 where the numerical solutions are identical. And the first 
technique Sl will be combined with the scheme T2 in the next tests. 

Comparing the Fig. 6 to Fig. 7, the third order Adams-Bashforth scheme seems to be 
more attractive than the semi-implicit approach . This is asserted in simulating dam break 
over dry bed (Fig . 7) . All initial and boundary conditions are the same except hr is set 
to zero . The integration time is 30 s. 
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Fig. 7. The numerical solutions compared to the analytical solutions after 30 s for 
dam break over a dry bed , which use the spatial scheme Sl. The results with the 
semi-implicit scheme Tl are in the left and the scheme T2 in the right . 
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While t he third order Adams-Bashforth can catch very well the analytical solution, 
the semi-implicit approach misses the true solution with a numerical shock wave. Fig. 7 
also -proves the good wetting - drying treatment in the model. 

3.2. Partial dam break 

This problem is a general case in two dimensional space of the above problem. It 
is proposed by Fennema (1990) . All initial conditions remain in the one dimensional 
case where a dam dividing the domain into two same water layers with different depths. 
Now there is a breach separating the dam into two parts asymmetricaly. The breach is 
assumed occurring instantaneously. In his paper, Fennenia set ht = 10 m, hr = 5 m and 
the domain consisting of a 200 mx200 m region which is subdivided into a 4lx41 square 
grid. The breach is 75 m wide and centered at 75 m. However, Alcrudo (1994) argued 
that the downstream water depth 5 m is not a severe test for the model because the flow 
is subcritical everywhere. Therefore, the much smaller downstream water depth -should be 
tested for the numerical scheme. Test results after 5 s with three downstream water depth 
5 m and Om are shown in the Fig. 8. The problem configuration is keep cons~stently with 
Fennema . All boundaries are solid. The time step is 0.1 s and the number of smoothing 
is .5 for each time step. 

These results are very similar to others found in the literature for this problem (Anas­
tasiou, 1997) . Both time matching methods Tl and T2 simulated very well subcritical 
flows but the semi-implicit approach misses the true reality in confronting with supercrit­
ical flows while the third order Adams-Bashforth not. 
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Fig. 8. The numerical results integrated after 5s for partial dam break over a fiat 
bed with the downstream initial water depth Sm (top) and Om (bottom) , which 
use the spatial scheme 81. The results with the semi-implicit scheme Tl are in 
the left and the third order Adams-Bashforth scheme T2 in the right. 

3.3. Reflection of a surge wave 

This test is adopted from Hu [4] . Friction and diffusion is ignored. The geometry is 
a rectangular channel lOkm long and 50m width. One end of the channel is closed with 
a solid wall. The other end of the channel is an inlet boundary where a surge with water 
depth d1 = 10 m is imposed. Initially, water level is at rest d2 = 5 m. The surge wave 
travels from left to right. When the wave hits the right solid wall , a reflected surge wave 
with increased depth of d3 travels in the opposite direction. 

The numerical results compared to the analytical results are shown in the Fig. 9. The 
left column shows the results after 200s, the right 1000 s. The spatial step is 25 m, the time 
step is 1 s. Now the semi-implicit approach reveals large phase errors. These results are 
the same the results in 3.1. For discontinuous problems, the third order Adains-Bashforth 
should be used. 

4. CONCLUSION 

If the semi-implicit integrating scheme is considered, the directional derivative tech­
nique in spatial derivative approximation should be used. With the third order Adams­
Bashforth scheme, we can choose any approximation technique, which do not impact on 
the results significally. Between two time matching methods, the Adams-Bashforth is the 
most accurate. 
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Fig. 9. The numerical solutions compared to the analytical solutions after 200s 
(left) and 1000s (right) for surge wave over a flat bed. The results with the schemes 
S2, Tl · in the top and the schemes Sl , T4 in the bottom. 
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All numerical results in testing show a good appropriation with results in literature. 
This leads to an impression on a good performance of the model. At least, we can assert 
the model quality in simulating discontinuous problems (some problems do not shown in 
this paper) . More severe tests from continuous problems are needed to validate the model 
for such problems. 

Spurious waves occur in the results for any time matching methods. That mean spuri­
ous waves come from the approximation techniques of spatial derivatives. And smoothing 
is necessary in modeling. Then we confront a problem concerning the conservation of 
mass. This problem is not severe in the above tests but we need examine it in future. The 
most difficult thing lies in choosing an appropriate number of smoothing. Large numbers 
of smoothing will smooth the solution drastically, while small numbers of smoothing sup­
port spurieus waves and the solutions will be distorted. We can say about a sensitivity of 
solutions on number of smoothing. 
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HAI PHUONG PHAP XAP xi D~O HAM KHONG GIAN 
TREN LUOI TAM GI.AC PHI CAU TRUC VA UNG DUNG 

TRONG TINH TOAN DONG CHAY HAI CHIEU. 

Hai phucmg phap xap xi dc;i,o ham kh6ng gian (su d\lng d!nh ly Green va SU d\lng dc;i,o 
ham hu&ng) dm;rc ap d\lng trong sai phan hfru hc;i,n tren lu&i tam giac phi cau true. Hai 
phmmg phap deu c6 d9 chinh xac b~c nhat. Cung v&i SCY do tfch phan thai gian b~c ba 
Adams-Bashforth, ba SCY do tfch phan ban an duqc sii d\lng tfch phan h$ phuang trlnh 
mr&c nong du&i dc;i,ng khong boo toan ho~c boo toan. Trong x& ly kho u&t , each t iep c<%n 
d9 sau lfITT C\J.'C tieu dm;rc s& d\lng. De loc;i,i bo cac song nhieu xuat hi$n khi tfch phan, mo 
hlnh SU d\lng ky thu~t lam twn. Kiem thu mo hlnh dm;rc th\l'C hi$n tren lu&i chfr nh~t 
da duqc tam giac h6a thong qua .chien thu~t s& d\lng tam diem ke . Ket qua cho thay ba 
SCY do tfch phan ban an CO hi$u nang nhu nhau. Khi s& d\lng nhfrng SCY do nay ky thu~t 
dc;i,o ham hu&ng 'cho lai gi<'ti tot han so v&i ky thu~t sli d\lng dtnh ly Green. Sa do tfch 
phan thai gian b<%c ba Adams-Bashforth cho ket qua chfnh xac han ca, d~c bi~t v&i cac 
bai toan gian doc;i,n. Khac v&i cac SCY do ban an, SCY do Adams-Bashforth kh6ng cho thay 
kh6.c bi~t dang ke gifra hai ky thu~t xap xi dc;i,o ham khong gian. 




