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THE INFLUENCE OF NONLINEAR TERMS IN 
MECHANICAL SYSTEMS HAVING TWO DEGREES OF 

FREEDOM 

N GUYEN D ue TINH 

Mining Technical College, Quang ninh 

Abstract. For many years the higher order stochastic averaging method has been widely 
used for investigating nonlinear systems subject to white and coloured noises to predict 
approximately the response of the systems. In the paper the method is further developed for 
two-degree-of-freedom systems subjected to white noise excitation. Application to Duffing 
oscillator is considered . 

1. INTRODUCTION 

It is well-known, the stochastic averaging method (SAM) is widely used in different 
problems of stochastic mechanics, such as vibration, stability and reliability problems (see 
e.g. Mitropolskii et al, 1992; Red-Horse and Spanos, 1992; Zhu and Lin, 1994; Zhu et al, 
1997) . However , the effect of some nonlinear terms cannot be investigated by using the 
classical first order SAM. In order to overcome this insufficiency t he different procedures 
to obtain approximate solutions have been developed for the nonlinear systems with one 
degree of freedom under white and coloured noise excitations (see e.g. Anh, 1993; Anh and 
Tinh, 1995; Tinh, 1999) . In t he present paper this procedure is further developed for two­
degree-of-freedom nonlinear systems subjected to white noise excitation. An application 
to Duffing system is considered and the effect of nonlinear terms can be detected in the 
approximate solutions of Fokker-Planck (FP) equation while it cannot be investigated by 
using t he classical first order SAM. 

2. HIGHER SAM IN TWO-DEGREE-OF-FREEDOM SYSTEMS 

Consider t he motion equations of a mechanical system with two degrees of freedom 

i1 + wix1 = cfu (x1, x2, ±1, .±2) + c2 fi2( x1, x2, ±1, ±2) + Vfcr1~(t), 

i2 +wh2 = ch1(x1,x2 ,±1,±2) +c2f22(xi,x2,.±1,±2) + Vfcr2~(t), 

where w1, w2, cr1, cr2 are positive constants and€ is a small positive parameter. 
According to the averaging method we transform the state coordinates x = 

into the variables a= (a1, a2) and <p = ( <p1, <p1) by t he change 

Xj = aj COS !.pj, 

Xj = - Wj sin'Pj, (j = 1, 2). 

(2.1) 

(2 .2) 
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By using Ito differentiation formula [7] the system of equations (2.1) is transformed 
into the following system of equations 

. 2 ;;: sin<pj . 
aj = €Aj1 (a, <p) + c Aj2(a, <p) - yWj--~(t), 
. _ 2 Wj COS<pj. . _ (2.3) 

'Pj - Wj + €Bj1 (a, <p) + c Bj2(a, <p) - v'c(Ji--~(t) , (J - 1, 2) 
Wjaj 

where it is denoted 

fjl (a, <p) . (JJ cos2 
<pj 

Aj1(a,<p)= - sm<pj+ 
2 2 , 

Wj wjaj 

( ) 
2 . f-1 a <p () · cos <pj sm 'Pj 

Bj1(a ,<p) = - J ' COS<pj + J 2 2 , (j = 1,2), (2.4) 
Wjaj wjaj 

A ( ) 
fj2(a, <p) . B ( ) fj2(a , <p) 

j2 a, <.p = - Slll<.pj' j2 a, <.p = - COS'fJj· 
Wj Wjaj 

The Fokker-Planck (FP) equation for the stationary probability density function W(a , <.p) 

takes the form (Anh, 1995 ) 

2 
8W 

Lwj~ = -c[A1,B1]L[W]-c2[A2 , B2]L[W], 
j=l 'PJ 

(2.5) 

where the operators [Aj ,Bj]L[.] , j=l , 2 are defined as follows 

2 

[ 8 8 ] [A1 , B1]L[WJ = L ~(Ajl W) + ~(Bj1 W) 
j=l aJ 'PJ 

_ tt { fP ((Jj(Jssincpjsin<p 8 W) 

. 8aJ·Oa 8 2wJ·w8 J=l s=l 

(2.6) 

