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Abstract. In this paper, the problem of linear stability of viscous liquid films down an inclined 
plane is solved by finite difference method. It is applicable for moderate values of Reynolds and 
wave numbers. The obtained results by this method is compared with ones of some papers and with 
experimental data. 

1. INTRODUCTION 

The flow of liquid films down an inclined wall has been often met in Nature, in chemical 
and food processing industries. This kind of flows may be also observed when very hot 
solid surfaces need to be cooled safely and effectively. The problem of linear stability of 
liquid films on inclined plane has been studied early from the work of Kapitza [2]. In 
later works of many authors, the problem was solved for long wave disturbances at small 
Reynolds numbers by seeking the solut ion in some kinds of series. For vertical fi lms as 
shown by experiments and by some theoretical works, instability may occur at very low 
Reynolds numbers . 

In last decades of the previous century, nonlinear stability of liquid films down an 
inclined plane as well as linear stability of heated inclined liquid films had been investigated 
intensively. 

The purpose of this paper is to take attempt to solve the stability problem for flows 
with free surface by numerical method. It is expected that this method will be useful in 
solving more complicated problem related to flows of the above mentioned kind. 

2. PROBLEM DESCRIPTION 

A viscous liquid layer of thickness H on a solid surface with an inclinat ion angle () , flows 
down under the gravity action. We call this undisturbed laminar uniform two-dimensional 
flow as a basic, whose stability is considered here. We also suppose that the liquid film 
is bounded by a gas on the free surface so that the action of surface tension is available 
there. According to [1], we can get the problem in the eigenvalue form: 

(cp(4
) - 2a.2 cp" + a.4 cp) - ia.Re [(U - c) (cp" - a.2 cp) - U"cp] = 0 (2 .1) 

cp (0) = cp' (0) ·= 0 (2.2) 

cp (1) = <;(c - 1) (2.3) 

a.2cp{l) + cp11 (1) - 2( = 0 (2.4) 
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r.p111 (l) - [3a2 + iaRe (U - c)] r.p' (1) - iaRe<;S = 0 (2.5) 
where a is wave number, R e is Reynolds nunjben, (is a constant, and r.p is stream function. 

while 

S 
_ cose G 2 =-- + a 

Fr 

G = 5:.(gsine)-113 . !!. 
( )

-4/3 

p ' p . 
with Fr is Froude number, p is liquid density, µ is 'dynamic viscosity of the liquid, g is the 
gravity acceleration and CT is perturbation of pressure. 

c = Cr + ici is, in general, complex, the sign of Ci defines stability of the basic fl.ow, 
namely if Ci > 0, then the fl.ow is linearly unstable. In the opposite case, the fl.ow is regarded 
linearly stable. Value Cr expresses non-dimerisional propagation velocity of waves, while 
value aci is called time increment . 

Equation (2 .1) is well known as the Orr-Sommerfeld equation for linear stability of 
two-dimensional parallet flows. Solution of the abov!e problem from the linear stability 
point of view is to determine eigenvalue cat any given pq,ir of values Re and a. The curve 
on the plane (a, Re) along which one has Ci = 0 is called as the neutral curve that is of 
particular interest . 

3. METHODS QF SOLUTI,ON 

The problem (2 .1)7(2.5) has been theoretically and e3cperimentally studied by many 
authors. For theoretical works one can mention papers of [1 ,2,3]. Experimental data are 
given in works of [2,3]. It should be noted that, in some listed above works, the vertical 
axis was chosen on opposite direction to that given here, and also the origin of coordinate 
system was located at the free surface of the liquid . Of course, these differences in notation 
do not influence the stability nature of the problem. 

