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Abstract. The frequency equation of single damaged beam has been established for ar
bitrary boundary conditions that is the main tool for analysis as well as identification of 
damaged beam by using measured natural frequencies. A procedure for damage detection 
problem presented in this paper consists of three steps. First, the modelling error is reduced 
by a model updating procedure, in which the material, geometrical parameters and bound
ary conditions are updated. Then, measurement data are corrected based on the updated 
model. Finally, the damage parameters are identified using updated model and corrected 
measurement data. Theoretical investigation is illustrated by an example. 
Keywords: damage detection, model updating, beam. 

1. INTRODUCTION 

A damage often occurred on members of structures may cause serious failure of struc
tures. Therefore, damage must be detected as early as possible. However, the damage 
detection problem even for one-dimensional structure is still difficult and has not been 
solved completely. The difficulties arose mostly from the modelling error and measure
ment noise. Reduction of modelling error has been mentioned in some studies, but less 
attention is paid for correcting of noised and erroneous measurement data. The aim of 
this paper is to develop a complete procedure for solving the damage detection problem 
of beam including correction of not only the model but also the measurement data. 

There are different points of view criticising the use of modal parameters in dam
age detection, especially the case of using only the natural frequencies. Nevertheless, in 
practice the natural frequencies of structures are measured most easily and accurately in 
comparison with all other parameters such as the mode shapes for example. Using the 
other parameters, which are more contaminated by measurement noise, is not sure to 
improve the result of the damage identification. The author of present work agrees with 
Messina et al. stated in [1] that "a method capable of predicting the extent as well as 
the location of damage that requires only the change in the natural frequencies would be 
welcomed" . 

Since that discussion, the main focus of this paper is the problem of damage detection 
for one-dimensional structure using its the analytical model and measured only natural 
frequencies. The damage is treated as a change in sectional stiffness (or flexibility) , which 
is represented by an equivalent (axial or rotational) spring connecting the both sides of 
the damage position. In 1978 Adams et al. [2] investigated the case of damage that 
was modelled by an axial spring (axial damage model), but there is absent a calculating 
stiffness of the spring. Then transverse (rotational) model of damage has been developed 
and validated by a general theory of damaged beams [3] that makes it be possible to 
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determine the stiffness of the equivalent spring as a function of damage depth. Using 
the transverse model of damage Rizos et al. [4] have constructed the frequency equation 
for cantilever beam. Narkis [5] has given the equations for simply supported beam in 
both the cases of transverse and axial models. Boltezar et al. [6] did the same task 
for free-free beams with a transverse damage. Masoud et al. [7] considered the case of 
axially loaded fixed-fixed damaged beam. Nandwana et al [8] developed the theory for 
stepped cantilevers and Tsai and Wang [9] and Hai-Ping Lin [10] - for Timoshenko beams. 
While all the listed studies were concerned with a single damage, the multiple damaged 
beams were investigated by Ruotolo and Surace in [11], Khiem and Lien [12]. Furthermore, 
Liang [13] has shown that there exists a general form of the frequency equation for the both 
cantilever and simply supported beams. Morassi [14] has constructed a sensitivity equation 
of frequencies for beams with elastic supports at the beam ends, but he investigated only 
the case of symmetry of the supports. In the our paper [15] the frequency equation of 
damaged beam has been established in general form for all of the classical boundary 
conditions, that is likely the equation given by Liang. In this paper the general frequency 
equation of damaged beams obtained in [15] will be developed for elastic end supports 
since, as shown in reference [16], the idealisation of the boundary conditions can lead to 
significant shift of natural frequencies . 

