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VIBRATION FREQUENCY OF PRESTRESS SLENDER 
BEAMS RESTING ON WINKLER ELASTIC 

FOUNDATION 

NGUYEN DINH KIEN 

Institute of Mechanics , VAST 

Abstract. The present paper investigates the vibration frequency of slender beams prestressing by 
axial force and resting on an elastic Winkler foundation by the finite element method. A beam 
element taking the effects of both the prestress and foundation support into account is formulated 
using the expression of strain energy. Using the developed element, the natural frequencies of beams 
having various boundary conditions are computed for different values of the axial force and foundation 
stiffness. The influence of the axial force and the foundation stiffness on the frequency of the beams 
is investigated . The effect of partial support by the foundation and the type of mass matrices on the 
vibration frequency of the beam is also studied and highlighted. 

1. INTRODUCTION 

Prestress beams formed by inducing axial force are common structural elements in 
civil engineering. With the presence of the axial force , both the static and dynamic 
characteristics of the structure are altered. The effect of the axial load can be explained 
by alternation of the bending stiffness of the structure under the load. Thus, buckling 
occurs when the compressive membrane forces are large enough to reduce the bending 
stiffness to zero [1] . At the same time, the vibration frequency of the beam is very much 
affected by the membrane force, and it is rapidly reduced with the compressive membrane 
force. 

From practical point of view, the problem of analyzing beams resting on an elastic 
foundation has many applications. Examples include a rail on a roadbed or a pavement 
slab on soil. The rail or slab must be analyzed, and the effect of the roadbed or soil support 
must be modelled. The effect of foundation support on the deflection and buckling of the 
beam has been studied for different foundation models [2,3]. However, investigation on 
the effect of membrane force on the vibration characteristics of beams resting on elastic 
foundation is still hardly found in the literature. 

The present paper aims to investigate the vibration frequency of prestress slender 
beams resting on a Winkler elastic foundation by the finite element method. To this 
end, a beam element taking the effect of b.oth the prestress and the foundation support 
into account is formulated. The eigenvalue problem is formed for various types of mass 
matrices , and then solved for the vibration frequencies. The influence of the axial force, 
the foundation stiffness, the type of mass matrix on the vibration frequency of beams 
having various boundary conditions is investigated in detail. 

Following the aboye introduction, the remainder of this paper is organized as follows : 
Sec. 2 describes the eigenvalue _problem in dynamic analysis of~structure by the finite 
element method. Sec. 3 formulates the element stiffness matrix takillg the effect of prestress 
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Fig. 1. A two-node beam element on Winkler foundation under axial force 

and foundation support into account. Sec. 4 presents various types of mass matrices used 
in dynamic analysis of beams. The numerical investigation is presented in Sec. 5. The 
main conclusions of the paper are summarized in Sec. 6. 

2. EIGENVALUE PROBLEM 

Consider an undamped structure. Assuming the structure is discretized into NE 
number of finite elements. The equation of motion for the discretized structure can be 
written in the forms [4 , 5]. 

MD+ KD = F ext (2 .1) 

where D is the vector of structural nodal displacements; M and K is the structural mass 
and stiffness matrices, respectively; F ext is the vector of nodal external forces; D = d;t? 
is the acceleration of material particles at the structural nodes. The structural mass and 
stiffness matrices are formed by merging the element mass and stiffness matrices in the 
standard way of the finite element method. 

With no external forces , the structure undergoes harmonic motion (caused, perhaps 
by initial condition). Thus 

D = D sinwt (2.2) 

where D is the vector of vibration amplitudes of the nodal displacement vector D , and 
w is the circular frequency (rad/ s) . Substituting (2.2) into Eq. (2 .1 ) for the case of free 
vibration, we get 

(K- .A.M)D = 0 (2 .3) 

where A = w2 . Eq. (2.3) is called an eigenvalue problem, which gives nontrivial solution 
when its determinate equals to zero. 

Eq. (2.3) can be solved using any standard algorithm to obtain eigenvalues). and their 
associated eigenvectors. The frequency corresponding the lowest eigenvalue A computed 
from Eq. (2 .3) is called the fundamental frequency [5]. 