<!__ ( (Jj(J s sin 'Pj cos 'Ps w)+ 82 
( (Jj(J s cos 'Pi cos 'Ps w)} 

OajO'Ps 2asWjWs O'{JjO'Ps 2ajasWjW8 

2 [f) f) ] [A2 , B2]L[W] = L ~(Aj2W) + ~(Bj2w) . 
j=l aJ 'PJ 

(2.7) 

We seek the solution of (2 .5) in the form 

W(a ,<p) = Wo(a,<p)+cW1(a,<p)+c2W2(a,cp)+ ... (2.8) 

Substituting (2 .8) into (2.5) and comparing the coefficients of like power of c we obtain 

2 

co : L Wj ~Wo = 0, 
j=l 'PJ 

(2.9) 

€1 : 

2 
8W1 f; Wj a<pi = -[A1, B1]L[W0], (2 .10) 
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(2.11) 

.................. . ............ . ...... . . .... . ............. . . . . .. ... .. .. 
From (2.9) we get 

Wo = Wo(a). (2 .12) 

The arbitrary integration function Wo(a) must be chosen from the condition for the 
function W1 (a, r.p) to be periodic to r.p. 

Thus, we get from (2.10) 

where < . > is the averaging operator with respect to r.p 

271" 271" 

<. >= (2!)2 J J (.)dr.p1d<p2. 
0 0 

Substituting (2 .6) into (2.13) yields 

2 { 2 2 } 8 (Jj 8 Wo(a) L ~(< Aj1 > Wo(a))- 4~ 0 2 = 0. 
u~ w. a. 

j=l J J 

(2.13) 

(2.14) 

(2.15) 

The second tertn W 1(a, r.p) in (2.8) is determined from (2 .10) using Fourier expansion 

[A1 , B1]L[Wo(a)] = Wo(a) LL C1112 (a) exp[i(l1<p1 + l2 r.p2 )], (2.16) 
11 12 

where 

271" 271" 

C11 12 (a) = ( 27r) 2~o(a) j j [A1, B1]L[Wo(a)] exp[-i(lir.p1 + l2r.p2)]dr.p1d<p2. (2.17) 

0 0 

Substituting (2.16) into (2 .10) we get 

W1(a , r.p) = Wo(a) {w10(a) +LL l C111 ~ exp[i(lir.p1 + l2r.p2) }, (2.18) 
iw1 + 2w2 

li 12 

where 11, b are integers and 

(2.19) 

The arbitrary integration function W 10 ( a) must be chosen from the condition for the 
function W 2(a,r.p) to be periodic to r.p. Similarly, we can find the third term W2(a,r.p) in 
(2.11). • 
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3. APPLICATION 

3.1. SAM of coefficients in FP equation 
Now we apply the proposed procedure to Duffing system whose motion equations take 

the form 

m1x1 + c1x1 = -c[2h1±1 + .81x{] - c2[c12(x1 - x2) + 2h12(±1 - ±2)] + vfc<5i~(t), 
. (3.1) 

m2x2 + c2x2 = -c[2h2:i::2 + .82x~ ] + c2[c12(x1 - x2) + 2h12(±1 - ±2)] + v/c82~(t). 
We represent the physical model of this system in Fig. l. Where m1, m2 are masses, c1, 
c2, c12 are spring constants, h1 , h2, h12 are damping coefficients, .81 , .82, 81, 82 are positive 
constants and 

3 . 3 . 
R1 = -E,81x1 + v/c81~(t), R2 = -E,82x2 + v/c82~(t) . 

The system of equations (3.1) can be written in the form 

X1 + w[x1 = -c[2k1:i::1 + "(1xrJ - c2[q1 (x1 - x2) + 2k11(:i::1 - ±2)] + VE0"1~(t), 
x2 + wix2 = -E[k2:i::2 + "f2X~] + c2[q2(x1 - x2) + 2k12(±1 - ±2)] + VE0"2~(t), 

where 
2 _ C1 2 _ C2 k _ h1 

Wl - -, W2 - - , 1 - -, 
m1 m2 m1 

ql = C12' q2 = C12' ku = h12 ' 
m1 m2 m1 

R, l 
R, l 

h2 
k2=-, 

m2 
h12 

k12 = --, 
m2 

x, 

x, 

.81 
'Yl = m

8
: 

0"1 = -- , 
m1 

.82 
'Y2 = m8~ 

0"2 = m2 

Fig. 1. Physical model of a mechanical system with two degrees of freedom 

In this case we have 

!11 = -2k1:i::1 - "(xr; fi2 = -q1 (x1 - x2) - 2k11(:i::1 - ±2); 
h1 = -2k2:i::2 - "(X~; h2 = q2(x1 - x2) + 2k12(:i::1 - ±2) . 

