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Abstract. In the present paper the governing equations for corrugated cross-ply laminated 
composite plates in the form of a sine wave are developed based on the Kirchoff-Love's theory 
and the extension of Seydel 's technique. By using Bubnov-Galerkin method approximated 
analytical solutions to the non-linear stability problem of corrugated laminated composite 
plates subjected to biaxial loads are investigated. The post buckling load-deflection curve 
of corrugated plates and analytical expressions of the upper and lower buckling loads are 
presented. The effectiveness of corrugated plates in enhancing the stability compared with 
corresponding fiat plates is given. 

1. INTRODUCTION 

Laminated composite plates and shells are widely used as basic structure components 
and t heir static and dynamic problems with geometrical non-linearity are of significant 
practical interest , particularly stability and post-buckling behavior of composite plates and 
shells is more important. Investigated results in this problem of flat laminated composite 
plates have been received by many authors [1,3,6,7,9,10,11 ,13]. However, the analysis of 
corrugated laminated composite plates has received comparitively little attention. 

Corrugated plates of wave form made of isotropic elastic material were considered 
as flat orthotropic plates with corresponding orthotropic constants determined by the 
Seydel's technique. This approach was acceptable to solve many bending and stability 
problems of corrugated plates in practice [5,8,12]. In paper [4] the authors developed the 
Seydel 's technique to the bending problems of corrugated cross-ply laminated composite 
plates and cylindrical shells. But for the stability problems, besides bending stiffnesses 
we need to formulate extensional stiffnesses of corrugated cross-ply laminated composite 
plates. 

Consequently, the purpose of the present paper is to formulate the constitutive equa­
tions of corrugated cross-ply laminated composite plates of wave form by using the Seydel's 
technique and investigate the non-linear stability problems of corrugated composite plates 
subj ected to biaxial compressive loads. 

2. GOVERNING EQUATIONS 

Consider a rectangular symmetrically laminated composite corrugated plate in the 
form of a sine wave (see Fig. 1), each layer of which is an unidirectional composite material. 
The plate is subject ed to biaxial compressive loads of intensities p and q respect ively, where 
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p and q vary arbitrarily. Suppose the portion of cross-section line of the corrugated plate 
in the plane (x, z) has the form of a sine wave (Fig. 1) 

z 

0 

H 

z = Hsin 7rX 
l 

Fig. 1. Model of corrugated plate 

Non-linear strain-displacement relationships in the middle surface for a such corru­
gated plate are: 

0 OU 1 ow 2 
E1 = - + - (-) - kw, 

ox 2 ax 

cg = ov + ~(8w) 2 , 
oy 2 oy 

Eg =(OU+ OV) +aw ow 
~y ax ax oy 

(2.1) 

where u , v and w denote displacements of the middle surface point along x, y and z 
directions respectively, t:i, (i = 1, 2 and 6) are strains in the middle surface; k is the 
curvature of the portion line in (x, z) plane, which is defined as: 

k = -· z 
(1 + z'2)~ 

II 7r 2 7rX 
~ z = -H-sin-
~ z2 z (2.2) 

The constitutive stress - strain relations for the plate material are omitted here for 
l:>revity [see Reddy 11] . However note that in a multilayered symmetrically laminated 
material the coupling stiffnesses are equal to zero, while the extensional stiffnesses A 16 
and A26 are negligible compared to the others. This means that the constitutive equations 
are indentical to those for a specially orthotropic material. Then integrating the stress 
- strain equations through the thickness of the plate we obtain the expressions for stress 

' 

' 
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resultants: 

N, ~ An [ ~~ + ~ ( ~~ )' - k w l + A12 [ ~~ + ~ ( ~; )'] , 
N2 = A12 - + - - - k.w + A22 - + - - , [au 1 ( aw) 

2 l [av 1 ( aw ) 
2

] ax 2 ax ay 2 ay 
(2.3) 

