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Abstract. The main objective of the present paper is to study the transverse vibration of the 
prestressed beams. The differential equation of the transverse vibration of the Euler-Bernoulli beam 
is developed , in which the initial axial strain in every cross section of the beam is taken into account, 
so that the initial normal stress is not equal to zero. We have proposed some formulae to determine 
the natural frequencies of the prestressed beam. The forced transverse vibration of the beam with 
a moving external force has been considered. From this it follows compression softening effect of 
prestressed beams. A detailed comparison between the calculating results for the prestressed and 
the non-prestressed beam is also presented. 

1. INTRODUCTION 

In recent years, the prestressed ferro-concrete beams are usually used in branches of 
the construction and the road traffic. However, the research on the transverse vibration 
of the prestressed beams is still not extensively considered in Vietnam, although it is very 
necessary. The calculation of the stress of these beams is only confined to the evaluation 
of static stresses using t he experimental formulae. The international literature on t his 
respect is also little and a systematic study has not been shown. In some publications 
[1-8], the influence of axial forces or fatigue cracks on the natural frequencies of t he beam, 
which is pre-compressed by t he axial forces, was investigated. In the last case, the axial 
forces are usually supposed as constants. 

The main objective of the present paper is to study in detail the transverse vibration 
of the prestressed beams. Firstly, the differential equation of the transverse vibration of 
the Euler-Bernoulli beam is established, in which the initial axial strain in every cross 
section of the beam is taken into account, so that the initial normal stress is not equal to 
zero. In the next sections, we propose some formulae to determine the natural frequencies 
of the prestressed beam. The forced transverse vibration of the beam with a moving 
external force has been considered. A comparison between the calculating results for the 
prestressed and the non-prestressed beam is also presented. 

2. DIFFERENTIAL EQUATION OF THE TRANSVERSE VIBRATION 
OF THE PRESTRESSED BEAM 

According to the Bernoulli beam theory, every cross section of the beam is always flat 
and during deformation perpendicular to the neutral axis. Note that the geometrical axis 
of the beam without deformation is a segment of a straight line. We choose t his straight 
line as x-axis as shown in Fig. l. Neglecting the longitudinal and torsional oscillat ions, we 
consider only the transverse vibration of t he beam in the direction of z-axis. 
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In order to determine the differential equation for the transverse vibration of beams, 
we consider an infinitesimal volume as shown in Fig. 2. The length of this infinitesimal 
volume is assumed to be dx and the mass is dm. Let Q and My be, respectively, the shear 
force and the bending moment acting in x - z plane, and let p(x, t) be the loading per 
unit length of the beam. 

p(x.t) x 
• 

Fig. 1. Transverse vibration of a beam Fig. 2. Bending moments and shear forces 

Neglecting the rotary inertia, the dynamic equilibrium conditions for the transverse 
vibration of beams are obtained by applying D 'Alembert principle [9] as 

(J2w 8Q 
LFkz= -dmat2 -Q+Q+ axdx+p(x,t)dx=O, (2.1) 

L - 8My dx ( aQ ) dx mc(Fk) = - M + M + --dx - Q- - Q + -dx - = 0, y y ax 2 ax 2 (2.2) 

where w(x, t) denotes the deflection of the beam. Equation (2.1) can be rewritten after 
simplification as 

a2w aQ 
pA(x) at2 = ax + p(x, t), (2 .3) 

where pis the mass density and A(x) denotes the cross-sectional area of the beam. From 
equation (2.2) we get 

a My 
Q = ax . (2.4) 

From linear elastic theory, the bending moment My and the normal stress O'xx in the 
direction of x-axis are given by 

My= j ZO'xxdA, O'xx = EE:xx, (2 .5) 

A 

where Exx is the strain in x-axis. Assuming that the beam is prestressed, the initial strain 
in the cross section A(x) must be taken in consideration, that is, co(x, z, 0) = Eo(x). In 
the linear deformation region, strain Exx is given in terms of the initial strain co as 

Exx(x, z, t) = co(x) + E~x(x, z, t), (2 .6) 

where E~x(x, z , t) is the strain caused by deformation of the beam. Fig. 3 shows an 
enlarged imagine of a part from the bended beam. The strain in a particular layer z of 
the beam depends on coordinate z. If z = zo , strain c(zo) is equal to zero. 

