
Vietnam Journal of Mechanics, VAST, Vol. 29, No. 3 (2007), pp. 427 - 439 
Special Issue Dedicated to the Memory of Prof. Nguyen Van Dao 

ON THE RELIABILITY PROBLEMS OF STRUCTURES 
SUBJECTED TO DYNAMICAL LOADS 

NGUYEN VAN PHO , LE NGOC THACH, CHU THANH BINI! 

Hanoi University of Civil Engineering 

Abstract. Mechanically, the assessment of t he structure's safety relates to three aspects: 
strenght, stability and oscillation. In the oscillation problems of structures, Lhc safety 
conditions are conditions of frequency, amplitude, resonance, maximum displaccmenl, 
etc .. 

In case t hat the structure itself contains random parameters and subjects to external 
loads that are also the random parameters (or random processes), the assessment of the 
structure's safety according to the deterministic inequalities of structural mechanics will 
be insignificant. Therefore, this should be assessed accordii-ig Lo the probabilistic point 
of view, namely, according to the reliability. 

The determination of reliability of the oscillation problems of structures encounters 
many difficulties because the outputs of the structural analysis problem arc the random 
processes (or t he random field). Meanwhile, up to now, the determii;iation of a probabi lily 
according to which a random process will belong to a given domain by mathematical 
method has not been sufficiently studied yet . 

In this paper, the authors, originating from a general definition on the reliability of 
a system by V. V. Bolotin, assess the reliability of osci llating structure, by determining 
the upper and the lower bounds of the reliability. 

The upper and the lower bounds of t he reliabi li ty are recommended to be determined 
by determining t he probability depending on only an inequality instead of delermining 
the it depending on a system of inequalities. Thus, the determination is very favourable. 

1. INTRODUCTION 

Reliability is the most important parameter for assessment of the structure's safety. 
Mechanically, the structure's safety relates to three main aspects of structural me­

chanics: strenght, stability and oscillation. 
The above t hree aspects are expressed in design standards as limit states [1] . 
In static problems, the method for determining the reliability according to the condi­

tions of strenght and stability has been relatively-fully studied [2, 3, 4, 5, G, ... ] . 
In the dynamical problems of structures, the inertia force and time t, are involved, the 

problem becomes much more complicated. 
In the static problems we are interested in only the reliable probability of random 

variables, in the dynamic problem, we do have to be interested the probability of the 
exce~dings of the stochastic processes [7, 8, 9, 10, ... ]. 

Therefore, to talk about the problem of reliability of the oscillating structure, we can 
say that there are many problems left undone. 
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8--- Structural analysis I Output I- Safety assessment 
____ _J 

Fig. 1. The diagram of safety assessment of structures 

As we all know, the analyzing problem of reliability of structures is carried out ac­
cording to the following diagram [ 11]: 

Input: deterministic parameters, random or fuzzy processes; 
Structural analysis: familiar methods of dynamics of deterrninistic structures [12, 13], 

methods of random oscillation [14, 15, 16, ... J and structural fuzzy analyzing methods 
[17, 18] may be used; 

Output: random variables, random process , randorn field or fuzzy field; 
Safety assessment: calculation of the reliability according to structural safety criterion. 
\Vhen Ctnalyzing the reliability according to the diagram in fig. 1, we face two main 

difficulties: 

1. Solving the random oscillation problem of structures 
The structure is a system of parameter distribution (innumerable degree of 

freedom), subjected to the action by stationary or nostat ionary random processes. 
Oscillation equation is a differential equation. Up to now , there have not been 
any effectively solving methods for these equations yet and they arc often solved 
in specific cases . 

2. Calculation of reliable probability: 
Determination of a probability according to which a random process will belong 

to a given domain (zone) is a difficult problem. Up to now, mathematical achieve­
ments can only allow us to determine the probability according to which a random 
process exceeds a given threshold [7, 8, 9, 10], that is to say, the probability de­
pends on an inequality only. Meanwhile, the reliable probability of structures , m 
fact, depends on a system of inequalities. 