The works done by Adams et al. [2], Liang [13], Morassi [14] are very important in the 
field of damage location of beam by natural frequencies . They have shown that the ratio 
of changes in two frequencies due to damage is independent on the damage magnitude but 
is a function of only the damage position. Based on this fact Adams et al. have suggested 
a graphic method to locate the damage by seeking an intersection of curves computed 
from the shifts of frequencies and mode shapes of undamaged beam. This method has 
been developed further in [6, 8]. However, the question as influence of the model error 
(boundary conditions) and measurement noise on accuracy of the damage location has 
been still unanswered . The model updating problem before the damage detection is firstly 
investigated by Adams et al. in [4] who proposed to correct the Young's modulus E as a 
model parameter to be updated. Moreover, the seeking intersection of curves in presence 
of the inaccurate model and the measurement error will be very difficult, not yet taking 
into account the effect of computational error. Therefore, another criterion for locating 
the damage as well as for determining the damage magnitude is required instead of the 
graphic one. Ruotolo and Surace have presented in [11 J very interesting analysis and 
comparison in using different objective functions . They have shown that the choosing 
optimisation principles affects strongly on the result of damage identification because one 
often may find rather the local than global minimum. There is need of a criterion for 
finding the global minimum of the chosen objective function . It is interesting to mention 
the paper of Armon et al. [17] where another criterion named as rank ordering one has 
been suggested and, as claimed the authors, is robust with respect to measurement error, 
boundary conditions and to many other factors . Nevertheless, in the paper there is a lack 
of an explicit algorithm to "measure" the rank ordering of frequency fractional changes 
and it requires to measure not only frequencies of damaged but also of the undamaged 
structure that is not realistic from the viewpoint of practical application. This limitation 
leads to the idea of using not frequency changes but the absolute values of measured 
frequencies of damaged structures. 

In this paper, first , a general characteristic equation of beams with a single trans-
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verse damage for generalised the boundary conditions, including also the elastic supports 
is established. This equation contains not only the beam constants, the damage parame
ters, but also the boundary parameters, that may be used for model updating before the 
damage detection. The obtained equation can be useful in theoretical investigat ion, for 
instance, in sensitivity analysis of frequencies to damage, boundary conditions or to the 
structural constants and of course it will be the main equation used for damage identifi
cation. Next, the beam constants and boundary parameters have been corrected in order 
to update the model. This model updating and measurement data correction procedure 
would be rather convenient and simple if the natural frequencies of undamaged beam 
are available. Otherwise, the raw values of damage parameters have been obtained in the 
model updating stage together with the model parameters and they will be used to correct 
the measurement data. The last correction is performed by calculating the natural fre
quencies from updated model of damaged beam. Using the updated model and corrected 
measurement data, the damage position and magnitude are identified by solving simple 
optimisation problem. Thus, the damage detection problem is significantly simplified. The 
proposed herein generalised procedure for damage detection of beam will be illustrated by 
a numerical example. 

2. VIBRATION MODEL OF A DAMAGED BEAM 

Consider a beam with the material and geometrical constants E, I, p, A, L. The 
equation of transverse vibration of the beam as well known is 

EJw(IV)(x, t) + pAw(x, t) = O; -0.5 ~ x ~= 0.5. (2.1) 

. ~ Introducmg the parameters a = L (pA/ EI) 4 and A = a...;W, where w - natural frequency 
of the beam, the mode shape of vibration can be determined by the equation 

¢ (IV) (x) - .\4¢ (x) = 0; x E [-0.5; +0.5]. (2.2) 

Suppose that the beam is damaged at a position s and the damage is modelled as a 
rotational spring of stiffness K, connecting beam segments in both sides of the damage 
position. Following T . G. Chondros and A. D. Dimarogonas et al. [3], we have 

K = ~. C ~ 611"(1 - v2)h I (~) 
C' EI c h ' 

where v - the Poisson ratio and the function Ic(z) for single-edge open damage has the 
form 

Ic (z) =0.6272z2 
- l.04533z3 + 4.5948z4 

- 9.973z5 + 20.2948z6 

- 33.0351z7 + 47.1063z8 - 40.7556z9 + 19.6z10. 