N6 = A66 (au+ av +aw aw) 
ay ax ax ay 

where Aij (i, j =l, 2 and 6) are extensional stiffnesses of the plate. 
About the changes of curvature and twist of a corrugated plate in reality it is a very 

complicated problem, but with the condition restrained on the form of corrugated plate, 
where H < < l we can apply t he Seydel's technique into consideration. Suppose that the 
changes of curvature and twist of a corrugated plate are the same as of a fiat one, i.e. 

a2w 
Xxy = -2 axay' 

but the bending stiffnesses of a corrugated composite plate D i1(i , j 
determined by the extension of Seydel's technique [4] as follows: 

* l Du= -Du; 
s 

1, 2 and 6) are 

where Dij (i , j = 1, 2 and 6) are bending stiffnesses of the corresponding fiat plate; 

where: 

hH2 

I=-
2 I 0.81 I 

l - I+ 2.5 (:i)' 

E2 - the effective modulus in they direction, 
h - the plate thickness, 
s - the length of a portion of corrugated line (Fig. 1) , 

l 

s= J 7f2 H2 1fX 
1 + -l2- cos2 -l-dx ~ l 

0 

It is recommended [5] that these constants be determined by experimentation whenever 
possible, but can be used successfully in practice. 

In the results the internal moment resultants of a corrugated composite plate of wave 
form are: 
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( 
02w 02w) 

M1 = - D~1 ax2 + D~2 ay2 ' 

( a2w 02w) 
M2 = - D~2 ox2 + n;2 oy2 ' 

82 w 
M55 = -2D'f,6 - -

ox8y 

The equations of equilibrium of a plate subjected to uniformly distributed biaxial 
compressive loads of intensities p and q respectively, according to [2], when considering 
the non-linear geometry are of the form: 

8N1 0N5 _ O 
ox + oy - ' 

8N5 0N2 _ 
0 ox + oy - ' 

o2 M1 o2 M5 o2 M2 o2w o2w o2w o2w o2w 
8x2 + 2 8x8y + 8y2 +Ni 8x2 + 2N6 ox oy + N2 ay2 + P ax2 + q oy2 = O (2·4) 

The substitution of equations (2.3) and (2.4) into (2.4) yields the system of equations 
of equilibrium in terms of displacements 

o2u o2u o2v ow o2w ow o2w 
Au ox2 + A55 oy2 + (A12 + A55) ox oy +Au ox ox2 + A55 ox oy2 

ow 8
2
w ( 8k ow) + (A12 + A55) 8y ox oy - Au w ox+ k ox = 0, 

o2v o2v o2u ow o2w ow o2w 
A22 oy2 + A55 ox2 + (A12 + A55) ox oy + A22 oy oy2 + A55 oy ox2 

ow o
2
w ( ok ow) 

+ (A12 + A55) ox ox oy - A12 w 8y + k oy = 0, 

(2 .5) 
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The plate considered in the following analysis is simply supported, thus the boundary 

conditions are: 
W= 0, 

w=O, 

v = 0, 

u = 0, 

M1 = 0 at x = 0 and 

M2 = 0 at y = 0 and 

where a and b are lengths of plate edges . 

x=a :.;"' 

y = b 
(2 .6) 

An approximation is acceptable in the vicinity of the buckling loads, so that the 
buckling mode shape is represented by a single term of a double Fourier series . The 
boundary conditions (2 .6) discussed here can be satisfied if the buckling mode shape is 
represented by: 

m7rx . n7ry 
u = U mn COS - a- Sill -b- , 

. m7rx n7ry 
V = VmnSin --COS--, (2.7) 

a b 
. m7rx . n7ry 

W = W mn sin -a- Slll -b-

w here m , n are natural numbers representing the number of half waves in the x and y 
directions respectively. 