For the above mentioned reasons, to determine the reliability of a structure when it is 
oscillated , we have to simplify the problem and to find the approximate solution. 

To improve the applicable ability of the solution of the above problem, we should 
appropriately use some assumptions or results obtained from the calculation of oscillation 
of deterministic structures. 

In the specific oscillation problem, where there arc only geometrical and physical 
parameters of the oscillation system, in many case this problem can be solved .as a problem 
of reliability with random variables( free osillation). 

In the forced oscillation problem, the output is generally random processes or, more 
exact, it is random field (because it depends on space parameters) [8,9,10]. Therefore, 
reliability problem is the pooblem of determining the probability of a random process 
belonging to a certain zone of the multi-direction space. 

In this paper, the authors use the general definition of system's reliability by V. V. 
Bolotin [8] to bring forward the way to assess the reliability of an oscillation system by · 
finding out the upper and lower bounds of the safety probability. 
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By finding out t he upper and lower bounds of the safety probability, mathematically 
the problem of determining a probability t hat satisfies a system of inequalities changes 
into the problem of determining a probability that satisfies an inequality only. 

By approximate calculation according to discrete time, the problerri. of reliability of et 
random process changes into the problem of reliability of a random variable. 

To illustrate the proposed method, some problems of reliability of one or more degree 
of freedom structures are considered. 

2. THE LOWER AND UPPER BOUNDS OF RELIABILITY IN THE 
OSCILLATION PROBLEM 

2.1. General definition of reliability 

In [8], V. V. I3olotin hets defined that reliability of an oscillation system is a prohability 
t hat satisfies, simultaneously, both the state equation and a system of inequalities ensurillg 
the quality in space and time. 

Let 's call ii = i1(i, t) is the state vector of t he osci llation system, where i = { x 1• x2 , x3 } :r 
is space variables and t is the time; 

Let's call if= if(i, t) is the vector of external loads, it may be either random process 
or random field. 

Lii(i, t) = if(x, t) 
is the state equation, where L is the differential operator or algebraic operator; 

Let's call v(i, t) = {vi} is the vector of quality, 

1\1'/i(x, t) = v(x, t) 

(2.1) 

(2.2) 

is the transform of state variables fi(i, t) to quality variables 'u(i, t) and 1\1 is the trallsforrn 
operator. 

To ensure the quality (or to ensure the safety) then 

J(v) E Do 

where D0 is the quality zone and f(v) is the quality function. 
Let's call Vis the zone the system occupies in the space i = {x;}. 
The reliability of the system is the probability: 

P(t) =Pro. 

Lu = if(x, T) 
J\117 = 'U(X, T) 
f(v) E no 
Vi EV 
VT E [O, I] 

In the oscillation problem, (2.1) is the oscillation equation. 

(2.3) 

(2.4 ) 

If the state variable 17(i, t) is chosen as the displacement of the structure and the 
quality variable v(i, t) is chosen as the stress, a;J(i, t) then the operator 1\1 is the product 
of the followi ng two translation operators: 

From ·,u( i, t), according to geometrical equations we can find dcformatious Eij ( i!, I); 
From E;j, according to laws for materials (e.g. Ilookc law) we cnn find a;J(x , t ). 
The condition (2.3 ) is condition on frequency, amplitude, resonance and maxirn11111 

displacement, etc ... 
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The condition '\IT E [O, t] is understood that the probability is calculated simultane­
ously with all values oft in the range of [O,t]. 

The determination of P(t) according to (2.4) is very difficult. For that reason the 
probability can only be determined in a specific cases. 

In the quasi-static problems, based on the technical significance of parameters ( cor­
rosion, degradation of materials with time, .. ) we can determine the variable direction of 
P(t). 

For example, with regard to steel corroded that results in reduction of the reliability 
with time, variable direction of P(t) shall be as that shown in Fig. 2; For reinforced 
concrete structures, in the first 50 years, the reliability is almost not changed. After that, 
due to creep and other degradation reasons, the reliability is gradually reduced as shown 
in Fig. 3. 