If a parameter f3 = EI/KL is introduced for description of relative flexibility of the spring 
and called here damage magnitude, then (3=0 (K=oo) will correspond to the undamaged 
case and f3max =138.5 (h/ L), when a= h - to the completely damaged one. Furthermore, 
at the damage sit it 's must be hold the condition 

¢ (s - 0) = ¢ (s + 0); 
q/" (s - 0) = ¢/" (s + 0) ; 

¢" ( s - 0) = ¢" ( s + 0) ; 
¢/ (s - 0) + (3¢/' (s - 0) = </>' (s + 0). 

(2.3) 

(' 
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Let the so-called shape functions Li(z) , i=1, ... ,4 be defined so that the functions 

</>1(x) = C1L1(~) + C2L2(0; 
~ = >.(x + 0.5); 

</>2(x) = C3L3(() + C4L4((); 
( = >.(x - 0.5), 

· will satisfy the given boundary conditions. The shape functions Li(z), i=l, .. . ,4, defined be
low in Appendix I, could depend on the boundary parameters denoted by b={ bi , i= 1, ... ,4}, 
if the more realistic (elastic) supports are considered. The parameters b are introduced 
for updating the model by measurement data, the Ci, i= 1, 2, 3, 4 are constants to be 
determined. 

Seeking solution of the equation (2.2) in the form 

</> (x) _ { ¢1 (x), -0.5::; x-< s 
- ¢2(x), s-< x::; 0.5 ' 

(2.4) 

after substituting this function into (2 .3), for existence of the non-trivial (nonzero) con
stants C there must be obtained the characteristic equation 

F(>-., s, /3, b) =<let [A]= 0, 

where 

[ 

L1(~s) L2(~s) - £3((s) 
[A] - L~ (~s) + )..(3L~(~s) L~(~s ) + )..(3L'.{(~s) -L~((s) 

- L~(~s) L'.{(~s ) - £3((s) 
L~'(~s) £2'(~s) -£3'((s) 

(2 .5) 

~s = >-.(s + 0.5); (s = >-.(s - 0.5). 

By the simple calculation it is not difficult to verified that the function F can be 
expressed in the form 

F(>-., s, /3, b) = /3F1 (>., s, b) + Fo(>., b), 

where F1 (>-., s, b) = det [A1]; Fo(>-. , b) = det [Ao] and matrices [A1], [Ao] are 

[ L1(<,) L2(~s) -L3((s) -L.((, ) l 
[A1] = )..L~(~s) )..£2(~s) 0 -L~((s) ; 0 - L3((s) 

Lt(~s) L'.{'(~s) -L3'((s) -L1'((s) 

[ L1({,) L2(~s) -L3((s) -L4((,)l 
_ L~ (~s) L~(~s) -L~((s) -L~((s) 

[Ao] - L~(~s) L'.{(~s ) -L3((s) - L1((s) . 
L~'(~s) L2'(~s) -L3'((s) - L1'((s) 

The independence of the function Fo on the parameter s may be easy checked by 
differentiation of the determinant. Thus, the called frequency equation with respect to 
the frequency parameter ).. t akes the final form 

F(>-., s, /3, b) = /3F1 (>-., s, b) + Fo(>-., b) = 0. (2 .6) 
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A modification of the equation (2.6) has been derived in [14], [15] for all the classical 
boundary conditions. The given herein equation is the most general because it is derived 
for generalised boundary conditions including as the classical ones as well as the more 
realistic elastic supports . For undamaged beam the frequency equation is much simplified 
as Fo(,\ b) = 0. From the equation (2.6) it may be seen that the ratio 

h =Fi (>.j, s, b)/ Fo(>.j, b), 

will be a constant for all the vibration modes and depended on only the damage sit, the 
fact mentioned above in introduction. 

