
Vietnam Journal of Mechanics, VAST, Vol. 28, No. 3 (2006), pp. 134- 144 

NUMERICAL SIMULATION OF CAVITATING 
TWO-PHASE GAS-LIQUID THREE-DIMENSIONAL 
FLOW IN A DUCT OF VARYING CROSS-SECTION 

BASED ON HOM OGENOUS MIXTURE MODEL 

NGUYEN THE Due 
Institute of Mechanics, 

Vietnamese Academy of Science and Technology 

Abstract. The paper presents a numerical method to simulate two-phase turbulent cavitating flows 
in ducts of varying cross-section usually faced in engineering. The method is based on solution of 
two-phase Reynolds-averaged Navier-Stokes equations of two-phase mixture. The numerical method 
uses artificial compressibility algorithm extended to unsteady flows with dual-time technique. The 
discreted method employs an implicit, characteristic-based upwind differencing scheme in the curvi
linear grid systems. Numerical simulation of an unsteady three-dimensional two-phase cavitating 
flow in a duct of varying cross-section with available experiment was performed. The unsteady 
important characteristics of the unsteady flow can be observed in results of numerical simulation. 
Comparison of predicted results with experimental data for time-averaged velocity and phase fraction 
are provided. 

1. INTRODUCTION 

It is highly desirable for high-speed hydraulic machinery and equipment to provide 
reliable operation over a wide range of operating conditions. In the estimation of perfor
mance, the existence of cavitating flow, which is considered to be high-speed gas-liquid 
two-phase fl.ow, is a very important factor. Studies dealing with cavitation modeling 
through the computation of the Navier-Stokes equations have emerged in the recent years. 
These studies may broadly be classified into two categories: interface tracking models and 
homogeneous equilibrium fl.ow models. In the first category, the liquid-vapor interface is 
tracked and grid is often regenerated iteratively to conform to the cavity region. Examples 
of this tracking method can be found in [1] and [2] . However, applications of the approach 
are limited to simple problems where cavity region can be described as a well-defined 
closed volume of pure gas . In addition, they are usually limited to 2-D flows because 
of difficulties involved in tracking 3-D interfaces . In the second category, t he cavitating 
fl.ow is modeled as a homogeneous two-phase mixture of liquid and vapor (see [3] and [4]) . 
Models in t his category are usually called homogenous mixture models. In comparison 
with interface tracking models, this approach can be easier applied to complex problems 
where cavity region can not be described as a well-defined closed volume of pure gas. 

This paper presents the development of a three-dimensional code performing simula
tions of unsteady cavitating flows in ducts of varying cross-section usually faced in engi
neering. Its mathematical basis incorporates a homogenous mixture model and art ificial 
compressibility algorithm. The numerical method employs an implicit, characteristic
based upwind differencing scheme in the curvilinear grid systems. This numerical method 
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have been presented and applied successfully to a steady cavitating flow around a projec
tile [5]. In this study, an extension of artificial compressibility algorithm with dual-time 
technique is incorporated with the numerical method to simulate unsteady behavior of 
flow. Numerical simulation of unsteady three-dimensional two-phase cavitating flow in a 
duct of varying cross-section with available experiment is presented to show the efficiency 
of the code. 

2. THE COMPUTATIONAL MODEL 

2.1. Governing equations 

In the volume fraction form, the governing equations consists of the continuity equa
tions for vapor and liquid phases and momentum equations: 

(2.1) 

(2.2) 

(2.3) 

where p1 , Pv, a1, av, m,+ and m,- denote liquid density, vapor density, liquid volume 
fraction, vapor volume fraction, condensation rate and evaporation rate, respectively. 

Mixture density and mixture viscosity can be expressed by: 

where 

Pm = p1a1 + PvO:v, 

µm = µ1a1 + µvav , 

a1+O'.v=1. 