In previous works, the authors often represented the solution in power series of y 
coordinate and restricted by several· first numbers. As exp'ected, this approach has been 
valid for small values of Re and a. In this paper we use finite difference method (FDM) 
to solve the stability problem without any restriction on wave numbers and moderate 
Reynolds numbers . It seems to us that there may be two reasons why FDM so far has 
not been used for this problem. First , as ob~erved in expe_riments vertical liquid films are 
unstable at low Reynolds number, and often long waves have been observed on the free 
surface. Second, the existence of the third derivative in (2.5) causes some difficulties in 
implen;_enting FDM for this problem. However, as we will s~e later, not vertically inclined 
films lose their stability at moderate Reynolds number, so solution of the stability problem 
at those Reynolds numbers is still desirable. 

In order to apply finite difference method we use (2 .3) to rewrite (2.4) and (2 .5) 
respectively in the form: 

r.p" (1) + (a2 
- -

2
-) r.p (I)~ 0 

c - 1 

r.p111 (l) - [3a2 + iaRe (U - c)]..r.p' (1) - iaReSr.p (l) = 0, 
c- 1 

(3 .1) 

(3 .2) 

.-

" 
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Thus, our eigenvalue consists from (2.1) , '(2.2), (3.1) and (3.2) . Follow Thomas (1953)[4], 
here we will use modified central five-point schemes of higher accuracy for rp1

, rp 11 and rpC4) 

by introducing a complementary function g'(y) by the formula: 

( 
52 54 ) . 

rp (Yi) = 1 + 6 + 360 g (Yi) (3 .3) 

Then one can have: 

(.3.4) 

(3 .5) 

(3.6) 

where h = 1J is the step of a uniform net of integration from N+l net points including 
two boundaries y=O and y=l. Formulae (3.3)+(3.6) are written at net point Yi = (i - 1) h 
with the following notations: 

1 
:xg (Yi) '= 2 [g (Yi+ h) - g (Yi - h)] 

Unfort unately, for cp'i' one cannot increase the accuracy by (3 .3) , so we have to use 
scheme 

(3.7) 

However , t he imperfection of (3. 7) is not serious in this case because the problem 
has been solved at moderate Reynolds numbers only, and it may be corrected by taking 
suitable step of integration h. 

Now applying (3.3), (3.7) tO the equation (2 .1), and to condition (2:2), (3.1), and (3.2), 
one obtains a system of linear equations of the form 

Akgk- 2 + Bkgk-1 + Ckgk + Dkgk+l + Ekgk+2 = O(k = 1-;- N + 1) (3.8) 
Note that , for approximating equation (2.1) and boundary condition at y1 = 0 and 

YN+l = 1 one has to introduce two fictitious points on the left of point YI, and two ones 
on the right of point YN+l with the same step h. Next, using finite difference equations for 
(2.2) we manipulate equation (3.8) at points y1 ,and Y2 to the following forms respectively: 

C1g1 + D1g2 + E1g3 = 0 (3.9) 

(3 .10) 
Analogously, one can reduce equation (2 .1 ) at points YN and YN+I respectively to the 

forms: - . 

A_N9N- 2 + BN9N- l + CNgN + DN9N+l = 0 

AN+l9N-l + BN+l9N + CN+l9N+l = 0 

(3.11) 

(3 .12) 
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where t he over bar in ( 3. 9 )-;-( 3 .12) shows that those values are results of some alge­
braic manipulations. The system of equations consisting of (3.9)-;-(3.12) and (3 .8) with 
k = 3-;- N -1 is a standard type of a modified Thomas system. As a rule, t he characteristic 
equation for determining eigenvalue c has been obtained from the requirement t hat this 
system has a nontrivial solution t hat in turn reduces to condition that its determinant 
should be equal to zero. 

Consider a procedure of getting t he characteristic equation relying on the modified 
Thomas algorithm. Equations of the above Thomas system are easy to reduce each to the 
form 

9k + Gk9k+1 + H k9k+2 = 0 k = 1-;- N (3. 13) 
where coefficients Gk and H k are calculated by recurrent formulae from k = 1 to k = N. 