3. MODEL U PDATING AND MEASUREMENT DATA CORRECTION 

Letting w* = ( wi, ... , w:nf be the m measured frequencies of the beam, we intro-

duce a vector 0 = (01, ... , Omf = ( JW"f, ... , .;c;;;;:)T, which represent the measured data 
without any change of their nature themselves. The main parameter to be. corrected is 

1 
a= L (pA/ EI) 4 and boundary parameters b = (b1 , . .. , bn)T beside the damage parameter 
(s, {3) . 

In the model of damaged beam described above, the prediction of natural frequencies 
is obtained by solving the frequency equation with respect to the so-called frequency 
parameters Aj , j= 1,. . ., m. The later are functions of the boundary and damage parameters 
Aj = Aj(b, s , {3). On the other hand, for the beam the relationship Aj=aOj must be hold for 
every j . So, the predicted and measured frequency parameters must satisfy the equalities 

>.i D- =a= const 
J 

Vj = 1, ... , m, 

which are equivalent to 
m 

L (>.i - a0j) 2 
= l>-1 2 

- 2a>.Tn + a2 IOl2 
= 0, 

j = l 
(3.1) 

with the notations >.To= (f >.ioi); l>-12 = >.T>. = f >.]; 
J=l J= l 

m 

1012 = oro = I: o;. The 
j=l 

equation (3 .1) is valid only under the condition 

(>.rn)2 2:: (>.r>.). (nro), 

which can be satisfied only with equality sign, i. e. (>.Tn) 2 = (>.T>.). (nrn) or 

_ (>.T0)2 
J(b, s, f3) = >.T >. . oro = l. (3.2) 

Because of modelling and measurements error, the value J(b, s, {3) remains always less 
than unity. Thus, a problem here is to maximise the function J(b, s, {3) with respect to 
boundary and damage parameters, i. e. 

_ (>.T0)2 . . 
E0 (b, s, {3) =1 - J(b, s , {3) = 1 - , 'T', ,..,,'T',..,, :::} mm, 

F(>.j , s, {3, b) = 0, j = 1, ... , m .. (3.3) 
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Suppose that solution of the optimization problem (3.3) is b, s, ~then bis accepted as 
corrected boundary parameter vector and corrected model parameter a can be found as 

(3.4) 

where >. >.(b, s, ~). Thus, the model updating has been completed and the obtained 
parameters will be used for correcting the measurement data. The model updated and 
the damage parameters estimated from the measured natural frequencies enables making 

correction of the measurement data D = (D1, ... , Dmf = ( JWf, ... , ~)T by calculating 
the frequency parameters 

'* An A G . 1 /\j = aHj = aywj , J = , ... ,m. (3.5) 

The obtained vector>.* = (.Ai , .. . , x;n)T representing the corrected measurement data cer
tainly satisfies the conditions (3.1-3 .2). If the natural frequencies of undamaged beam 
were measured, the optimisation problem (3.3) would be much more simplified by seeking 
only boundary parameters band constrain equations in (3 .3) now becomes F(>.j , s , /3 , b) = 
Fo(>-j , b) = 0. 

4. DAMAGE DETECTION 

The model updating and measurement correction described previously result in cor
rected model parameters such as ii, b and measurement data .A* = (>-i, .. . , >.;,,f = an , 
which now are used for identification of damage parameter s, f3 . Firstly, the frequency 
equation (2.6) with given>. = (>.1, ... , >-mf can be rewritten as 

/3 = doj / d1j (s), j = 1, .. . , m , ( 4.1) 

where doj = -Fo(>.j , b); dij(s) = F1(>.j , s, b) are components of vectors do and di respec
t ively. The equations ( 4.1), as shown above, is equivalent to the equation 

(4.2) 

that is meaningful with respect to the damage parameter f3 only under the condition 

The latter equation with the corrected measurement data .A* =(.Ai, ... , >.;,,f should be an 
exact equation for detecting damage sits. Nevertheless, due to the measurement error, the 
function g(>., s) always remains less than 1 and the actual damage sit could only minimize 
the called here damage sit function 11(>. , s) = 1 - g(>., s), so that the damage location 
leads to solving the problem 