(2.4) 

(2.5) 

By assuming that liquid density and vapor density are constants, Equations (2.1)-(2.2) 
can be written as follows: 

(2.6) 

8a1 a (a1uj) m,+ + m,-- + = ----at axj P1 ' 
(2.7) 

For convenience, instead of Equation (2 .6), the following equation obtained by adding 
Equation (2. 7) to Equation (2.6) is employed, 

OUj - ( . + . - ) ( 1 1 ) - - m +m - -- . 
OXj Pl Pv 

(2.8) 

Note that the differential form of the mixture density Pm can be obtained by differen
tiating Equation (2 .4) to receive, 

dpm = (Pl - Pv) da1. (2.9) 

By using Equation (2.9), Equations (2 .8), (2.3) and (2 .7) can be written in the following 
vector form, 
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r 8Q 8(E-Ev) 8(F-Fv) 8(G-Gv) _
8 eat+ ax + ay + az - ' (2.10) 

where 

p 0 0 0 0 0 
0 Pm 0 0 (Pl - Pv) u 

(m+ + m,- ) (~ - __!__) 
Pl Pv 

u 0 
Q = I v ; re= 0 0 Pm 0 (Pl - Pv) v s =I o 

and 

w 0 0 0 
a1 0 0 0 

u I PmU2 + p 
E = I PmUV ; 

PmUW 
a1u 

0 
Txx 

Ev= I Txy ' 
Txz 
0 

Pm (Pl - Pv) w 
0 1 

v 
Pm VU 

F = PmV2 + p 
PmVW 
a1v 

0 
Tyx 

Fv = Tyy 
Tyz 
0 

0 

(m+ + m,- ) 2-
P1 

w 
Pm WU 

G = I PmWV 
PmW2 + p 
a1w 

0 
Tzx 

Gv = J Tzy 
Tzz 
0 

2 ( au av aw ) 
Txx = 3 (µ + µt) 2 ax - oy - az ; (au av) 

Txy = (µ + µt) oy +ax = Tyx ; 

2 ( av au aw) 
T = - (µ + µt) 2- - - - - ; 

yy 3 ay ax az ( aw au ) 
Txz = (µ + µt) ax + az = Tzx ; 

2 ( aw au av) 
Tzz = 3 (µ + µt) 2 az - ax - oy ; (av aw ) 

Tyz = (µ + µt) az + oy =Tzy · 

2.2. Phase change closure 

The cavitation phenomenon is governed by thermodynamics and kinetics of t he phase 
change process. Many different semi-empirical formulas have been proposed to calculate 
phase change rates m,- and m,+ in Eq. (2.10). Some formulas among them have been 
compared in our previous study [5] . Based on the comparison results in the study [5], 
the formulas proposed by Anhuj a et al. [4] are employed here. In t hese formulas, the 
evaporation and condensation terms are both functions of pressure and volume fraction: 

CdestP1Min (p - Pv, 0) a1 
m = -------'---

(0.5pzU~) too 
. + CprodPvMax (p - Pv, 0) (1 - a1) m = . 

(0 . 5p1U~) too ' 

where Cdest = 1.0 and Cprod = 8.0. 
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2.3. Turbulence closure 

In numerical simulation presented here, the turbulent viscosity J-lt in Eq. (2 .10) is 
determined by standard k - c model as follows [6]: 

k2 
J-lt = CµPm- · 

c 
The turbulent kinetic energy k 

following equations, 
and its dissipation rate c are obtained by solving 

0 (pmk) 0 (PmUjk) _ ~ [ ( J-lt) ak] _ 
!'.lt + J::i - J::i J-lm + J'.l + Pk Pm€, U UXj UXj Clk UXj 

(2 .11) 

a(pmc) a(pmUj€) 0 [( J-lt) Oc] 
at + OXj = OXj J-lm + (Jf: OXj + c1Pk - C2Pmc, (2.12) 

where 

pk -T ·aui. T· = -~p k + 2µt (s·· _~auk" ·· ) . s .. _ ~ (aui + auj) 
- 23 OXj' 21 3 m 23 3 OXk UiJ 1 

lJ - 2 OXj OXi ' 

with cµ, c1, c2, CJk, CJE: are modeling constants. The constants in the standard k - c model 
are given as follows : 

Cµ = 0.09; C1 = 1.44; C2 = 1.92; IJk = 1.0; 

· 2.4. Initial and boundary conditions 

The governing equation (2.10) together with two turbulent equations (2. 11) and (2.12) 
require initial conditions to start calculation as well as boundary conditions at every time 
step. In the numerical simulation presented here, the fl.ow is assumed to start impulsively 
from the rest. Therefore, the uniform freestream conditions are used as initial conditions: 

p = p 00 ; U = u 00 ; V = v00 ; W = w00 ; O'.l = 1.0; k = k00 ; c = € 00 . 

At inlet boundary, the values of variables are also specified except that the extrapola
tion for pressure is applied: 

op= o· 
an ' U = U 00 ; V = V00 ; c =coo . 