.. 
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3 . PRESTRESS BEAM ELEMENT ON ELASTIC FOUNDATION 

Consider a two-node (denoted i and j) beam element with lengt h l and flexural rigidity 
E I , prestressed by axial force P as shown in Fig. 1. The beam is supported by a W inkler 
elastic foundation, which modelled by linear springs wit h stiffness represented by kw (unit 
of force/length 2) . In t his model, t he springs are assumed to be independent each other, 
and only one parameter kw is represented for t he foundation [2, 6]. 

Assuming linear elastic behavior , t he strain energy of the element is a cont ribut ion 
from bending strain energy U B, energy stored in t he foundation Uw, and potential energy 
of the axial force Up [7]. 

l l l 2 

U = UB+Uw+Up=~ f EI(~:~ ) dx+~ j kww2dx+~ j P(~~ ) dx (3. 1) 
0 0 0 

where w denotes the transversal displacement of t he neutral axis of the beam, and P is 
positive in tension. In writ ing Eq. (3. 1) we have ignored the effect of axial strain and 
approximated the shortening of the element as 

6 ~ l du~ l [ (1 + ( ~: ) ' ) 
112 

- 1] dx" ~ l ( ~: ) 2 

dx (3 .2) 

Following standard approach of the finite element method, we introduce the interpolation 
scheme for the transversal displacement as 

(3 .3) 

where superscript T denotes t he transformation of a vector or a matrix; w is t he vector of 
element nodal displacements wit h four components 

(3 .4.) 

and N denotes the matrix of shape functions. With slender beams of t he present paper, 
the Hermitian polynomials for Bernoulli beam element can be adopted as 

(3 .5) 

From Eqs. (3.3)-(3.5), we can compute 

wit h N x = (3 .6) 
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with N xx = 

-& + 12 [§-

-r + 6~ 
£-12~ 

-¥+6~ 
Substituting Eqs. (3.3), (3 .6) and (3.7) into Eq. (3 .1) , one gets 

UB =z~EJ [3(wf + w]) + l2 (Bf +BJ)+ 3l(wi - Wj)(Bi + Bj) - 6wiWj + l2BiBj], 

l [ 2 2 Uw = 420kw 78(wi + wj) + 22l(wiei - WjBj) + l3l(BiWj - ejwi), 

+ 54wiw1 - 3eiz2 ej + 2z 2 (ef + e])] , 

(3 .7) 

(3 .8) 

Up = 3~lp [l 8(wf + w]) + 3l(wi - Wj)(ei + ej) - l2eiej - 36wiWj + 2l2 (Bf + e])] . 

The element stiffness k is easily obtained using the symbolic software such as Maple as [8] 

k = kB+ kw+ kp = hessian(U B + Uw +up, [wi, ei, Wj, ej]) (3 .9) 

From Eq. (3 .8), we obtain 

[ 

12 
1 6l 

kB = z3EI - 12 

6l 

6l -12 
4z2 -6l 

-6l 12 
2z2 -6l 

6l 1 2z2 

-6l 
4z 2 

is the standard linear stiffness matrix for a Bernoulli element, 

[ 

156 22l 54 -13l1 
z 22z 4z2 13z -3l2 

kw= 420kw 54 13l 156 -22l 
-13z - 3Z 2 - 22z 4z 2 

(3.10) 

(3.11) 

is the stiffness matrix stemming from the deformation of the Winkler foundation , which 
having the same form as consistent mass matrix as seen in Subsection 4.1 , and 

[ 

36 3l 

kp = _!_p 3z 4z
2 

30 -36 -3l 
3z -t2 

-36 
-3l 

36 
-3l 

3l 1 z2 
-3l 
4z2 

(3. 12) 

is the matrix stemming from the effect of axial force. Thus, the linear stiffness matrix of 
Bernoulli beam element is augmented by the foundation stiffness matrix and the stress 
stiffness matrix stemming from the axial force P. All the derived stiffness matrices are 
symmetric. 

4. ELEMENT MASS MATRICES 

A mass matrix is a discrete representation of a continuous distribution of mass. In the 
present work, the elastic foundation is considered massless as usually assumed in analysis 

r 
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Vibration Frequency of Prestress Slender Beams Resting on Winkler Elastic Foundation 245 

of beams on foundation [9, 10]. Thus, the element mass matrix is contributed from the 
ma.ss of the beam only. 

There are different ways of deriving a mass matrix for a beam element. This section 
briefly summarizes some types of mass matrices often employed in dynamic analysis of 
structures, which will be employed in Section 5 in numerical investigation. The detail 
di~cussion on the mass matrices is given in [5, 11]. 