{s: minJ1(>.*, s), -0.5 :S s :S 0.5} . 
• 

(4.3) 
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Global solution of the problem (4.3) is ever-existing, says with the global minimum 
J; = Ji ( ,\ *, s). Furthermore, in order to detect damage magnitude /3 with reduced further 
measurement error it has to solve the problem 

m 

h(>.) = L (1 - Aj/ >.j)2 =?min, 
j=i 

G(>.) =Ji(>., s) - J; = 0, 

0 ::; >.i ::; >.;, >.j_i ::; Aj ::; >.j+l, j = 2, ... , m - 1. 

(4.4) 

If solution of the problem (4 .4) has been found as Xi, ... , >-m-1' the magnitude of 
damage could be calculated as 

m - ' - ' 2: Fo(>.j, b)Fi(>..j, s, b) 
- j=i 
/3=- m 

2 - - ' L Fi(>.j, s, b) 
(4.5) 

j=i 

The problem of damage detection for beam is thus solved . 

. NUMERICAL CASE STUDY 

For illustration, the aluminium cantilever beam studied in [16] is taken under con
sideration herein based on the developed above theory. Initial model parameters and 
measurement data of the beam are as follow: the length L = 495.3 mm, wide W = 25.4 
mm, thick H = 6.35 mm, Young's.modulus E = 7.l · 107 kPa, mass density p = 2210 kg/ 
m3 . For the experimental prototype, the natural frequencies of intact as well as damaged 
beam have been measured, so that in both the cases the measured data can be determined 
as 

o~ = 11.07749; og = 27.6923; og=46.16964; 0~=64.48083; og = 82.57509; o~= 100.0955; 

Oi = 10.92615; 02 = 26.9797; 03 = 45.69772; 04 = 63.75469; 05 = 80.7376; 05 = .99.99411. 

Let's consider the cantilever with only two boundary parameters bi, b2 at the clamped 
end and, hence, only three measured frequencies of undamaged beam Oo = (01, j = 
1, 2, 3) will be used for model updating. In this case, the shape functions Lj have the 
form 

Li(z) = K2(z)->..3biKi(z); L2(z) = K4(z)+>..-ib2K3(z); L3(z) = K2(z); L4(z) = K4(z). 

Introducing the functions 

Du = ->..4 det Au, Di = ->..3 det Aio, D2 = >.. detAoi, Do= det Aoo, 

with matrices Au, A10, Aoi, Aoo given in Appendix, the frequency equation for undam
aged beam now takes the form 

Du(>..)bib2 + Di(>..)bi + D2(>..)b2 +Do(>..)= 0. (5.1) 

(" 
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Suppose that )q, >.2, A3 are three solutions of the equation (5.1), i. e. 

and that 5 = det ~' 61 = det ~1, 62 = det ~2, 63 = det ~3 with the matrices~' ~1, ~2, ~3 
given in Appendix, then, the equations (5.2) can be replaced by the conditions 

Thus, the model updating problem (3.3) leads to the standard problem of constrained 
programming 

(,\Tno)2 T . 
J (A) = 1 - ,\ T ,\ X no no ::::} mm, 

g(,\) = O; h(,\) 2: O; ,\1 - c 2: O; Aj+l - Aj - c 2: 0, j = 1, 2. (5.4) 

If 5- = { 5-1, 5-2, 5_3} is solution of the problem (5.4), the updated model parameters 

could be obtained as 

(5.5) 

The corrected measurement data for damage detection now can be computed by formula 
(3 .5) . 

