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Abstract. Mechanically, the assessment of the structure’s safety relates to three aspects:
strenght, stability and oscillation. In the oscillation problems of structures, the safety
conditions are conditions of frequency, amplitude, resonance, maximum displacement,
etc..

In case that the structure itself contains random parameters and subjects to external
loads that are also the random parameters (or random processes), the assessment of the
structure’s safety according to the deterministic inequalities of structural mechanics will
be insignificant. Therefore, this should be assessed according to the probabilistic point
of view, namely, according to the reliability.

The determination of reliability of the oscillation problems of structures encounters
many difficulties because the outputs of the structural analysis problem are the random
processes (or the random field). Meanwhile, up to now, the determination of a probability
according to which a random process will belong to a given domain by mathematical
method has not been sufficiently studied yet.

In this paper, the authors, originating from a general definition on the reliability of
a system by V. V. Bolotin, assess the reliability of oscillating structure, by determining
the upper and the lower bounds of the reliability.

The upper and the lower bounds of the reliability are recommended to be determined
by determining the probability depending on only an inequality instead of determining
the it depending on a system of inequalities. Thus, the determination is very favourable.

1. INTRODUCTION

Reliability is the most important parameter for assessment of the structure’s safety.

Mechanically, the structure’s safety relates to three main aspects of structural me-
chanics: strenght, stability and oscillation.

The above three aspects are expressed in design standards as limit states [1].

In static problems, the method for determining the reliability according to the condi-
tions of strenght and stability has been relatively-fully studied [2, 3, 4, 5, 6, ...].

In the dynamical problems of structures, the inertia force and time ¢, are involved, the
problem becomes much more complicated.

In the static problems we are interested in only the reliable probability of random
variables, in the dynamic problem, we do have to be interested the probability of the
exceedings of the stochastic processes [7, 8, 9, 10, ...].

Therefore, to talk about the problem of reliability of the oscillating structure, we can
say that there are many problems left undone.
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Input —{Structural analysis Output Safety assessment

Fig. 1. The diagram of safety assessment of structures

As we all know, the analyzing problem of reliability of structures is carried out ac-
cording to the following diagram [11]:

Input: deterministic parameters, random or fuzzy processes;

Structural analysis: familiar methods of dynamics of deterministic structures [12, 13],
methods of random oscillation [14, 15, 16, ...] and structural fuzzy analyzing methods
(17, 18] may be used;

Output: random variables, random process, random field or fuzzy field;

Safety assessment: calculation of the reliability according to structural safety criterion.

When analyzing the reliability according to the diagram in Fig. 1, we face two main
difficulties:

1. Solving the random oscillation problem of structures

The structure is a system of parameter distribution (innumerable degree of
freedom), subjected to the action by stationary or nostationary random processes.
Oscillation equation is a differential equation. Up to now, there have not been
any effectively solving methods for these equations yet and they are often solved
in specific cases.

2. Calculation of reliable probability:

Determination of a probability according to which a random process will belong
to a given domain (zone) is a difficult problem. Up to now, mathematical achicve-
ments can only allow us to determine the probability according to which a random
process exceeds a given threshold [7, 8, 9, 10], that is to say, the probability de-
pends on an inequality only. Meanwhile, the reliable probability of structures, in
fact, depends on a system of inequalities.

For the above mentioned reasons, to determine the reliability of a structure when it is
oscillated, we have to simplify the problem and to find the approximate solution.

To improve the applicable ability of the solution of the above problem, we should
appropriately use some assumptions or results obtained from the calculation of oscillation
of deterministic structures.

In the specific oscillation problem, where there are only geometrical and physical
parameters of the oscillation system, in many case this problem can be solved as a problem
of reliability with random variables( free osillation).

In the forced oscillation problem, the output is generally random processes or, more
exact, it is random field (because it depends on space parameters) [8,9,10]. Therefore,
reliability problem is the problem of determining the probability of a random process
belonging to a certain zone of the multi-direction space.

In this paper, the authors use the general definition of system’s reliability by V. V.
Bolotin [8] to bring forward the way to assess the reliability of an 05(’111&‘(1011 system by
finding out the upper and lower bounds of the safety probability.
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By finding out the upper and lower bounds of the safety probability, mathematically
the problem of determining a probability that satisfies a system of inequalities changes
into the problem of determining a probability that satisfies an inequality only.

By approximate calculation according to discrete time, the problem of reliability of a
random process changes into the problem of reliability of a random variable.

To illustrate the proposed method, some problems of reliability of one or more degree
of freedom structures are considered.