If the beam has a constant mass density and symmetric cross sections, the location of 
layer zo can be easily determined (it coincides commonly with the symmetric axis of the 
beam). However, in other cases, for example ferro-concrete beams, the neutral layer is not 

.... 

~ 
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coincident with the symmetric axis of the beam. The length of the neutral layer between 
cross sections 1 and 2 can be determined from Fig. 3 as follows 

Lo= Pz d<p, (2.7) 

where Pz is the radius of curvature of the neutral layer. So the length of the layer z 
between cross sections 1 and 2 before deformation is also equal to Lo. After deformation, 
this length becomes 

L = (Pz + z - zo) d<p. (2.8) 

Thus, the strain of the layer z is 

* ( ) _ L - Lo _ z - zo 
Exx Z - L - Pz . (2 .9) 

If we choose zo = 0, then Eq. (2 .9) leads to 

c:;x(z) = !_____ 
Pz 

(2 .10) 

According to mathematical handbooks, the radius of curvature Pz is given by 

82w 
1 

Pz 
&x2 

(2.11) 

Substituting Eq. (2.11) into Eq. (2.10) yields 

(2 .12) 

Substituting Eq. (2 .12) into Eq. (2 .6), it shows that the strain of the prestressed beam 
is given by 

82w 
[iii ~ 82w 

<xx(x, z, t) ~ <o(x) - [I + ( ~; )']'/' z - <o(x) - ax' Z. 

Substituting Eq. (2.13) into Eq. (2.5) yields 

Note that 

J 8
2
w j 2 My = Ec0(x) zdA - E Bx2 z dA. 

A A 

j zdA = wA(x), 

A 

j z2dA = I(x), 

A 

(2 .13) 

(2.14) 

(2 .15) 
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where I ( x) denotes the moment of inertia of the cross section about the y-axis of the beam 
cross section. Eq. ( 2 .14) takes the following form 

fJ2w 
My= E A(x) co(x) w - E I(x) ax2. (2.16) 

Substituting Eq. (2.16) into Eq. (2.4) we obtain 

a a [ a
2
w] Q = ax [EA(x) co(x) w] - ax EI(x) ax2 . (2 .17) 

By substituting Eq. (2 .17) into Eq. (2 .3), we get a partial differential equation that 
governs the forced transverse vibration of the prestressed beam as follows 

a2 [ a2w] a2 a2w 
ax2 EI(x) ax2 - ax2 [EA(x) co(x) w] + pA(x) at2 = p(x, t). (2.18) 

3. FREE TRANSVERSE VIBRATION OF THE PRESTRESSED BEAM 

In t he case that mass density and cross-sectional area of the beam are constant and 
t he initial strains in every cross-sections are equal, the differential equation that describes 
t he free transverse vibration of the prestressed beam can then be written as follows 

a4w a2w a2w 
EI ax4 - c0EA ax2 + pA at2 = 0. (3.1) 

Using Bernoulli method of the separation of variables, we assume a solution of Eq. (3 .1 ) 
in the form 

w(x , t) = X(x) T(t). (3 .2) 

The functions X(x) and T(t) can be determined by the following equations [12] 

T(t) + w2T(t) = 0, (3.3) 

X(IV)(x) - co~ X"(x) - ~~ X(x) = 0, (3.4) 

where µ = pA. The general solution of Eq. (3 .3) can be expressed in the form 

T(t) = D1 cos wt+ D2 sin wt, (3.5) 

where the constants D 1 , D 2 can be determined by using the initial conditions. By intro­
ducing the notations 

2 w2µ A 
er = EI' 2/3 =col ' (3.6) 

Eq. (3.4) can then be rewritten as 

X(IV)(x) - 2/]X"(x) - cr2 X(x) = 0. (3 .7) 

Eq. (3.7) is a fourth-order homogeneous linear differential equation with constant 
coefficients. The essential difference between the prestressed and the non-prestressed beam 
may be identified by the second term of Eq. (3. 7). In the case of the non-prestressed beam 
co = 0, Eq. (3 .7) leads to the well-known equation [9] 

X(IV)(x) - cr2 X(x) = 0. (3.8) 

The characteristic equation of Eq. (3. 7) is 

).4 - 2/3>.2 - Q2 = 0. (3.9) 

·. 