At outlet boundary, the value of pressure is specified while the extrapolation for other 
variables is used: 

OU= O· 
an ' 

ov = 0· 
on ' W = Woo; a.1 = 1.0; 

ak 
-=O· on , & = 0 an . 

At the solid boundaries, the no-slip condition is imposed for the velocity components 
and the turbulent kinetic energy k. The normal gradient of other variables are set to be 
zero: 

op = O· on , u = O; v = O; w=O; a.1 = 1.0; k = O; & = 0. an 
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3. NUMERICAL METHOD 

The mass and momentum conservation equations are solved by using the dual-time 
extension of the artificial compressibility method [7] with the use of preconditioning tech
nique. The transport equations of turbulent kinetic energy k and its dissipation rate c; 

(Eqs . (2 .11)- (2 .12)) are solved separately for each time step. 
By applying the dual-time approach of the artificial compressibility method for un

steady flows and preconditioning technique [8] to Eq. (2.10), the following equation will 
be differentiated and solved: 

r8Q r 8Q 8 (E - Ev) 8 (F - Fv) 8 (G - Gv) = S (
3 

l ) 
OT + e at + ax + ay + !:\ - • • 

Here T is the artificial time and r is the preconditioning matrix formed by replacing the 
first column of matrix re [9] : 

1 
0 0 0 0 

Pm f3 
0 Pm 0 0 (PL - Pv) u 

r= I o 0 Pm 0 (PL - Pv) V 

0 0 0 Pm (PL - Pv) W 1 

a.1 
0 0 0 1 -

Pmf3 

Here f3 is some characteristic velocity ((3 is set to U~ in numerical simulations presented here) . 
If Eqs. (3.1) are directly used in a Cartesian system to flow pass complex geometry, 

the imposition of boundary conditions will require a complicated interpolation of the 
data on local grid lines, since the bottom boundary of complex terrain do not coincide 
with coordinate lines. This leads to a local loss of accuracy in the computed solution. 
To avoid these difficult ies, a transformation from physical domain (Cartesian coordinates 
(x, y, z)) to computational domain (generalized curvilinear coordinates(~ , 77, ()) is used. In 
generalized curvilinear coordinates (~, 77, (), Eqs. (3.1) can be written in the following form: 

r 8Q r 8Q 8 ( E - Ev) 8 (ft - Fv) 8 ( G - G v) A 

OT + e at + [)~ + OT] + 8( = s, 

where Q = 1 - 1Q; S = 1-13 

E = J -l (~xE + ~yF + ~zG); 

A -1 
F = J (TJxE + T}yF + TJzG); 

G = 1 - l ((xE + (yF + (zG); 

and J is Jacobian of transformation, 

A -1 
Ev = J (~xEv + ~yFv + ~zGv) , 

A -1 
Fv = J (TJxEv + T}yFv + TJzGv), 

A -1 
Gv = 1 ((xEv + (yFv + ( zGv) 

1 = 8 (~ , TJ , () = 
8(x, y, z) 

~x ~y ~z 
T/x T/y T/z 
( x (y (z 

(3.2) 
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Eq. (3 .2) is discretized with first order finite difference for the artificial time term and 
the physical time term. The viscous terms are approximated by central difference expres
sions, while the flux splitting procedure is applied to inviscid terms {10]. The discretized 
equations are solved by applying an approximate factorization technique. 

As mentioned , the transport equations of turbulent kinetic energy k and its dissipation 
rate£ (Eqs. (2.11)-(2.12)) are solved separately for each time step. These equations are 
also transformed from Cartesian coordinates to generalized curvilinear coordinates by 
applying the chain rule for partial derivative. The advective terms are discretized using 
the first-order upwind scheme. The second-order central scheme is used to discretize the 
diffusion-type terms. The discretized equation is solved by using an implicit approximate 
factorization technique. The obtained distribution of k and £is utilized to update t urbulent 
viscosity Vt for the next time step . More details of solution techniques were described in [5] . 

4. COMPUTED RESULT 

To test the capacity of t he model, numerical simulation was performed for cavitating 
flow through a duct of varying cross-section with available experimental data [11]. The 
scheme of the experimental duct is shown in Fig. 1. The cross section of t he duct is 
rectangular , 44 mm in width, and it has a variable height in order to form a convergent 
- divergent channel. The angle of the convergent part is 18°, whereas the angle at t he 
divergent part is 8°. The height of the upstream section Sref is 45 mm and the height of 
the throat section Sthroat is 34 .3 mm. 