Using only the first three values from 
the measured data for the undamaged 
beam no, the problem (5.3) has been 
solved by the MATLAB function FMIN
CON and updated model param~ters 
have been obtained as a= 0.1677; b1 = 
1.265 · 10-4 ; b2 = 0.069 (the initial val
ues of the model parameters a= 0.1537, 
b1 = 0.0, b2 = 0.0). Therefore, in
stead of design bending stiffness ( E I)o 
= 38.4799 Nm2 , its updated value now 
is (EI)u = 27.1232 Nm2 and bound
ary spring stiffness can be calculated 
as St = l.7646e06 N/m, Sr = 793.6397 
Nm/rad. The measurement calibration 
procedure is thus performed by calcu
lating corrected measurement data ac
cordingly to the equation (3.5) with the 
updated model parameters. 
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Fig. 1. The damage sit function with 
its local minimums 
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For detecting damage sit, numerical investigation of the function J1 ( >. *, s) in different 
cases of correction of measurement data and model updating has been carried out . The 
results show that the function Ji(>.*, s) has unique zero at s = 0.5 (the free end) and 
many local minimums, from which the global one can be derived. However, the deter
mining global minimum is not definitely because the local minimums cannot be clearly 
distinguished. In Table 1 there are listed five most clearly appeared local minimums of 
the function in the following cases: both the model updating and measurements correc
tion (case 1); no model updating nor measurements correction (case 2); model updating 
only (case 3) and measurements correction only (case 4) . Judging among the global min
imums that bolded in Table 1, it can be seen that only in the case 1, the global minimum 
s = -0.0487 may be accepted as detected correspondingly damage position X 8 = 22.3529 
cm compared with the actual damage position 20.63cm. Following the local minimums in 
comparison with the actual damage position, the best result in damage position detection 
(is = 21.8437 cm) has been obtained in the case of only model updating. It is reasonable 
to affirm that model updating is mandatory in damage detection otherwise it may lead to 
erroneous result of detection. 

Table 1. Local minimums of the damage sit function in different cases of model updating and 
measured data correction 

Local Case 1 Case2 Case 3 Case 4 
minimum s J(s) s J(s) s J(s) s J(s) 

1 -0.3954 9.3830E-7 -0.4288 8.2546E-7 -0.4596 2 .5226E-7 -0.4106 1.5504E-8 
2 -0.1797 5.5148E-7 -0.2373 l.5245E-5 -0.2799 l.9377E-5 -0.3155 5.8497E-7 
3 -0.0487 3.4088E-9 -0.1511 2.6775E-6 -0 .0590 2.2981E-5 0.1695 5.0097E-6 
4 0.0385 4.2514E-7 -0.0210 l.4924E-5 0.2680 l.2241E-5 0 .2774 l.5960E-5 
5 0.1725 7.1811E-7 0.2855 1.2110E-5 0.3731 6 .2019E-8 0 .3606 2.7288E-7 

Actual damage position is corresponding to s = -0.0835 

With damage position detected above in t he case of model updating and measurement 
correction (s = -0.0487), the problem (4.4) has been solved and results in t he damage 
magnitude equal to i3 = 0.0126. For the damage position detected x8 = 21.8437 cm, 
solution of the problem (4.4) gives f3 = 0.0088. 

6. CONCLUSION 

The main results presented in this paper are as follow: 
1. The theoretical basics for analysis and identification of single damaged beam have 

been established that is usable for generalised boundary conditions included all the well
known classical ones. The constructed analytical model of damaged beam is useful for 
damage detection due to that leads to the damage location separated from the damage 
magnitude detection, so that an equation for damage location is simply derived and solved 
in general case of boundary condition. At that time the damage detection problem is thus 
simplified and can be solved by a general procedure. 

2. A general procedure for damage detection in beam including the model updating, 
t he measured data calibration, the damage location and damage severity assessment is 
developed in general form. In the model updating stage, the model parameter such as 
geometrical, material constants as well as boundary conditions have been updated using 
measured data. The measured data are calibrated twice, first for damage location using 
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the updated model parameters and boundary conditions and then for damage severity 
assessment using additionally the identified damage sit. 