·. 

' 
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The roots of this equation are given by 

>-2 = {3 ± J {32 + a2. (3.10) 

By introducing the notations 

1(a) = V Jf32 + a2 - {3 , (3.11) 

we obtain the solution from Eq. (3.10) as 

>-1 ,2 = ± i VJ {32 + a 2 - {3 = ± i ')', (3 .12) 

>-3 ,4 = ± VJ {32 + a 2 + {3 = ± 5. (3.13) 

According to the theory on linear differential equations, the general solution of Eq. 
(3. 7) is expressed in the form 

X(x) = C1 cos1x + C2 sin1x + C3 cosh5x + C4 sinh5x, (3.14) 

where the constants C1 , C2, C3 and C4 can be determined by using the boundary condi­
tions. From Eq. (3 .14) we get the following derivatives 

X'(x) = -Cnsin1x + C21cos1x + C36sinh8x + C48 cosh8x 
X"(x) = -C11 2cos1x - C212sin1x + C352cosh5x + C452sinh5x (3.15) 
X"'(x) = Cn3 sin1x - Cn3 cos1x + C353 sinh5x + C453 cosh5x 

Note that 
cosO = 1, sinO = 0, coshO = 1, sinhO = 0. (3.16) 

We consider prestressed uniform beams with boundary configurations shown in Fig. 4 
and Fig. 5 as illustrating examples for calculating the natural frequencies of the prestressed 
beam. 

be.amaxis ~ 

neutral axis 
(neutral layer) 

Fig. 3. Enlarged imagine of a part of the beam 

El 

Fig. 4. The prestressed uniform beam 
with the hinged ~ hinged ends 

In the first case (Fig. 4), the boundary conditions are 

X(O) = 0, X(l) = 0, X"(O) = 0, X"(l) = 0. (3 .17) 

Substituting these conditions into Eqs. (3 .14) and (3.15) one yields the characteristic 
equation 

sin 1l = 0. (3.18) 
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By using Eq. (3.18) we get the formula to determine natural frequencies of this beam 
[10] 

2 47r4 EI 27r2 E 
wk = k - - + k - co -

l4 µ l2 p 
(k = 1, 2, ... ). (3.19) 

For k = 1, the fundamental natural frequency is 

7r4 EI n 2 E 2 
W1 = 0µ + co1,2-;; · (3.20) 

In the last case (Fig. 5), the boundary conditions are 

X(O) = 0, X(l) = 0, X'(O) = 0, X'(l) = 0. (3.21) 

Similarly, we have the characteristic equation for the . beam 

f( a) = 2/3sin [r(a)l] sinh [J(a)l] + 2a2 {1 - cos [r(a)l] cosh [J(a)l]} = 0. (3.22) 

The roots ak of Eq. (3 .22) can be obtained by numerical calculation. The natural 
frequencies of the prestressed uniform beam with both clamped ends can then be expressed 
in terms of known values of ak as 

Wk =akf¥, (k = 1, 2, ... ). (3.23) 

The calculating results for this case are shown in Table 1 and Table 2. 

Table 1. Results for a uniform beam with rectangular cross section 0.8 (m) x 0.7 (m), l = 8 (m), 
E = 0.3 x 1011 N/m2 and p = 2.3x 103 kg/ m3 

co W1 w2 W3 W4 W5 

-0.004 234.56 676.01 1349.11 2248.12 3372.71 
-0.003 239 .89 682.93 1356.56 2255 .89 3380.68 
-0 .002 245.08 689.78 1363.98 2263.63 3388.63 
-0.001 250.16 696.56 1371.35 2271.34 3396.56 
0.00 255.13 703.26 1378.68 2279.02 3404.47 
0.001 259.99 709.90 1385.97 2286.68 3412.36 
0.002 264 .75 716.46 1393.22 2294.32 3420.24 
0.003 269.43 722 .98 1400.43 2301.92 3428.09 
0.004 274.01 729.43 1407.61 2309.51 3435.93 

Based on these results, some comments can be made as follows 
- In the case of the pre-compressed beam (co < 0) , the natural frequencies of the beam 

decrease for lco I increasing. 
- In the case of the pre-strained beam (co > 0) , the natural frequencies of the beam 

increase with the raise of co. 
- The fundamental natural frequency of the beam is influenced significantly by the pre­

stressed effect . However , this effect has fewer influence on high-order natural frequencies 
of the beam. 