~ 5,,_,~ !l.·: ~$::-;o:;~~ · 

i •. ~~' ~: · :: · 

Fig.1. Scheme of the experimental duct 

~! .: [ I t7 + 6!9-' I '·i$i I _ I . 1 1 _pmq i 
10 20 

XIS,., 

XIS,., 

Fig. 2. Overall view (above) and close view near duct throat (below) of 
computation grid in a plane 17=const 

The 3D grid system has 108 nodes along the streamwise direction(~), 22 nodes along the 
width of the duct section (17) and 41 nodes along the height of the duct section ((). The 
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overall and close views of calculation grid in a plane ry = const are shown in Fig. 2. The 
grid lines were clustered both near the solid surfaces as well as near the duct throat. 

Numerical simulation was carried out for the case corresponding to an inlet velocity 

I d . . b 2 (Poo - Pv) U00 = 7.2 m s an a cav1tat10n num er <J = 2 = 2.4 . The values at the room 
PooUOO 

temperature condition: p1 = 998 kg/m3 ; Pv = 998 kg/m3 and v = 1.004 x 10-6 m2 /s are 
used in the simulation. The simulation is performed with the nondimensional time step 

6.t 
6.t* = -;::;::;-- = 0.005. Here Tref is the reference time associated with the reference velocity 

.1 ref 

U 00 and the reference length S~ef (Trer = ~~) . After about 2000 time steps of simulation, 

a self-oscillatory flow were obtained. The cavitation zones appears as vapor clouds near 
t he bottom surface just after the duct throat. The analysis of computed results shows a 
more or less regular shedding of vapor clouds that are convected downstream and then 
collapsed. The transient evolution of flow is almost periodic with its cycles which can be 
described as follows: 

1. For about one haft of the cycle, a vapor cloud grows. This vapor cloud is almost 
attached to bottom surface. 

2. The length of attached vapor cloud increases. At the same time, a second separate 
vapor cloud is convected downstream. 

3. A disturbance appears at the interface of the attached vapor cloud when the cloud 
starts to be collapsed. 

4. The attached vapor cloud then split in to two parts while the downstream second 
vapor cloud start to disappear. 

The views of cavitation zone at some different time in a cycle corresponding to four 
above stages can be shown in Fig. 3. 
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Fig. 3. Distribution of vapour volume fraction at some different times in a cycle of computed flow 

This semi-periodic behavior of computed cavitating flow totally agree with experimen
tal observation. The numerical simulation also indicates the development of a reversed 
jet near the bottom solid surface. When this reversed jet reaches to the interface, the 
attached vapor cloud splits into two parts. The existence and position of the reversed jet 
in flow can be observed in Fig. 4. 
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Fig. 4. Computed distributions of pressure (left) and velocity component U (right) at a time 
when the breakoff of attached vapour cloud starts to occur 

It is clear that some most important behaviors of experimental flow have been sim
ulated by the numerical model. In order to provide further t est of the capacity of the 
simulation method , some quantitative comparisons between measurements and computed 
results were also made. In the experiment, taps are provided on the bottom of the duct 
at the distances of 13.7 mm, 31.5 mm, 49.9 mm and 67.7 mm downstream of the throat. 
They are equipped with optical probes to produce measurements of velocity and vapor 
volume fraction. These measured values were reported in the time-averaged form. The 
measurement techniques and result are present in detail in [11]. The time-averaged velocity 
component U are presented for each profile in Fig. 5. It shows the quite good agreement 
between numerical and experimental results in two posit ions (b) and ( c). However, the 
poorer agreement can be seen in the positions (a) and (d). The position (a) corresponds 
to the front part of cavitation zone where the evaporation process starts to occur. 

(al (b) (c) (d} 
12 

11 11 11 

10 

_ 1 

, ~ 6 
< ;;:-5 

x 

2 :< 

1 >: 

.5 .5 10 -5 10 
0 -5 0 5 10 
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Fig. 5. Time-averaged velocity component U. Comparison between numerical result (lines) and 
measurements (points) at the distances of 13.7 mm (a) , 31.5 mm (b) , 49 .9 mm (c) and 67.7 mm 

(d) downstream of the t hroat 

The position ( d) corresponds to the rear part of cavitation zone where the evaporation 
process together with the condensation process occurs simultaneously. The computed and 
measured profiles of t he time-averaged vapor volume fraction av can be shown in Fig. 
6. It can be see.n that the agreement between numerical simulation and experiment in 
the case of the ~olume fraction is better t han in the case of t he velocity component U. 
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T he computed vapor volume fraction profiles are in quite good qualitative agreement with 
measurements in three positions (a) , (b) and ( c). The poorer agreement can be seen in 
t he position ( d). 