3. Illustrated example showed that behaviour of the damage sit function derived for 
damage location depending on the boundary condition may be very complicate, so that 
solution of the damage locat ion problem requires specific investigation. From the numerical 
results it has been seen also that the model updating task is mandatory required whenever 
before solving the damage detection problem. The measured data are ever-erroneous, but 
they should be calibrated through the damage detection process. 

This work was completed by financial support from the National Council in Natural 
Sciences of Vietnam 

APPENDIX 

A.1. The boundary (shape) functions 

Firstly, for simplicity in writing, the Krylov's functions are used 

K 1 (z) = 0.5(coshz + cosz); K3(z) = 0.5(cosh z - cosz); 
K2(z) = 0.5(sinhz - sinz); K4( z) = 0.5(sinh z + sinz). 

Obviously, the functions have the properties 

Ki(O) = 1, K2(0) = K3(0) = K4(0) = 0, 

K~(z) = K2(z), K~(z) = K3(z), K~(z) = K4(z), K~(z) = Ki(z). 

On the other hand, the boundary functions are written in the form 

with the boundary parameters bj and functions Loj , L1j defined below for different cases 
of generalized boundary condition (elastic supports). · 

Let's consider a beam with elastic supports at both ends. Each end is rested on two 
springs, one of which is translational and another is rotational. Stiffness of the springs 
is denoted respectively as Sw, Bro for the left end and Sn, Sri for the right one. The 
boundary conditions, in this case, have the following form 

Eiw'" + Sww = 0 and Eiw" - Brow'= 0, for the left boundary; 
Eiw"' - Snw = 0 and Eiw" + Sriw' = 0, for the right boundary; 
The flexural (bending) curve is taken as 

for the left end and 

for right one. Substituting the later expressions into the boundary conditions yields the 
required boundary functions . The boundary parameters bj are introduced so that t heir 
trivial value is corresponding to the classical boundary conditions. 
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A.1.1 Generalised Hinges: In this case both the ends of beam are elastically supported 
by springs of stiffness denoted as Sw, Sro for the left end and Sn, Srl for the other one. 
The boundary parameters b are introduced here so that their zero values give the simply 
supported beam, i.e. 

EI EI SroL SrlL 
b1 = SwL3; b3 = SnL3; b2 = EI ; b4 = EI . 

The boundary functions thus will be obtained in the form 

L1(z) = K2(z) - .X3b1K1(z); L3(z) = K2(z) + .X3b3K1(z); 
L2(z) = K4(z) + _x - 1b2K3(z); L4(z) = K4(z) - _x-1b4K3(z). 

Thus, in this case, 

Lo1(z) = Lo3(z) = K2(z), Lo2(z) = Lo4(z) = K4(z), 
Lu(z) = -L13(z) = -.X3K1(z), L12(z) = -L14(z) = .x-1K3(z). 

If all the parameters b = 0, we get the functions for well known simply supported beam 

L1(z) = L3(z) = K2(z); L2(z) = L4(z) = K4(z). 

In the later case, because of the symmetry of the boundary conditions, the functions could 
be simplified into L1(z) = L3(z) ~ sinz; L2(z) = L4(z) = sinhz. 

A.1.2 Generalised Clamps : For the reason mentioned above this case is differed from 
the generalised hinges case by introducing the boundary parameters 

EI EI EI EI 
bi = SwL3; b3 = SnL3; b2 = BroL; b4 = Sr1L. 

The boundary functions will take the form 

L1(z) = K2(z) - .X3b1K1(z), L3(z) = K2(z) + .X3b3K1(z), 
L2(z) = K3(z) + .Xb2K4(z), L4(z) = K3(z) - .Xb4K4(z), 

that give finally the functions 

Lo1(z) = Lo3(z) = K2(z), Lo2(z) = Lo4(z) = K3(z), 
Lu(z) = -L13(z) ~ -.X3K1(z), Li2(z) = -L14(z) = .XK4(z). 