Substituting expressions (2 . 7) into the equations of equilibrium (2 .5) and applying 
·the Bubnmr-Galerkin procedure yield the set of three algebraic equations with respect to 
the amplitudes Umn , V mn, W mn· The first two equations of this set are linear algebraic 
equations for Umn, V mn: 

a1 Umn + a2 Vmn = a3 Wmn + a4 w,;n , 

a5Umn + a5Vmn = a1 Wmn +as w,;n 
(2.8) 

so that the amplitudes of the in-plane displacements can be expressed in terms of Wmn· 
When these expressions are substituted into the remaining equation of equilibrium, the 
result is a non-linear algebraic equation with respect to Wmn that can be represented in 
the form 

ag W!n + a10W,;n +(au + R) Wmn = 0 (2.9) 

where ai (i = 1, 2, ... , 11) and R are coefficients which depend on the material, geometry 
and buckling mode shape: 

1 (m27r2b2An +n27r2a2A55) 
ai = 4 ab ' 

1 2 
a2 =4mn7r (A12 + A55), 

H7r 2mabA11 H7r 2mb (a2 - 2m2l2) A55 
a3 - + ---~..,,----,...--,,,~--

- l (4m2l2 - a2) al (a2 - 4m2l2) · ' 

_ _ [~b7rm2An ~n7rA55 ~ ~n7r(A12+A55)]. 
a4 

- 9 a2 n + 9 b 9 b ' 

1 2 . 
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Hn1f 2 (a2 - 2m2l) A12 
a7 = . l (a2 - 4m2z2) ' 

as = _ [~a n2
1f A22 + ~ m7f A55 _ ~ m7f (A12 + A55)] 

9 mb2 9 a 9 a ' 

37f
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1 7f2 

R =- - ( m 2b2p + n 2a2q) 
4 ab 

(2.10) 

Note that a similar equation can be obtained for other boundary conditions as long 
as the plate is modeled as a single degree of freedom system, i.e. a single Fourier term is 
retained in each displacement component, of course, with other appropriate functions. 

Taking W mn =/= 0, i.e. considering the plate after the lost of stability we obtain 

ag W~n + a10W~na11 + R = 0 (2.11) 

Because the plate is working in the elastic stage, so in the case of simultaneous action 
of forces p and q we can set q = cr.p, the equation (2.11) can be rewritten 

2 + 1 7f
2 

( 2 2 2 2) f =a9Wmn+a10Wmna11 +4ab m b +cr.n a p=O 

Substituting Wmn = 0 in equation (2.12) yields the value of critical load p 

4ab.au 
p=-

7f2 (m2b2 + cr.n2a2) 

(2 .12) 

(2.13) 

7r2 (m4D* >-4 + 2m2n 2>-2 (D* + 2D* ) + n 4D*) b 11 12 66 22 . 
or Pupper = b2 ( .2 , 2 2 ) ,where A=-, that is 

mA +ncr. a 
called the upper buckling load, which coincides with the linear buckling load. Then the 
critical load q is determined by qupper = CY.Pupper· 

The lower buckling load of the corrugated composite plate can be obtained from equa­
tion (2.12) by using the condition 

_!}j_ = 0 
dWmn 

The value of W mn corresponding to the lower buckling load is found from this equation 

r 

I 
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wo = - a10 
mn 2ag 

and substituted into equation (2.12) yielding 

Plower= __ 2_(_2_b;_a_+b _ _ 2_2_) (an - _ai_o) 
. 7f m an a 4ag 

(2.14) 

The sign "minus" indicates that the load p is compressive. Numbers m, n must be 
chosen such that the absolute value of the critical buckling load p is minimum. 

The post-buckling load-deflection curve (2 .12) is illustrated in the Fig. 2 

p 

Pupper 

0 

Fig. 2. Post-buckling load-deflection curve of the plate 

The domain limited by the upper and lower buckling loads is called the unstable 
domain of the corrugated plate. Thus permissible loads have to be chosen such that the 
safety is provided according to the lower critical load. 