- The above-mentioned phenomenon is called "compression softening effect" of pre­
stressed beams. 

.... 
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Table 2. Results for a uniform beam with circular cross section, the radius is 0.45 (m), 
l = 10 (m), E = 0.3x1011 N/m2 and p = 2.3xl03 kg/m3 

co W] w2 W3 W4 W5 
-0.004 163.10 476.54 955.84 1596.26 3359.40 
-0.003 168.00 482.82 962 .56 1603.26 3366.70 
-0.002 172.73 489.01 969.24 1610.23 3373.98 
-0.001 177.33 495.12 975 .88 1617.16 3381.24 
0.00 181.80 501.16 982 .47 1624.07 3388.49 
0.001 186.16 507.11 989.01 1630.94 3395.72 
0.002 190.41 513.00 995.51 1637.79 3402.93 
0.003 194.55 518.80 1001.96 1644.61 3410.14 
0.004 198.60 524.54 1008.38 1651.40 3417.32 

4 . F ORC ED T R ANSVERSE VIBRATION OF THE PRESTRESSED 
B EAM 
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Using Eq. (2 .18), we obtain the partial differential equation that describes the forced 
transverse vibration of the prestressed uniform beam with constant initial strain co 

84w 82w 82w 
EI 8x4 - coEA 8x2 + pA 8t2 = p(x, t). (4.1) 

Based on Bernoulli method, we assume a solution of Eq. (4.1) in the form 

00 

w(x, t) = L Xk(x)qk(t), (4.2) 
k= l 

where Xk(x) is the eigenfunction, qk(t) is the unknown function that we have to find. By 
substituting Eq. (4 .2) into Eq. (4 .1), we obtain a system of ordinary differential equations 
to determine functions qk(t) 

l 
J p(x, t)Xk(x)dx 

qk(t) + Wkqk(t) = O l = hk(t) , (k = 1, 2, ... ). (4.3) 

pAf xi(x)dx 
0 

We consider now the forced transverse vibration of a prestressed beam which is excited 
by a moving constant external force Fo at constant velocity v as shown in Fig. 6. 

EI 

Fig. 5. T e prestressed uniform beam 
with both fixed ends 

Fig. 6. Forced transverse vibration of a 
prestressed beam 
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In this case, the eigenfunction Xk(x) is chosen corresponding to the boundary config­

uration as Xk(x) =sin k~x, so Eq. (4.3) can be rewritten in the following form 

.. ( ) 2 ( ) 2Fo . " qk t + wkqk t = pAl sm Hkt, 

where nk is defined as 
" _ brv 
Hk - -l-. 

(k = 1,2, ... ), 

The general solution of Eq. (4.4) is given in the form 

qk(t) = Ak coswkt +Bk sinwkt + , ,, 2~0 ~'" sinDkt. 

(4.4) 

(4.5) 

(4.6) 

The constants Ak, Bk can be determined using the initial conditions. Assuming that 
the initial conditions are 

00 

wo(x) = w(x, 0) = I: Xk(x)qk 
k=l 

( ) ow(x, 0) ~ ( ) . 
Vo X = ,,,_,_ ='= ~ Xk X qk 

k=l 

Using the property of orthogonality of the eigenfunctions, these initial conditions can 
be simplified to 

qk(O) = 0, <ik(O) = 0, (k = 1, 2, ... ). (4 .7) 
With the initial conditions (4 .7) , the constants Ak, Bk are given by 

2Fonk 
Ak = 0, Bk = - Al ( 2 - n2) . p Wk Wk Hk 

(4.8) 

Substituting Eq. ( 4.8) into Eq. ( 4.6) yields 

2Fonk . 2Fo . 
qk(t) = - pAlwk(w~ _ D%) smwkt + pAl(w~ _ D%) smDkt. (4.9) 

brx 
By substituting Eq. (4.9) and the eigenfunction Xk(x) =sin - l - into Eq. (4.2), we 

get the following formula for determining the dynamic deflection of the beam 

2Fo ~ 1 [ . Dk . ] . brx 
w(x, t) = Al ~ 2 _ n2 smDkt - -smwkt sm - l- . 

p k=l Wk k Wk 
(4 .10) 

From Eq. (4.1), it can be shown that the resonant phenomenon occurs if Dk =wk. 
This leads to the following condition 

k27r 2 

z2 
EI l2E brv* - k 
pA + Eo k27r2p - -l- , 

where v'k is the critical velocity which can be determined by using Eq. (4.11) as 

(4 .11) 

.. 