From (2.4), using (2.2) and (3.5), after calculations we obtain 

2 
. 2 /1 3 . 3 (} 1 2 Au= -2k1a1sm <p1 +-a1sm<p1cos <p1 +-2-cos <p1, 

w1 2w~a1 
. 2 /2 3 . 3 (} 2 2 

A21 = -2k2a2sm <p2 + -a2sm <p2cos <p2 + - 2-cos <p2, 
w2 2w2a2 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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From (3.6) and (3.7), using (2.14) we get 

(3.8) 

In this case, from (2.5) the averaged FP equation takes the form 

[< A1 , B1 > ]L[W(a)] + c[< A2, B2 >]L[W(a)] = 0, (3 .9) 

where it is denoted 

2 

[ 

8 8 
] [< A2, B2 >]L[W(a)] = ki oaj ( < Aj2 > W(a)) + O<f!j ( < Bj2 > W(a)) . (3.10) 

From (3 .9), noting (3.8) and (3.10) we have the FP equation for the probability density 
function W (a) in the form 

(3.11) 
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This equation gives the solution 

W( ) _ C { 2k1wf 2 2k2wi 2 ( 2kuwf 2 2k12wi 2) } a - a1a2 exp ---2-a1 - --2- a2 - c: 2 a1 + 2 a2 , 
0"1 0"2 0"1 0"2 

(C = const). 

The condition 

gives 

where 

2rr 2rr oo oo J J J J W(a)da1da2d<p1d<p2 = 1, 

0 0 0 0 

C = (P1 + c:o:1)(p2 + c:o:2) 
7!"2 ' 

2k1wf 2k2wi 2kuwf . 2k12wi 
Pl = --2- , P2 = --2- , 0:1 = 2 , 0:2 = 2 

~ ~ 0"1 ~ 

(3 .12) 

(3.13) 

(3.14) 

It can be seen from (3.12) that the effect of the nonlinear terms c:j31xy and c:j32 x~ 
is lost during the conventional averaging procedure and we can not show their effect in 
t he approximation (3.12) of the density probability function W(a,cp). So, in order to 
overcome this insufficiency we need to determine the higher approximate solutions to the 
FP equation by using the higher SAM. 

3.2. Higher approximate solutions to FP equation 

We determine the second approximate solution of FP equation (2.5) for the Duffing 
system (3.1) . 

Substituting (3.8) into (2.15) yields 

Wo(a) = Ca1a2 exp {- 2k1wf a2 _ 2k2wi 2} 0"2 1 2 a2 , 
1 0"2 

(C = const). (3.15) 

Substituting (3.15) into (2 .10) we get 

2 
8W1 

Lwj~ = -[A1,B1]L[Wo(a)]. 
j=l 'PJ 

(3.16) 

Using (2.6), (3.6) and expanding the right-hand side of (3 .16) into the double Fourier 
series of cp1, <p2, after calculations we have the equation for Wu (a, <p) 

8Wu 8Wu k1wn1 4 . . 
w1 -

8
- + w2 -

8
- = 2k1 cos <p1 + 2k2 cos <p2 + 2 a1 (2 sm 'P1 + sm 4cp1) 

4?1 4?2 20" l 
k2W2"/2 4 . . s(a) s(a) + 2 a2(2smcp2 + sm4cp2) + - cos(<p1 - <p2) + -

2
· cos(cp1 + <p2) . 