P(t) P(t) 

P(O) t--------

0 

Fig. 2. Fig. 3 

In the dynamical problems, the probability P(t) may be changed arbitrarily. For 
example, in the resonance region, P(t) is low (see Fig. 4). Over the transition process of 
the oscillation, the probability changes insignificantly because the oscillation is stationary 
(see Fig. 5). 

P(t) P(t) 

P(O P(O) 

0 0 

resonance region 

Fig. 4. Fig. 5 

In [6], we have proposed the way to determine the lower and upper bounds of reliability 
in the static problem (without the parameter of time). Hereinafter, we would like to expand 
the result obtained in [6] for oscillation problems. 
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2.2. The lower and upper bounds of P(t) 

Assumed t hat we have found out the solution for the state equation (2.2) , carry out 
the alteration of (2.2) and apply the obtained result to (2 .3) then we can have a probabi lity 
the depends on a system of inequalities as follows: 

{ 

fi( x, T) ~ Q } 
\Ix EV 

P(t) =Pro. VT_ E [0, t] . 
i - 1, 2, ... , m 

(2.5) 

To determine the approximate value of P(t), we should be discretization according 
to space and time variables. For example, with regard tot , we examine at n+l discrete 
values {tk} = {to = 1, t1 , t2 , ... , tn = n} (see Fig. 6) . 

P(t) 

P(O) 

0 
t =t n 

Fig. 6 

Therefore, the probability (2.5) becomes the probability that depends, simultaneously, 
on a system of inequa lities. 

And now we calculate the probabilities that correspond to each equali ty. Let's give 
the probabilities the symbols P; , i = 1, 2, ... . 

The calculation of probabilities that depend on only one equality can be easily carried 
out according to the proposed methods in [2,3 ,4, ... ]. 

Similar to [6], we are able to prove that the upper bound of P(t) shall be: 

p +(t) = maxP; (2.6) 
{ i} 

and the lower bound of P(t) shall be: 

This means: 

p - ( t) = minP; 
{i} 

p - (t) ~ P(t) ~ p+(t) 

(2.7) 

(2.8) 

While it is simple to calculate p +(t) and p - (t), the quantity of calculation may be 
large when the number of inequality in (2 .5) is large. This difficulty can be overcome for 
the time being, thanks to the personal computer. 

Values of p+ and p - have a very obvious technical significance: 
ViThen p - is sufficient big, we· can conclude that the structure is safe enough; 
When p - is small, it means that the reliability of some structural clements is small 

and then, we have to amend the design to increase t he reliability of the weak structural 
elements; 
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With similar doing way and with the re-examination by calculat ing, we can gradually 
obtain a structure with a "uniform reliability", that is the optimized structure. 

vVith regard to existing structures, when the value of p- of a structural elernent(s) is 
small, the elemcnt(s) shall be strengthened in order to increase the reliability of the whole 
structure. 

In a structure, due to the architectural and aesthetic requirements , some structural 
clements may have a very high reliability (~ 1). It is a common situation if we cannot 
reduce the reliability of these elements. However , it is not permitted if p - is too low . 

Notes: 
1) W'hcn examining the random processes, it is not allowed to specifically exarni nc 

them at each discrete time because value of random processes at different times relates 
to each other with a correlation function, value of the correlation function represents the 
dynamical nature (characteristic) of the oscillat ion process. 

In the above arguments, though the random processes is calculated according to the 
discrete time, the dynamical nature (characteristic) of the oscillat ion process is sti ll main­
tained and this is shown in the determining the solution of the random osci ll at ion equation 
(2.1) and the way to take min and max values (2.6) and (2.7). 

2) During the oscillation process of the structure, generally the osci ll ation characteris­
tics depend on the space variable :i and time variable t . To simplify the process and also 
due to the importance of the time variable, we have shown clearly the discretization of 
the time variable rather than the discrete of the space variable. The space variable shall 
be discreted according to the net in finite element method (FENI); 

3) There have been many research works on assessment of the reliability of a system 
by determining its lower and upper bounds [2 , 3, 4, 6, 19 ... ]. In these works, the 
authors have considered only some specific cases and the role of structural clements in the 
structure (serial, parallel or hybrid/ combined) are based to propose the expression for the 
assessment. 