2. THE LOWER AND UPPER BOUNDS OF RELIABILITY IN THE
OSCILLATION PROBLEM

2.1. General definition of reliability

In [8], V. V. Bolotin has defined that reliability of an oscillation system is a probability
that satisfies, simultaneously, both the state equation and a system of inequalities ensuring
the quality in space and time. B

Let’s call @ = (%, t) is the state vector of the oscillation system, where 2 = {2, 2, 23}
is space variables and t is the time;

Let’s call ¢ = ¢(&,t) is the vector of external loads, it may be either random process
or random field.

Li(z, t) = q(&,t) (2.1)
is the state equation, where L is the differential operator or algebraic operator;

Let’s call 9(#,t) = {v;} is the vector of quality,

M@, t) = 62, t) (2.2)

is the transform of state variables u(Z, t) to quality variables (&, t) and M is the transform
operator.
To ensure the quality (or to ensure the safety) then

F(@) € Qo (2.3)

where Qp is the quality zone and f(v) is the quality function.
Let’s call V is the zone the system occupies in the space @ = {z;}.
The reliability of the system is the probability:

L@ = §&, r)
Mid = 9(&, 7)
Plt) = Pra. f) € Q . (2.4)
Y € W
VT € [0,1]

In the oscillation problem, (2.1) is the oscillation equation.

If the state variable u(Z,t) is chosen as the displacement of the structure and the
quality variable v(Z, t) is chosen as the stress, 0;;(Z, t) then the operator M is the product
of the following two translation operators:

From (&, t), according to geometrical equations we can find deformations e, (Z, t);

From g;;, according to laws for materials ( e.g. Hooke law) we can find o;(Z, 1).

The condition (2.3) is condition on frequency, amplitude, resonance and maxinnum
displacement, ectc ...
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The condition V7 € [0, t] is understood that the probability is calculated simultane-
ously with all values of t in the range of [0,t].

The determination of P(t) according to (2.4) is very difficult. For that reason the
probability can only be determined in a specific cases.

In the quasi-static problems, based on the technical significance of parameters (cor-
rosion, degradation of materials with time,..) we can determine the variable direction of
Pit).

For example, with regard to steel corroded that results in reduction of the reliability
with time, variable direction of P(t) shall be as that shown in Fig. 2; For reinforced
concrete structures, in the first 50 years, the reliability is almost not changed. After that,
due to creep and other degradation reasons, the reliability is gradually reduced as shown
in Fig. 3.
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Fig. 2. Fig. 3

In the dynamical problems, the probability P(t) may be changed arbitrarily. For
example, in the resonance region, P(t) is low (see Fig. 4). Over the transition process of

the oscillation, the probability changes insignificantly because the oscillation is stationary
(see Fig. 5). '
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Fig. 4. Fig. 5

In [6], we have proposed the way to determine the lower and upper bounds of reliability
in the static problem (without the parameter of time). Hereinafter, we would like to expand
the result obtained in [6] for oscillation problems.
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2.2. The lower and upper bounds of P(t)

Assumed that we have found out the solution for the state equation (2.2), carry out
the alteration of (2.2) and apply the obtained result to (2.3) then we can have a probability
the depends on a system of inequalities as follows:

fz(-’f» T) = 0
Vi eV

vr € [0,

b = L 2 vus, T

P{l) = Pro. (2.5)

To determine the approximate value of P(t), we should be discretization according
to space and time variables. For example, with regard to t, we examine at n+1 discrete
values {tx} = {to = 1,t1,t2, ..., tn, = n} (see Fig. 6).
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Fig. 6

Therefore, the probability (2.5) becomes the probability that depends, simultaneously,
on a system of inequalities.

And now we calculate the probabilities that correspond to each equality. Let’s give
the probabilities the symbols P;, 1 = 1, 2,....

The calculation of probabilities that depend on only one equality can be casily carried
out according to the proposed methods in [2,3,4,...].

Similar to [6], we are able to prove that the upper bound of P(t) shall be:

Pl = ngjaixPi (2.6)
and the lower bound of P(t) shall be:
Pt} = 11{1j}nPi (2.7)
This means:
P < Pl§) = Pr(@) (2.8)

While it is simple to calculate Pt (t) and P~ (t), the quantity of calculation may be
large when the number of inequality in (2.5) is large. This difficulty can be overcome for
the time being, thanks to the personal computer.

Values of P™ and P~ have a very obvious technical significance:

When P~ is sufficient big, we can conclude that the structure is safe enough;

When P~ is small, it means that the reliability of some structural elements is small
and then, we have to amend the design to increase the reliability of the weak structural
clements;
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With similar doing way and with the re-examination by calculating, we can gradually
obtain a structure with a “uniform reliability”, that is the optimized structure.