2~ 2 

(3.17) 

' 
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Using the principle of superposition we get the solution of equation (3.17) 

( k1 . k2 . k1 / 1 4 
Wu a, <p ) = - sm 2<p1 + - sm 2<p2 - --2 a1 ( 4 cos 2<p1 + cos 4<p1) 

w1 ~ Su1 
k2/2 4 W1 
-S 2 a2(4cos2cp2+cos4<p2) + 2 2s(a)coscp1sincp2 (3.lS) 

U2 W2 - W1 
W2 

- 2 2 s(a) sin<p1 cos cp2, 
W2 -Wl 

where 
s(a) = uiu2 _1 _ _ 2k1w1u2 a1 _ 2k2w2u1 a2 + l6k1k2w1w2 aia

2
. (3.19) 

w1w2 a1a2 w2u1 a2 w1u2 a1 u1u2 
Substituting (3.15) and (3.lS) into (2.11) we have the equation for the arbitrary function 
W1o(a) in the form 

2 8 2 82 u2 2 82 u2 

L 8a ( < Aj1 > WoW10) - L 8a2 C~2 WoW10) = L 8a2 C~2 < WoWu sin
2 

<pj >) 
j=l J j=l J J j = l J J 

2 8 2 8 
- L Ba · (< Aj1 WoWu >) - L Ba·(< Aj2 > Wo). (3 .20) 

j = l J j=l J 

Substituting Aj1 in (3 .6) , Aj2 in (3.7), (j = 1, 2) and W u(a, cp) in (3.lS) into (3 .20) , 
after calculations we have the equation (3.20) in the form 

t ~[ uJ 8W10Wo(a)] = 
j=l 8aj 4wJ 8aj 

~ { 32 ( kjf j 4 ( ) 8 [ ( k]/j kjf j ) ( )] 8 [ l} 
- L.,, 8a2 l 6w2aj Wo a + 8aj 4u2 + l6w2 Wo a + 8aj k1jaj Wo(a) . 

j=l J J J J 

The solution W 10 (a) of equation (3.21) can be found in the form 

W1o(a) = Wo1(a1) + Wo2(a2), 

Substituting (3.22) into (3.21), after calculations we get 

W() 2 2 4 4 10 a = - a 1a1 - a2a2 - a11a1 - a22a2, 

where a 1 , a2 are defined in (3 .14) and 

(3 .21) 

(3 .22) 

(3.23) 

3k111 3k212 
a11 = --2- , a22 = --2- . (3 .24) 

Su1 Su2 
Hence, using the second approximate solution to the FP equat ion (2.5) for the Duffing 

system (3 .1) takes the form 

W(a , cp) = Wo(a){l + c:[W10(a) + Wu(a, cp) ]}, (3.25) 

where W0 (a) , Wu(a,<p) and W 1o(a) are defined in (3.15), (3.lS) and (3.23), respectively. 
It is seen from (3.lS) and (3.23) that the effect of the nonlinear terms c:{31xy and c:{32x~ is 
shown in the formula (3.25). 

From the normalization condition 
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27r 27r 00 00 

j j j j W(a, rp)da1da2drp1drp2 = 1, 

0 0 0 0 
we get 

PYP~ c = 2[p2 2 2 2 2 2 1 · (3 .26) 
7r iP2 - c( 0:1P1P2 + 0:2P1P2 + O:nP2 + 0:22P1) 

Now we find the approximate mean squares E[xr] and E(x§) for t he cases of the classical 
and higher SAM. 

In the case of the classical SAM we have 
27r 27r 00 00 

Ec1[x]J = j j j j x]W(a)da1da2drp1drp2. 

0 0 0 0 

(3.27) 

Substituting Xj, (j=l, 2) in (2.2), W(a) in (3.12) and C in (3.13) into (3 .27), after calcu­
lations we have 

1 1 0:1 2 
2 - = --c2 + c Ec1 [x1] - 2(Pi + co:1) 2p1 P1 (3.28) 

Similarly, we have 
2 1 1 0:2 2 

Ec1[x2] = = - - c2 +c 
2(p2 + co:2) 2p2 P2 

(3.29) 

where p1, p2, 0:1 and 0:2 are defined in (3 .14). 
In the case of the higher SAM we have 