In this paper we have relied upon the mathematical expressions only (i, e. the inequal­
ities contained in the expression of reliabili ty) to assess the structure's safety. Doing like 
this will facilitate the formulation of the problem as well as the calculation for solving the 
formulated problem. 

3. OSCILLATION OF ONE-DEGREE-OF-FREEDOM SYSTEM, 
RESONANCE REGION AND RELIABILITY 

3.1. The randomness of parameters 

The randomness here is understood as the random deviations around the mean value 
that arc expressed by the standard deviations. The deviations arc ignored in the deter­
ministic oscillation problem. 

Without leaving the general characteristic, to simplify the problem, we should study 
the problem of one-degree-of-freedom system [12]. 

Let's study the oscillation of the mass Ji![ placed on a beam of insignificant mass (the 
mass can be ignored) as shown in the Fig. 7a. ' 

When subjected by a excitat ion force P(t), the mass M will oscillate around the 
balance position, y = 0. At any time t, the location of mass M slrnJI be determined by 
vertical displacement y( t). 
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Fig. 7 
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The general differential equation of oscillation of the one-degrce-of-frccdorn system 
shall be: 

y(t) + 2cx y(t) + w 2y(t) = w2 61 p P(t) , (3.1) 

where: 

2 a = (3 w2 = 
M' Mfli1 

1 
(3.2) 

(3 is the coefficient that t akes into account the elastic-viscous property of t he matcriaL t lrnt 
is also called "resistance coefficient". The coefficient is involved in the interim! friction of 
joints at t he supports and that between structural elements of a st ructure, etc ... 

In (3.1 ), the model for elastic-viscous deformed materia ls assumed by Voigt is applied . 
According to t his model , the resistance force is considered to be directly proportional to 
the displacement velocity. 

611 is displacement in the moving direct ion, at the section where t he mass /\/ is plae<'d, 
caused by a force of P = 1, statically act ing on 1\1 (Fig. 7b) . 

61 F is displacement that is similar to 611 but , it is caused by the force of P = 1 placed 
at the same position of the simulat ing force (Fig. 7c). 

Thus, 611 and 61p depend on physical and geometrical properties of the beam. 
The force P(t) may either be deterministic or random. 
It is obvious that the coefficients of (3.1) arc random values, because t hey arc either 

the experimental constants or functions of experimental constants obtaii1ed by processing 
the statistical data. 

It is indeed true. To illustrate, let's study t he determination of (3 as follows as an 
example . 

The resistance coefficient (3 is selected for .a free oscillation as follows [ 12]. 

Let's call the ratio: TJ = Ym = eaTi is the ratio between t he two oscillation arnpli-
Ym+l 

t udes that take place apart from each other by the period of T1 . Let 's cal I \: = ln r1 = o T1 
is t he logarithm reduction of the oscillation. If t he osci llation arnplitudcs (that t akC' place' 
apart from each other by the period of T1) arc measured with expC'riment. we can dC't er­
mine x and then, from x, we can determine a and in the end, from n we c:a.11 clC'tcn11i11c ,) 
according to (3.2) . 

As a · random value, f3 is determined by its numerical charnctcrist ics (for cxnmpk. t IH' 
i11 c;111 val uc and the staudar<l deviat ion). 
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In deterministic calculation, deviations around the average value arc ignored and they 
are taken into account by permitting (allowing) design engineers to choose the value of a 
in a given range. Specific value of a shall be decided according to the experience of t he 
designer. 

The following table allows us to choose a after T1 is known. 