, 4.1. Consistent mass matrix 

A consistent mass matrix is obtained by using the same shape functions as used in 
generating the element stiffness matrix, and defined by 

(4.1) 

where N is defined by Eq. (3 .5) and Ve is th"e element volume. For a uniform beam 
element, we can easily compute the element mass matrix m by substituting Eq. (3.5) into 
(4 .1), and obtain 

[ 

156 22l 54 -13ll 
m 22l 4l2 13l -3l2 

m = 420 54 13l 156 -22l 
-13l -3l2 -22z 4l2 

(4.2) 

where m = plA (p is mass density, and A is the cross-sectional area) is the total element 
mass. 

4.2. Lumped mass matrix 

A lumped mass matrix is simply obtained by placing the partial masses mi at node i 
of the element such as L mi is the total element mass. For a beam element, particle lump 
often has rotary inertia and the mass matrix has the following form [11] 

[

1 0 0 
- m 0 al2 /210 0 

m-2 0 0 1 
0 0 0 

(Li .3) 

where m 22 and m44 are the coefficients accounted for the rotary inertia, and often selected 
as mass moment of i~rtia of a uniform slender bar of length l/2 and mass m/2 = plA/2 
spinning about one end, so that a = 17.5. 

4.3. HRZ lumping mass matrix 

The HRZ lumping mass matrix ·is an effective method for producing a diagonal mass 
matrix. The method is proposed by Hilton, Rock. and Zienkiewicz [12].T}:ie central idea 
of the method is used only the diagonal terms of the consistent mass matrix, but to scale 
them in such a way that the total mass of the element is preserved. The method of deriving 
is given detail in [12], and the mass matrix has following form 

[

39 
m 0 

m= 78 ~ ( 4.4) 
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Fig , 2, Beams with various boundary conditions on elastic foundations for numer­
ical investigation 

p 

All the mass matrices presented in this Section will be employed in the numerical investi­
gation in Section 5, and their accuracy will be discussed in consequence. 

5. NUMERICAL INVESTIGATION 

The eigenvalue problem stated by Eq. (2 .3) is formed from the finite element for­
mulations developed in Sections 3 and 4, then solved for the frequencies of prestressed 
beams shown in Fig. 2.Various boundary conditions are considered: clamped at one end 
and free at other (denoted CF , Fig.2a) , simply supported (SS, Fig.2b) , clamped at one 
end and simply supported at other (CS, Fig. 2c). The effect of partially supported as 
shown in Fig. 2d for CF beam, where aL (0 ~a~ 1) denoted the supporting part, is also 
investigated. The geometry and material data for the beams are as follows: 

L = 5 m; A= 0.01 m2 , I = 1 x 10-5 m4
; E = 2.1 x 1011 N/m2

, p = 7 860kg/m3
, 

where L, A , I , E and p denote the total length, cross-sectional area, second moment of 
inertia of cross-section, elastic modulus and mass density of the beams, respectively. 

5.1. Unsupported beams 

This Subsection aims to compute the vibration frequencies of the beams without foun­
dation support under the axial force. To this end, the foundation stiffness parameter kw 
is set to be zero, and the variation of the frequency with the axial force is investigated. 
For the simplicity of discussion, we introduce the so-called frequency parameter /, defined 
as 

AL4 
2 P __ W1 

1= EI (5.1) 

where w1 denotes the fundamental frequency of the beams. In addition, a non-dimensional 
loading parameter µ determined amplitude of the axial force is also introduced as 

L2 
µ = EIP (5.2) 

The numerical results reported below have been obtained by using a mesh of 5-equal 
elements. 

Table 1 lists the frequency parameter / of unsupported SS beam computed at various 
values of loading parameterµ and different mass matrix types. The corresponding values 
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Table 1. Frequency parameter "( of unsupported SS beam at various values of 
compressive axial force and different mass matrices (5 - equal elements) 

µ 0 -2 -4 -6 -8 
Consistent 97.4299 77.6907 57.9514 38.2122 18.4730 

error (%) 0.0214 0.0268 0.0359 - 0.0543 0.1122 
Lumped 94.2862 75.1839 56.0816 36.9793 17.8769 

error (%) -3 .2059 -3.2007 -3.1919 -3.1740 -3.1180 
HRZ lumping 96.4114 76.8787 57.3458 37.8129 18.2800 

error (%) -1.0242 -1.0187 -1.0095 -0 .9911 -0.9337 

Table 2. Frequency parameter "( of unsupported CF beam at various values of 
compressi~e axial force and different mass matrices (5 equal elements) 