27r 27r 00 00 

E[x]J = j j j j x]W(a, rp)da1da2drp1drp2, (j = 1, 2). (3.30) 

0 0 0 0 

Substituting Xj , (j = 1, 2) in (2.2), W(a, rp) in (3.25) and C in (3.26) into (3 .30), 
noting (3.24), after calculat ions we have 

E[ 2] _ PIP~ - c(20:1P1P~ + 0:2PIP2 + 100:11p~ + 20:22PI) (3 31 ) 
X1 - [p2 2 2 2 2 2) ] " . 2p1 iP2 - c( 0:1P1P2 + 0:2P1P2 + 0:11P2 + 0:22P1 

Expanding the right-hand side of (3 .31) into the power series of c we get 

2 1 0:1 9o:u 0:22 2 
E[x1J = 2 - c(2 2 + 23 + 22) +c ... 

P1 P1 Pi P1P2 
(3.32) 

Similarly, we have 

2 1 0:2 90:22 0:11 2 
E[x2] = -2 - c( -2 2 + -2 3 + -2 2 ) + c ... 

P2 P2 P2 P1P2 
(3.33) 

Hence, the second approximate solution to the FP equation, the effect of the nonlinear 
terms c,81xy and c,82x~ is obtained in the formulae (3 .32) and (3 .33) . It is seen from (3 .32) 
and (3 .33) that the nonlinear terms c,81xy and c,82x~ reduce the mean squares E[xiJ and 
E[x§J . 

In the case ,81 = /32 = 0 (linear system) we have 

2 1 0:1 2 2 1 0:2 2 
E[x1] = - - f - 2 + c ... , E[x2] = -

2 
- f-2 + c ... (3.34) 

2p1 2pl 0:2 2p2 

..._ 

' 
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which equal to the mean squares in (3.28), (3 .29) obtained by the classical SAM. 
We consider the case where m1 = m2 = c1 = c2 = 81 = 62 = 1, /31 = /32 = /3, 

h1 =h2 = h12 = c12 = 0.5. The mean square responses corresponding to some values of 
the coefficients /3 are given in Table 1. It is seen that the mean square responses decrease 
when increasing the coefficient {3. 

Table 1. Mean square responses to Duffing system 
(Effect of non-linear coefficient /3) 

N /3 E [xf] = E[x~] 
1 0 0.5 - 0.5c + c'.2. ... 
2 0.2 0.5 - 0.6875c + c2 .. . 

3 0.5 0.5 - 0.9687c + c2 ... 

4 1.0 0.5 - l.4375c + c2 ... 

5 2.0 0.5 - 2.375c + c2 . . . 

4. CONCLUSION 

For many years the higher order stochastic averaging method has been widely used 
for investigating single-degree-of-freedom nonlinear systems subject to white and coloured 
random noises. In this paper , the method is applied to the nonlinear vibration systems 
having two degrees of freedom under white noise excitations. The application to the 
Duffing system is considered and shows the effect of the non-linear terms to the mean 
square responses of the system. 
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ANH HUONG cuA so H~NG PHI TUYEN TRONG c.Ac H~ ca HQC 
HAI B~C TlJ DO 

Phucmg phap trung blnh nga u nhien b~c nhat dt.rQ'C ap di,mg r(mg rai doi v&i cac h~ 
dao d(mg phi tuyen ch!u kfch d(mg ngau nhien d9-ng on trang va on mau. Tuy nhien, hi~u 
i'rng· cua nhieu so h9-ng phi t uyen b! bien mat do ket quit cua phep lay t rung blnh. De 
klrac ph\lc nhuqc diem tren phuang phap trung blnh ngau nhien b~c cao duQ'c phat trien. 
Trong bai bao, phuang phap GUQ'C trlnh bay doi v&i h~ phi tuyen yeu hai b~c tv do ch!u 
kieh d(mg ngau nhien d9-ng on trang. Sau d6 phuang phap duqc ap dl,lng de xac Q!nh 
nghi~m xap xi b~c hai cua phuang trlnh Fokker-Planck doi v&i h~ d9-ng Duffing . 

.. ; ' I ; 

"\. 

' 