N 
1 
2 
3 
4 
5 
6 
7 

Structural type 
Steel structures 
Timber structures 
Reinforced concrete structures 
Reinforced concrete beams 
Reinforced concrete frames 
Steel bridges 
Reinforced concrete bridges 

(0.016:008).27r >:::::0.1:0.5 
(0.005:0.022) .27r >:::::0.031 :0.15 
(0.016:0.032):27r >:::::0.08:0.2 

(0.017:0.39)>:::::0.28 
(0.080:0.16) >:::::: 0.12 
(0.01 :0.15) >:::::: 0.08 

0.31 

However in many cases of calculating according to the average value, the ignorance of 
deviation is not be suitable. On the other hand, the selection of the constant by experience 
and subjectivism by the engineer shall not allow us to assess the error. 

Therefore, nowadays it is specified to design building structures according to the prob­
ability [1], meaning that the deviation is taken into account when designing. 

In some current building design standards, reliability specification is not clearly stated, 
however, when developing the new standards or improving the old ones, reliability theory 
was applied to adjust the design coefficients. 

3.2. Resonance region and the reliability problem 

Let's study a simple case: a forced oscillation in which a resistance force is taken into 
account , with a exitation force P( t) = P. sin Ot. 

After the transition process, the oscillation become stable. The oscillation equation is 
expressed as follows: 

y( t) 
y; 

--;:::=======Sin(w t- E), 

J 02 02 
(1--)2+12_ 

w2 w2 

(3.3) 

where y; 
mass. 

61p. P is the static displacement caused by P at the position placing the 

2a0 
E = arctg w2 _ 02 "( = 

2a 
) 

w • 
It is clear that y ( t) is a random function of time (it is a random process). 
Due to the requirements on either safety or serviceability, the oscillation amplitude is 

limited to a given range of values. For example: 

(3.4) 

where A and B are the constants. 
The inequalities (3.4) are the inequalities for the random values. Therefore, we can 

not replace random values in (3.4) with their respective mean va lues (according to the 
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way applied to deterministic problems) to assess. Instead, we have to replace them with 
the probability that satisfies (3.4): 

Prob. {A< y; < B} . (3.5) 
-; g2 02 -

( 1 - - ) 2 + 'Y2 _ 
w2 w2 

In the current deterministic calculation [12], within a level permissible approximation, 
the resonance condition is determined as: 

3 0 5 
- < - < -. (3.6) 4 - w - 4 

To assess the accuracy of the resonance condition (3.6), we have to calculate: 

Prob. (~ < !!_ < ~) =Pf. 4 - w - 4 (3.7) 

The probability (3. 7) is the probability by which the oscillation is in the resouance 
region. The probability by which the oscillation is not in the resonance region (resonance 
safety probability) will be: Ps = 1 - Pf . 

V/ith different bounds' values of the resonance region, we have different values of P,9 • 

Notes: Because there is a factor (multiplier) of sin(Bt - c:) in the expression (3.3) of 
y(t) and max(sin(Bt - c:)) = 1, to simplify (3.6) and (3.7), we ignore the variable t. If 

{t} 

doing so, we can only find out the lower bound of (2.1). 
Example: A motor with a volume of Q is placed in the middle of a simple I-shaped 

beam whose N°. is 30. Its length is l. The rotary speed of the motor is n (rpm). Due 
to the unevenly distributed mass, an inertia force P(t) =Po. sinOt shall be created when 
the motor is rotating. The beam volume per unit of length is q (see Fig. 8). 

A 

1/2 

Dynamic coefficient: 

P=~sin t 

B 

1/2 

Fig. 8 

w= 
48gEI 

c 

e = 27fn. 
60 
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l3 
Ymax = 

384
E

1
(8Q + 5ql + 8kdPo). 

Probability of safety according to the durabili ty condition will be: 

P}r) = Prob.(O"rnax :S O"o). 