With regard to existing structures, when the value of P~ of a structural element(s) is
small, the element(s) shall be strengthened in order to increase the reliability of the whole
structure.

In a structure, due to the architectural and aesthetic requirements, some structural
elements may have a very high reliability (= 1). It is a common situation if we cannot
reduce the reliability of these elements. However, it is not permitted if P~ is too low.

Notes: '

1) When examining the random processes, it is not allowed to specifically examine
them at each discrete time because value of random processes at different times relates
to each other with a correlation function, value of the correlation function represents the
dynamical nature (characteristic) of the oscillation process.

In the above arguments, though the random processes is calculated according to the
discrete time, the dynamical nature (characteristic) of the oscillation process is still main-
tained and this is shown in the determining the solution of the random oscillation equation
(2.1) and the way to take min and max values (2.6) and (2.7).

2) During the oscillation process of the structure, generally the oscillation characteris-
tics depend on the space variable & and time variable t. To simplify the process and also
due to the importance of the time variable, we have shown clearly the discretization of
the time variable rather than the discrete of the space variable. The space variable shall
be discreted according to the net in finite element method (FEM);

3) There have been many research works on assessment of the reliability of a system
by determining its lower and upper bounds (2, 3, 4, 6, 19 ...]. In these works, the
authors have considered only some specific cases and the role of structural clements in the
structure (serial, parallel or hybrid/combined) are based to propose the expression for the
assessment.

In this paper we have relied upon the mathematical expressions only (i, e. the incqual-
ities contained in the expression of reliability) to assess the structure’s safety. Doing like
this will facilitate the formulation of the problem as well as the calculation for solving the
formulated problem.

3. OSCILLATION OF ONE-DEGREE-OF-FREEDOM SYSTEM,
RESONANCE REGION AND RELIABILITY

3.1. The randomness of parameters

The randomness here is understood as the random deviations around the mean value
that are expressed by the standard deviations. The deviations are ignored in the deter-
ministic oscillation problem.

Without leaving the general characteristic, to simplify the problem, we should study
the problem of one-degree-of-freedom system [12].

Let’s study the oscillation of the mass M placed on a beam of insignificant mass (the
mass can be ignored) as shown in the Fig. 7a. '

When subjected by a excitation force P(t), the mass M will oscillate around the
balance position, y = 0. At any time ¢, the location of mass M shall be determined by
vertical displacement y(t).
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The general differential equation of oscillation of the one-degree-of-freedom system

shall be:
§E) + 20 9() + w2y(t) = w251 p P(1), (3.1)
where: 8 g
2
=3 YT W
(3 is the coefficient that takes into account the elastic-viscous property of the material. that
is also called “resistance coefficient”. The coefficient is involved in the internal friction of
joints at the supports and that between structural elements of a structure, ctc...

In (3.1), the model for elastic-viscous deformed materials assumed by Voigt is appliced.
According to this model, the resistance force is considered to be directly proportional to
the displacement velocity.

011 is displacement in the moving direction, at the section where the mass A is placed,
caused by a force of P = 1, statically acting on M (Fig. 7b).

01p is displacement that is similar to d1; but, it is caused by the force of 7 = 1 placed
at the same position of the simulating force (Fig. 7c).

Thus, d11 and d;p depend on physical and geometrical properties of the beam.

The force P(t) may either be deterministic or random.

It is obvious that the coefficients of (3.1) are random values, because they are either
the experimental constants or functions of experimental constants obtained by processing
the statistical data.

It is indeed true. To illustrate, let’s study the determination of 3 as follows as an
example.

The resistance coefficient 3 is selected for a free oscillation as follows [12].

Ym oy

=g

Ym+1
tudes that take place apart from each other by the period of 7). Let'scall v = Inn = a1}
is the logarithm reduction of the oscillation. If the oscillation amplitudes (that take place
apart from each other by the period of T) are measured with experiment, we can deter-
mine y and then, from y, we can determine a and in the end, from o we can determine
according to (3.2).

(3.2)

Let’s call the ratio: n = is the ratio between the two oscillation ampli-

As arrandom value, 3 is determined by its numerical characteristics (for example. the
mean value and the standard deviation).
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In deterministic calculation, deviations around the average value are ignored and they
are taken into account by permitting (allowing) design engineers to choose the value of «
in a given range. Specific value of « shall be decided according to the experience of the
designer.

The following table allows us to choose a after 77 is known.