By the analogy, for the ideally clamped beam, corresponding to trivial value of the bound
ary parameters b, the boundary functions are simplified as 

L1(z) = L3(z) = K2(z) , L2(z) = L4(z) = K3(z). 

A .1. 3 Generalised Cantilever: The ideal cantilever beam has the right end to be free 
and the left one to be cl~inped. In gen§,raliz;ed cantilever beam case, for the elastically 
supported at both sides ends beam the following boundary non~dimensional parameters 
are introduced 

EI EI SnL3 SriL 
bi = s £3 ; b2 = s L; b3 = EI; b4 = EI ; 

tO rO 
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so that the boundary functions will have the form 

L1(z) = K2( z) - >-3b1K 1(z), L3(z) = K1(z) + >-- 3b3K2( z ), 
L2(z) = K3(z) + >-b2K4(z), L4(z) = K4( z ) - >- - 1b4K3(z) . 

Therefore , 

Lo1 (z) = K2 (z), Lo2 (z) = K3( z), Lo3(z) = K1( z ), Lo4(z ). = K4(z) , 
Lu (z) = ->-3K1(z), L12(z) = >-K4(z), L13(z) = >--3K2 (z), L14(z) = ->-- 1K3(z). 

A.2. The matrices An, A10, Ao1, Aoo, .6., .6.i, .6.2, .6.3 

~ = >-(s + 0.5); ( = >-(s - 0.5) 

[ Ki (I;) K4(~) Ki(() K,(() l [ K1(1') K3(~) K1 (() 
K,(() l K 2(0 K1 (~) K2 (() K1(() A = K 2(0 K4(0 K2 (() K1(() 

Au = K3(0 K2(0 K3(() K2 (() ' 1° K3(0 K1 (~) K 3(() K2(() ' 
K 4(0 K3(0 K4(() K3 (() K4(0 K2(0 K4 (() K3(() 

[ K,(i;) K4(~) K1(() 
K,(() l [ K,(1;) K3(~) K1 (() 

K,(() l 
K3(~) K1 (0 K2(() K1(() . _ K3 (~) K 4(0 K2 (() K1 (() 

Am= K4 (0 K2(0 K3(() K2(() ' Aoo - K4 (~) K1(0 K 3(() K2(() ' 
K 1(0 K3(0 K4(() K 3(() K1 (~) K2(~) K4(() K3(() 

[ D ,(>,, ) D2(A1) D11 (A1) l [-Do(A1) D2(Ai) D11(A1) l 
.6. = D1( >-2) D2 (>-2) Du (>-2) ; .6.1 = -Do(>-2) D 2( >-2) Du(>-2) ; 

D 1( >-3) D2 (>-3) D u(>-3) -Do(>-3) D 2( >-3) Du (>-3) 

[ D1(A1) - Do (>-1 ) D11(A1) l [ D1(A1) D2(>-1) -Do(Ai) l 
.6.2 = D1(>-2) -Do( >-2) Du (>-2) . ; .6.3 = D1 (>-2) D2( >-2) -Do(>-2) ; 

D1(>-3) -Do(>-3) Du (>-3) D1 (>-3) D2(>-3) -Do(>-3) 
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CHAN DOAN HU HONG CUA DAM BANG TAN s6 RIENG: LY 
THUY~TVATHU~TTOAN 

Trong bai bao trlnh bay nhung phuang trlnh ca b11i.n d~ nghien cuu dao d<}ng rieng 
cua dam dan hoi c6 m<)t hu hOng v&i cac dieu ki~n bien tong quat (goi mem); m<)t thu~t 
toan de gili.i bai toan chan doan hu hOng (vt trf va muc d9) bao gom cac cong do~m: dieu 
chinh mo hlnh ( dieu ki~n bien) va, so li ~u do va xac Gtnh vt trf, muc d9 hu hOng va m9t 
vi dl). so d~ minh h9a cho ly thuyet va thu~t toan. 
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