Probability of safety according to the rigidity condition will be: 

P}r) = Pro.(Yrnax :S [f]) , 

With the following data: 

µ1 = 400 (cm) , O"z = 8 (cm), µw = 472 (cm3 ), 

µ~0 = 20 (kN/cm2
), 

O"Q = 10 (kN), 
O"l = 9.44 (cm3

), 

O"J = 141.6 (cm4
), 

µp0 = 6 (kN), 
µq = 0.00365 (kN/cm), 
O"n = 16 (vong / phut), 
µkd = 2.65, 

O"E = 0.105x l0tl (kN/cm2
), 

µ1 = 7080 (cmtl), 
µQ = 60 (kN), 
O"p0 = 0.6 (kN) , 
O"q = 0.000365 (kN/cm), 

2 µ9 = 981 ( cm/s ), 
O"g = 0.3 , 

l 
µ[fl = 400' 

We have: P}s) = 0.9839; P}r) = 0.99949; 

0"~0 = lkN/cm2
), 

µn = 320 (vong/phut), 
O"g = 49.05 (cm/s2

), 

µE = 2.lxl0'1 (kN/cm2
), 

O"[J] = 0.05xµ [f], 

(3.8) 

(3.9) 

And now, we calculate the probability by which, the resonance takes place. 
Supposing that the resonance region is (3.G), with the above data, we have: Ps = 

0.2776 so Pf = 1- Ps = 0.7224. 
If we extend t he resonance region, the probability by which, t he resonance takes place 

will increase. For example, if we replace the condition in (3.6) with t he following condit ion: 
2.5 0 5. 5 
4 < w < 4 then Ps = 0.278 so Pj = 1- Ps = 0.722. 

0 
If we choose a small expectation for - then t he resonance region wi ll be reduced and 

w 
Ps will increase. 

4. OSCILLATION OF LIMITED DEGREE-OF-FREEDOM SYSTEMS 

In case that the system has n degree-of-freedom, in general \Ve have n individual 
frequencies and n types of correspondingly individual oscillations. 

In this case, safety conditions are the conditions imposing on individual frequencies 
and the types of correspondingly individual oscillations. 

In case of parameter-distributed systems, i.e. the systems with numberless degree­
of-freedom, due to the discreting with time and space and, due to the concentration of 
mass, numberless degree-of-freedom systems becomes limited degree-of-freedom systems. 
If we simplify the problem according to this way, error is sure to be involved. However at 
present , there are quite a few research works solving the problem of model's error. 

In technical calculation, another approximate method is being used as follows. Based 
on the solution for the deterministic case of the problem (supposing that we have obtained 
the solution for the deterministic oscillation problem), we know the dangerous positiou 
and time of the system. By this, the factors of time and space are excluded from the 
problem and then , we can have a problem wi t h least degree-of-freedom as possible. 
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Example: Determine individual frequencies and the types of correspondingly individ­
ual oscillations of a cantilever beam that has two degrees-of-freedom (sec Fig. 9). 

~ 
El 3m m 

A -s •c 

l a l a l 
' ' ' 

Fig. g 

Give values to necessary variables [12], we have the individual frequencies: 

[EI 
w 1 = 0.5345 v M;;J; 

[EI 
W2 = 2.50 v M;;}3 

and the main types of correspondingly individual oscillations: 

Yll(t) = Yl1·a1.sin(w1t + <p1) = a1. sin(w1t + <p1). 

Y21(t) = Y21.a1.sin(w1t + <p1) = 3.a1. sin(w1t + <p1). 

The values a 1, <p1, a2, <p2 are determined from the initial conditions of the oscillation, i.c, 
at the time of t = 0. 

{ 

a1 sin <p1 + a2 sin <p2 = Y1 (0) 
W1a1COS<p1 +w2a2COS<p2 = v1(0) 
3a1 sin<p1 + a2 sin<p2 = Y2(0) 
3w1a1 COS<p1 - w2a2 COS<p2 = v2(0) 

(3.10) 

Let's choose: x1 = a1, x2 = sin<p1 , x3 = a2, X4 = sin<p2, x5 = cos<p1, X5 = cos<p2; t he 
system (3.10) becomes a system of non-liner algebra equations as follows: 

X1X2 + X3X4 = YI (0) 
W 1XJX5 + W2X3X5 = VJ (0) 
3x1x2 + x3x4 = Y2(0) 
3w1X1X5 - W2X3X5 = v2(0) 
x~ + x~ 1 
x~ + x~ = 1 