µ 0 -0.5 -1.0 -1.5 -2.0 
Consistent 12.3627 10.0067 7.5826 5.0829 2.4994 
Lumped 11.7439 9.4879 7.1747 4.7988 2.3540 

HRZ lumping 11.8659 9.5889 7.2531 4.8527 2.3813 

Table 3. Frequency parameter "( of unsupported CS beam at various values of 
compressive axial force and different mass matrices (5 - equal elements) 

µ 
Consistent 
Lumped 

HRZ lumping 

0 
237.8450 
228.8115 
234. 7931 

-5 
180.0220 
173.1246 
177.6980 

-10 
121.6148 
116.9066 
120.0323 

-15 
62.5015 
60.0514 
61.6797 

-20 
2.5192 
2.4189 
2.4856 

for CF and CS beams are given in Tables 2 and 3, respectively. The results listed in Tables 
1-3 have been obtained with a mesh of 5-equal elements . The percent age error displayed 
in Table 1 is defined as 

(at) 'Ycompute - 'Yexact lOOat error 10 = x 10 
'Yexact 

(5 .3) 

where 'Yexact is obtained from the exact fundament al frequency reported in [13] for the case 
of simply supported beam as 

w;xact = ;:~: (1 + ~~p) , SO that 'Yexact = 7r
4 (~ + 1) (5.4) 

It is noted that, to the author knowledge, the exact solution for other cases of the 
boundary condit ions is not available in the literature, so that the computed frequencies 
listed in Tables 2 and 3 may be useful for practice. 

It is seen from Table 1 the consistent mass matrix gives the most accurate fundament al 
frequency, and the computed frequency using the consistent mass matrix is always higher 
than the exact value. The frequencies computed by both the lumped and HRZ lumping 
matrices are lower than t he exact values as expected [14] . The frequency of the 'beams is 
lower for a higher value of the compressive axial force, and it becomes zero at the buckling 
Euler load, regardless of t he boundary conditions and the type of mass matrices (see also 
Tables 2 and 3). The buckling Euler loads for SS, CF and CS beams are given in [15], and 
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Table 4. Frequency parameter / of unsupported SS beam computed by different 
element numbers and with µ = - 4 

Mass matrices 2 4 
Consistent 58.6862 57.9810 

error (%) 1.3041 0.0868 
Lumped 47 .9114 55.0888 

error (%) -17.2952 -4.9056 
HRZ lumping 54.2422 57.0178 · 

error (%) -6.3670 -1.5759 

0 - 10 

element number 

250 

200 

:~- 150 

~ 100 

" ~ 
50 

0 
200 

6 
57 .9407 
0.0174 

56.6348 
-2.2369 
57.5243 
-0.7016 

k0:: \yl •/El 

8 10 
57.9339 57.9320 

0.0055 0.0023 
57.1950 57.4579 
-1. 2698 -0.8162 
57.7019 57.7842 
-0.3949 -0.2529 

µ "" PL2/EI 

'Fig. 3. Influence of axial force · and foundation Fig. 4. Influence of axial force and foundation 
stiffness on frequency parameter of SS beam stiffness on frequency parameter of CF beam 

in the term of loading parameter µ are written by 

2 
E _ 2 E 7r E 2 

µss - -Jr , µCF= - 4 , µcs = -2.0467r (5 .5) 

where the superscript E stands for 'Euler' . The HRZ lumping mass matrix is much more 
accurate comparing the lumped mass matrix, and the ehor using the HRZ matrix may be 
acceptable in regarding its simple form (only nonzero diagonal coefficients). To demon­
strate the convergency of the method , the computation has been performed for SS beam 
using various numbers of elements, and the results are listed in Table 4: Is is clearly 
seen from Table 4, the frequency of the beam rapidly converges towards the exact value, 
regardless of the mass matrix type. The consistent mass matrix shows a superiority in the 
convergency comparing its counterparts, but the HRZ lumping matrix is aiso·a very good 
one. 