From the quantitative comparisons presented in Figs. 5 and 6, it can be concluded that , 
in general , the quite good agreements with the experiment of the numerical simulations 
are obtained in the center parts of cavitation zone while the poorer agreements are faced 
at t he front and rear parts. In author 's opinion, this difference may be related to the 
fact t hat the local speed of sound in the front and rear parts of cavitation zone (where 
liquid and vapor phases are mixed strongly) is smaller than the local speed of sound in the 
center parts (nearly pure vapor). The larger local Mach number in the front and rear parts 
leads to the poorer agreement between numerical simulation and experiment because the 
incompressible model presented here is more suitable with flows with small Mach number. 
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Fig. 6. Time-averaged vapour volume fraction av. Comparison between numerical result (lines) 
and measurements (points) at the distances of 13.7mm (a), 31.5 mm (b), 49.9 mm (c) and 

67 .7 mm (d) downstream of the throat 

5. CONCLUSION 

A numerical method to simulate two-phase turbulent cavitating flows in ducts of vary
ing cross-section usually faced in engineering was presented. The method is based on 
solut ion of the incompressible two-phase Reynolds-averaged Navier-Stokes equations of 
two-phase mixture . A code have been developed based on the numerical solution of the 
governing equations. 

T he qualitative and quantitative comparisons between numerical and experimental 
results have been performed. The qualitative comparisons show that most important 
characteristics of experimental fl.ow have been simulated by the numerical model. The 
semi-periodic behavior of computed cavitating fl.ow totally agree with experimental ob
servation. The numerical simulation also indicates the development of a reversed jet near 
the bottom solid surface. From the quantitative comparisons, it can be concluded that 
the quite good agreements with the experiment of the numerical simulations are obtained 
in the center parts of cavitation zone while the poorer agreements are faced at the front 
and rear parts . The poorer prediction in the front and rear parts of cavitation zone may 

be rela ted to the large local Mach number in these parts where two phase are strongly 
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mixed which causes the incompressible model presented here becomes less appropriate. 
The use of a compressible model seem to be a reasonable alternative. However, because 
much larger parts of cavitating flows still have small local Mach number, the application 
of a compressible model will require strong computing resources and will be inappropriate 
in the condition of our computer at the present and in the near future. 

The study shows that the present numerical method can be used to predict unsteady 
cavitating flows in technical ducts of fluid machinery. It is clear that the method should 
be used together with simpler methods in order to provide more detailed information of 
unsteady cavitating flows faced in engineering. 
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MO PHONG SO DONG BA CHIEU HAI PHA DO XAM THUC TRONG 
ONG c6 TIET DI*N KHONG DEU TREN ca sa MO HINH HON H<;1P 

" ,! DONG NHAT 
Bai bao trlnh bay m<}t phm:mg phap mo phOng s6 dong xam thi,rc r6i hai pha trong cac 

6ng c6 thiet di$n khOng aeu thuang g~p trong ky thu~t. Phuong phap di,ra trim lai giai 
cua h$ phuong trlnh Navier-Stokes trung blnh Reynolds cho hon hqp hai pha. Phuong 
phap giai sii dl,lng thu~t toan nen gia duQ'C m& n?ng cho dong khong dung v&i ky thu~t 
hai bu&c thai gian. Phuong phap rM r~c h6a SU di,mg m<?t M sai phan an, ngtrQ'C dong 
theo duang d~c tmng trong cac M lu&i cong. Mo phOng s6 duqc thi,rc hi$n cho m9t dong 
xam thvc hai pha ba chieu khong dung trong m(>t 6ng c6 thiet di~n khong deu va ket qua 
dtrQ'C so sanh v&i s6 li$u thf nghi$m. Cac d~c tmng kh6ng dung quan tn;mg cua dong c6 
the duqc quan sat trong ket qua mo phOng s6. So sanh ket qua tfnh toan v&i du li$u thf 
nghi$m ve v~n toe va ty phan pha trung binh theo thai gian cling duqc thi,rc hi$n. 
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