(3.11) 

The system of non-liner equations (3.11) consists of 6 equations with 6 unknowns. 
By solving (3.11) we can find out: Xi= Xi (w1, w2, Y1(0), Y2(0), v1(0) , v2(0)) (i = 

1,2, ... ,6) 
With a way similar to that for the above mentioned part , we can determine the relia­

bility of the system according to the resonance and displacement conditions of the beam 
with an attention that the system has two degrees-of-freedom. In the ordinary structures, 
only the first basic frequency is taken inrto account. However in the tall buildings and soft 
structures subject to wind load and seismic load , it is specified that higher frequencies be 
taken into account. 
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5. CONCLUSION 

Up to now, the reliability in the problem of structures' oscillation has not been much 
researched yet. The opinions shown in this paper are the initial results; 

The current methods for assessing the safety of the structure when it is oscillating 
often use approximate assumptions to simplify the problem. Therefore, the error is not 
yet assessed. On the other hand, for some particularly important structures or structures 
that are highly-sensitive to excitation force, it is required to assess the error. Therefore, 
the view point of probability has to be used to solve the problem in order to expect a good 
result. 

In this paper, it is supposed that the state equation (2.1) is solvable. \i\That should we 
do if solutions of the equation (2.1) are the numerical solutions. 

In analyzing structures, for almost all the equations, we can only determine the numer­
ical solutions rather than the analytic solutions(mathematical expressions). Due to the 
discreting according to the time, we can change the calculation according to process into 
the calculation according to random values, i.e. we have changed the dynamical problem 
into the static one of reliability theory. In the static problem of reliability, we are allowed 
to use the approximate solutions [2, 3, 4, 6, ... ]. 
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VE CAC BAI TOAN DQ TIN C~Y CUA KET CAU 
CH~U TAI TRQNG DQNG LVC 

Ve m~t ca h9c, vi9c danh gia an toan Cl'ia cong trlnh co lien quan den 3 llnh vvc: d9 bcn, on 
djnh va dao d9ng cong trlnh. Trong bai toan dao d9ng cong trlnh thl dicu ki{m an toan fa cac 
dieu ki9n ve tan so, bien d9, c<;mg hu&ng, chuyen vj C\J'C d?-i v.v .. Trong tmang hgp bitn than Cong 
trlnh chi'.ra cac tham so ngau nhien va chju tac dc;>ng ct'ia tai tr9ng ngoai la cac d<;ti lugng ngau 
nhien (hay qua trlnh ngau nhien) th! vi9c danh gia theo cac bat diing thi'.rc tat djnh ct'ia ca h9c 
ket cau la khong co ngh!a. Do do, nguai ta phai danh gia theo quan diem xac suat, nghTa la phiti 
tinh d9 tin c~y. 

Tim dQ tin c~y ct'ia bai toan dao dQng Cong trlnh g~p nhieu kho khan, Vl dau ra ct'ia bai toan 
phan tich ket cau la cac qua trlnh ngau nhien (hay trnang ngau nhien). Trong khi do , cho Mn 
nay cac thanh t\l'U ct'ia toan hQC VC tinh xac suat de mQt qua trlnh ngau nhien nam trong mQt 
mien nao do, clma duqc nghien ClrU day at'i. 

Trong bai nay, cac tac gia xuat phat tir djnh ngh!a tong quat ve d9 tin c~y ct'ia h9 thong ct'ia 
V. V. Bolotin, de danh gia d9 tin c~y ct'ia cong trlnh dao dc;>ng bang each tlm c~n tren va du&i ct'ia 
d9 tin c~y. 

De xuat each tinh c~n tren va c~n du&i ct'ia d9 tin c~y bang each chuyen vi9c tinh xac suat 
ph\l thu<;>c m<;>t h9 bat diing thi'.rc ve tlnh xac suat chl ph\l thu<;>c m<;>t bat diing thi'.rc. Nha v~y, rat 
thu~n !qi cho vi9c tinh toan. 