5.2. Fully supported beams 

The aim of this Subsection is to investigate the effects of combined prestress and 
foundation support on the frequency of the beams. The beams are fully supported by the 
foundation as shown in Fig. 2a-c. For the sake of simplicity, we introduce the dimensionless .. 

. 
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parameter ko represented t he foundation stiffness as 

L4 
ko = EI kw (5.6) 

The results reported below are computed with a mesh of 10 equal elements and only t he 
consistent mass matrix is employed. 

Fig. 3 shows the influence of prest ress and foundation stiffness on the frequency pa­
rameter of fully supported SS beam. The corresponding figures for fully supported CF 
and CS beams are shown in Fig. 4 and Fig. 5, respectively. As clearly seen from the fig­
ures, at a given value of the axial force the frequency ·parameter of the beams is linear 
increased with an increment in the foundation stiffness, regardless of the boundary condi­
tions . For all the beams, the frequency is lower at a higher value of the compressive axial 
load (P < 0) , and higher for a higher value of the tensile axial force (P > 0). In other 
words, the foundat ion and tensile axial force increases the vibration frequency of beams 
resting on elastic foundation, regardless of t he boundary conditions. 

Fig. 5. Influence of axial force and foundation 
stiffness on frequency parameter of CS beam 

5.3. Partially supported beams 

Fig. 6. Frequency parameter of pa rtially sup­
ported CF beam at various values of axial 
force and supported percentages (ko = 50) 

The beam in t his Subsection is assumed to be partially supported by the elastic foun­
dation, and only CF beam as shown in Fig. 2d is considered herewith. The computation 
is performed for the foundat ion stiffness parameter ko = 50, using a mesh of 10-equal 
elements and with t he consistent mass matrix only. 

Fig. 6 shows the computed frequency of CF beam partially supported by the elastic 
foundation at various supporting percentages (a x 1003) and at different values of the 
axial force . The figure shows a nonlinear change in the frequency of the beam with the 
supporting percentage. For supporting percentage less than 603, t he frequency rapidly 
increases with an increment in the supporting percentage, it then increases very slowly. 
The frequency changes very little when the supporting percentage is higher than 70%. 
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6. CONCLUSIONS 

The paper has investigated t he effects of prestress by axial force and foundation stiff­
ness on the vibration frequency of beams resting on a Winkler elastic foundation by the 
finite element method. A beam element taking the effect of both the prestress and founda­
tion support into account has been formulated using the expression of strain energy. The 
eigenvalue problem was solved to obtain the natural frequencies of beams having various 
boundary conditions. The accuracy of different mass matrices in determining the vibra­
tion frequency of the beams has also been investigated. The main conclusions obtained 
from the numerical investigations can be summarized as follows: 

• The vibration frequency of the beams is lower at a higher value of compressive 
force, but higher at a higher tensile force, regardless of the boundary conditions 
and the type of the mass matrices. 

• The vibration frequency linearly depends on the foundation stiffness and the axial 
force. 

• The vibration frequency nonlinearly depends on the supporting percentage. The 
increment in the frequency is rapid at low supporting percentages, and very slow 
at high supporting percentages. 

• The consistent mass matrix is the most accurate in computing the vibration fre­
quency of the beams, but the HRZ lumping mass matrix is also very good in 
consideration of its diagonal form . 
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TAN s6 DAO DQNG cuA DAM MANH DV UNG LVC 
~ ,.. '.... ' ...... 

NAM TREN NEN DAN HOI WINKLER 
Bai bao nghien cuu tan so dao d<)ng Clla dam manh du U-ng Ive do h,rc d9c tn,ic , nam 

tren nen dan hoi Winkler bang phucmg phap phan tu h11u hiin . Pha n tu da m tfnh t&i anh 
hu&ng cua d11 U-ng Ive va nen dan hoi duqc xay d11ng tu bieu thuc nang luqng bien d0ng. 
Tan so dao d<)ng Clla dam c6 cac dieu ki~n bien khac nhau v&i cac gia tr! khac nhau Clla 
111c d9c tn,ic va de) cung nen duqc xac d!nh tren ca s& phan tu xay d11ng. Sv ph\l thu<)c 
cua tan so dao d<)ng vao gia tr! Ive d9C t n,ic va de) cfrng nen duqc khao sat chi t iet . Anh 
hu&ng cua cac 100i ma tr~n khoi lm;mg khac nhau va tham so xac d!nh pha n nen da m tva 
nen cling duqc nghien cfru . 