Remark . From the equation (2.12) we can see that post-buckling behaviour of fiat and 
corrugated composite plates are different. A corrugated composite plate becomes a fiat 
one when l = s, H -t O,stiffnesses Dij will tend to Dij , the coefficients in (2.10) a3 = a1 = 

0 and a10 = 0, at that time the equation (2 .12) representing a post-buckling load deflection 
curve has following character: gradually increasing the active load leads to increasing the 
deflection, the critical load is 

7f
2 (m4D11>.4 + 2m2n2 >-2 (D12 + 2D55) + n 4 D22) 

Per= b2(m2>.2+n2o:) 

and there isn't an unstable domain, while for a corrugated composite plate there exists 
an unstable domain. When analysing reinforced composite plates [7J1 .also occurs such 
behavior. 
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3. NUMERICAL EXAMPLES 

Let's consider a simply supported rectangular corrugated symmetrically laminated 
plate in the form of a sine wave with a = 0.9 m, b = 1.5 m, H = 0.03 m, l = 0.09 m and 
s = 0.112 m. The skin of the plate had 6 plies [45/-45/90/90/-45/45], each ply being 0.5 
rri;n thick. The material of the plates considered in the following examples had Thornel 
300 graphite fibers and Narmco 5208 thermosetting epoxy resin [6]. The properties of this 
material are E1 = 127.4GPa, E2 = 13.0 GPa, G12 = 6.4 GPa, v12 = 0.38. 

Some numerical results are shown in the Fig. 3, 4 and 5. Relation between the 
critical buckling load and the dimension ratio of corrugated composite plate subjected to 
a compressive load in the y direction is illustrated in Fig. 3. 

x 10
6 

18~~~~~~~~~~~~~~~~~~~ 

2 •. .... : 2.5 

: 5 2 0 1. 0.5 

Fig. 3. Effect of the plate dimension ratio on bucking loads 

The effect of the plate thickness on critical load for a corrugated composite plate 
subjected to uniaxial and biaxial loads (with a= 1) is shown in Fig. 4a and for a fiat one 
in Fig. 4b. 
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Fig. 4. Effect of the P.l.a:te ~hickness on buckling load 1. uniaxial load; 2. biaxial load; 3. fiat plate 

The effect of the height H of portion line on critical loads of a corrugated composite 
plate subjected to compressive load in the x direction is presented in Fig. 5. 

\. 

~ 
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0.()2 om 0.0.4 0.05 au; H 

Fig. 5. Effect of the height H on buckling loads 

From these figures it is clear t hat the corrugated composite plates significantly increase 
the buckling loads. A similar conclusion follows for corrugated plates of wave form with 
greater height H. But the buckling loads decrease for longer plate in the y direction, 
when they are subjected to axial compressh;e load in the same direction. The wave form 
of corrugated laminated composite plate provides a higher stability of plates, it is why 
corrugated composite plates of wave form are mor:e useful in practice. 

4. CONCLUSION 

The governing equations for corrugated cross-ply laminated composite plates have 
been derived based on the extension of Seydel's technique. These equations can be used 
to non-linear analysis of static · and dynamic problems of corrugated laminated composite 
plates. The approach to considering stability problems presented in this paper allows to 
obtain analytical expressions of critical buckling loads of corrugated plates subjected to 
biaxial compressive loads. 

The effectiveness of corrugated composite plates in enhancing the stability compared 
with corresponding flat plates is illustrated . 

This publication is partly supported by the National Council for Natural Sciences. 
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PHAN TICH PHI TUYEN VE ON DINH 
GOA TAM COMPOSITE LOP LUQ'N SONG 

Trong bai bao nay da thiet l~p cac phucmg trlnh ca s& cua tam composite l&p lm;m 
song d\fa tren ly thuyet Kirchff-Love va m& r¢mg each tiep c~n Seydel. Su d\lng phuang 
phap Bubnov-Galerkin vao xac d!nh nghi$m giru tfch gan dung cua bai toan on d!nh phi 
tuyen cua tam composite lm;m song ch!u nen theo hai phuang. Da nh~n dm;rc dm:mg tai 
- d9 vong sau t&i h0n va bieu thuc giai tfch cua h,rc t&i h0n tren va du&i. Da chi ra hi$u 
qua tang ~n ~nh cua tam lm;rn song so v&i tam ph~ng tuang ung. 
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