Using (3 .13) with k = N - 1 and k = N(HN = 0 fork= N) to transform (3.12) to the 
form 

FgN+l = 0 
where 

F (a, Re, c) = AN+l (GN-1GN - H N- 1) - B N+1GN + CN+l 

Then the characteristic equation simply is 

F = O 

(3.14) 

(3. 15) 

(3 .16) 

Here root of this equation is calculated by Newton method for every given pair of 
values Re and a . 

4. RESULTS AND DISCUSSION 

On t he table below, the neutral stability was calculated by two methods ·for vertical 
water films at 19°C t hat makes S = 3300. The results obtained by FDM and by formula 
(4 .13) in [1] are presented in column 2 and column 3 of the table respectively. 

As shown on the table, for very long waves (very small a), the results obtained by 
FDM are less sensitive in comparison with ones of t he Benjamin's method. It may relate 
to the fact, that the integration step h is not small enough. 

Except these very long disturbances, we have a good agreement between parameters 
of the neutral curve calculated by finite difference method and t hose given by (4 .1 3) of 
Benjamin paper [1]. The agreement is satisfactory even up to a limit Reynolds number 
of Benjamin's method that is around 41.5 for vertical water at film 19°C (see t he second 
and the t hird columns of the table). The solution of linear stability problem by finite 
difference method also completely supports the Benjamin's disclosure that there is no 
critical Reynolds number for vertically falling liquid films . 

As a rule, finite difference method described here has no restriction on both Reynolds 
and wave number for problem (2.1) -;- (2 .5). So for the aim of reference neutral stability 
for vertical films was calculated beyond the Senjamin's critical Reynolds number up to 
100. These results are given in t he second column of the table. 

The results for some vertical films obtained here by finite difference method have been 
compared also with experimental data given in [3] on Fig. 1. The agreement is good 
enough both qualitatively and quantitatively. 

~ 
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Table 1. Parameters of the neutral curve for vertical water film 

Re 
Wave number (a) 

Finite Difference Method Benjamin's formula 

0.001 0.0005 0.0001 
0.005 0.0005 0.0004 
0.010 0.0005 0.0006 
0.021 0.0005 0.0011 
0.026 0.0005 0.0013 
0.030 0.0005 0.0015 
0.038 0.0005 0.0018 
0.041 0.0018 0.0019 
0.045 0.0019 0.0021 
0.050 0.0022 0.0023 
0.100 0.0041 0.0040 
0.500 0.0156 0.0154 
1.000 0.0277 0.0275 
2.000 0.0492 0.0488 
3.000 0.0697 0.0682 
4.000 0.0869 0.0862 
5.000 0.1041 0.1033 
10.000 0.1792 0.1778 
20.500 0.3010 0.2983 
30.500 0.3943 0.3941 
40.500 0.4742 0.5230 

a 
3 - --+-- FDM 

2.5 

* 2.4 ,. ,, 
2.3 

~ 
2.2 ;. 

t !~ [\ . l!iH 'llf H ~ " II ~ '~ .,I* < "' 7 ···· 

2 

2.1 

" 
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a) b) 

Fig. 1. a) Wave velocity comparision. b) Time increment comparision 
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ON D~NH CUA DONG CHAY CHAT LONG 
A '-' ..) A 

TREN MAT PHANG NGHIENG 

Trang bai bao nay, van de 6n ~nh t uyen tinh cua dong chay hai chieu tren mi;it phling 
nghieng dtrQ'C nghien cuu bang phmmg phap sai phan hfru h0n v&i d9 chinh xac nang 
cao. Phuang phap nay c6 th~ dung dtrQ'C cho m9i gia tr! trung blnh cua so Reynolds va 
so song. Ket qua d0t CTlfQ'C bang phuang phap nay CTlfQ'C so sanh v&i ket qua cua m(>t so 
bai bao khac cling nhu ket qua th\fc nghi~m. 