I) 

', 
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(4.12) 

In the case that v = v'k and 01 = w1 corresponding to k =l, for simplicity in writing 
we set 01 = 0, W1 = w, vi = v*. The dynamic deflection of the beam for this case is 
given by 

* 2Fo . 7rX . 
w (x , t) = Al sm -l- hm p 0--->w 

By applying the L'Hospital law, we obtain 

· n o . 
s1n~d - - smwt 

w 
w2 _ [22 

* ( ) Fo . 7rx ( . ) w x,t = pAlw2 sm-l- smwt - twcoswt . 

7r 
Substituting w = 0 = yv* into Eq. (4.14) yields 

w*(x, t) = pA:~~* 2 [sin ( 7r~* t) - 7r~* t cos ( 7r~* t)] 

The calculation of extrema of t he function w*(x, t) leads 

* Fol 3 
. 7rX 

wmaAx) = 7r E (7r2 I+ col2 A ) sm -l . 

. 7rX 
sm-l-. 

(4 .13) 

(4 .14) 

(4.15) 

(4.16) 

The deflection in the middle of the beam (i .e. x = ~) can then be calculated from Eq. 

(4.16) as 

* l Fol 3 

WmaJ2) = 7rE(7r2f +col2A). ( 4.17) 

For co = 0 (i.e. in the case of the non-prestressed beam), Eq. ( 4.17) leads to the 
well-known formula [9] 

* l Fol 3 

Wmax(-2) = 7r3EJ ' (4.18) 

A comparison between Eq. ( 4.17) and Eq. ( 4. 18) gives us the following concluding 
remarks: 

- The maximum deflection of the pre-compressed beam (co < 0) is larger than the 
maximum deflection of the beam without prior compression . 

- The maximum deflection of the pre-strained beam (co > 0) is smaller than the max­
imum deflection of the beam without prior tension .. 

This behaviour illustrates the "compression softening effect" of prestressed beams 
which has been shown in the previous section. 

5. CONCLUSIONS 

In this article, the transverse vibration of prestressed beams is addressed. Some new 
results have been reached: 

The partial differential equation that describes the transverse vibration of the pre­
stressed beam is established generally by means of D'Alembert principle. This approach 
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is more general and convenient than the method using a model of two compressive forces 
acting in both ends of the beam. 

The calculat ing results for t he problems of the free and forced transverse vibration of 
the prestressed beam have clearly demonstrated the "compression softening effect" which 
was found by means of experimental works in reference [5]. 

Based on the formulae developed in previous sections of the present article, it is pos­
sible to study complicated problems on dynamics of structures which contains prestressed 
elements. This will be the subject for future works. 
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VE HI~U UNG LAM MEM DAM BANG NEN CUA DAM CO UNG 

SUAT TRUOC 

Chu de chfnh cua bai bao la nghien cuu dao d<)ng uon cua da m c6 ung suat tnr&c. 
Phuang trlnh vi phan dao d<)ng uon cua da m Euler-Bernoulli dm;rc thiet l~p, trong d6 & 
moi m~t cat ngang cua dam c6 bien d1;1-ng dai ty doi ban da u, do d6 ung suat phap ban 
da u khac khong. Trang bai bao nay da xay dvng m<)t so cong thuc tfnh cac ta n so rieng 
cua da m c6 (rng suat tru&c va khao sat dao d9ng uon cucmg buc cua da m c6 ung suat 
trn&c khi c6 ngo1t-i Ive di chuyen. Tu do rut ra hi$u ung lam mem dam bang nen cua da m 
co ung suat truac. Cac ket qua tfnh toan cho dam c6 ung suat truac va cho dam khong 
c6 ung suat trn&c dii CTU'Q'C so sanh va danh gia m9t each chi tiet. 
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