NO.  Structural type aTy

1 Steel structures (0.016:008).27 ~0.1:0.5

2 Timber structures (0.005:0.022).27 ~0.031:0.15
3 Reinforced concrete structures  (0.016:0.032):27w ~0.08:0.2
4 Reinforced concrete beams (0.017:0.39)=0.28

5  Reinforced concrete frames (0.080:0.16) ~ 0.12

6  Steel bridges (0.01:0.15) = 0.08

7 Reinforced concrete bridges 0.31

However in many cases of calculating according to the average value, the ignorance of
deviation is not be suitable. On the other hand, the selection of the constant by experience
and subjectivism by the engineer shall not allow us to assess the error.

Therefore, nowadays it is specified to design building structures according to the prob-
ability [1], meaning that the deviation is taken into account when designing.

In some current building design standards, reliability specification is not clearly stated,
however, when developing the new standards or improving the old ones, reliability theory
was applied to adjust the design coefficients.

3.2. Resonance region and the reliability problem

Let’s study a simple case: a forced oscillation in which a resistance force is taken into
account, with a exitation force P(t) = P.sin0t.

After the transition process, the oscillation become stable. The oscillation equation is
expressed as follows:

Ys ,
gt) = AN sin(w t — €), (3.3)
Ja-Zr e
where y; = d,p. P is the static displacement caused by P at the position placing the
mass.
2a0 2a

€ = arety ————% = —
T2 2 4 W

It is clear that y(t) is a random function of time (it is a random process).

Due to the requirements on either safety or serviceability, the oscillation amplitude is

limited to a given range of values. For example:

x
A< & <B (3.4)
02 . 292
Ja-GZrevs
where A and B are the constants.
The inequalities (3.4) are the inequalities for the random values. Therefore, we can
not replace random values in (3.4) with their respective mean values (according to the
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way applied to deterministic problems) to assess. Instead, we have to replace them with
the probability that satisfies (3.4):

Prob. { A< L <BY. (3.5)
02 5 292
(1~ E) T2

In the current deterministic calculation [12], within a level permissible approximation,
the resonance condition is determined as:

3 _ 0 5
-< - < - 3.6
4~ w — 4 (38)
To assess the accuracy of the resonance condition (3.6), we have to calculate:
3 0 5
Prob. [- < — < -] = Py. 3.7
o (4 T w T 4) ! k)

The probability (3.7) is the probability by which the oscillation is in the resonance
region. The probability by which the oscillation is not in the resonance region (resonance
safety probability) will be: Py =1 — Py .

With different bounds’ values of the resonance region, we have different values of .

Notes: Because there is a factor (multiplier) of sin(6t — ¢) in the expression (3.3) of
y(t) and n?}x (sin(6t — €)) = 1, to simplify (3.6) and (3.7), we ignore the variable t. If

doing so, we can only find out the lower bound of (2.1).

Example: A motor with a volume of @ is placed in the middle of a simple I-shaped
beam whose N©. is 30. Its length is [. The rotary speed of the motor is n (rpm). Due
to the unevenly distributed mass, an inertia force P(t) = Fp. sinft shall be created when
the motor is rotating. The beam volume per unit of length is g (see Fig. 8).

P=Rsin t

i A
12 | 1/2 |

1

(2Q + ql + 2kqP),

Omax —
Sw,
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3
Ymax = 384EI(8Q + bql + 8]CdP0).

Probability of safety according to the durability condition will be:

P{) = Prob.(omax < 00). (3.8)
Probability of safety according to the rigidity condition will be:
P = Pro.(ymax < [f]), (3.9)
With the following data:
p; =400 (cm), o1 = 8 (cm), pw = 472 (cm3),
o = 9.44 (cm?3), pr = 7080 (cm?), toy = 20 (kN/em?),
o = 141.6 (cm?), 1o = 60 (kN), oo = 10 (kN),
wp, = 6 (kN), op, = 0.6 (kN), 05 = 1kN/cm?),
fq = 0.00365 (kN/cm), og = 0.000365 (kN/cm), p, = 320 (vong/phut),
on = 16 (vong / phut), pg = 981 (cm/s?), og = 49.05 (em/s?),
fi, == 2,65, og = 0.3, pi = 2.1210" (kN /cm?),
l

op = 0.105210* (kN /cm?), M1 = 2007 o1y) = 0.05zpp,

We have: P{*) = 0.9839; P{") = 0.99949;

And now, we calculate the probability by which, the resonance takes place.

Supposing that the resonance region is (3.6), with the above data, we have: Ps =
0.2776 so Py = 1- Ps = 0.7224.

If we extend the resonance region, the probability by which, the resonance takes place
will increase. For example, if we replace the condition in (3.6) with the following condition:

2. Q 5.5
—5 < — < — then P, = 0.278 so Py = 1- P, =0.722.
4 w 4

If we choose a small expectation for — then the resonance region will be reduced and

€12

Ps will increase.

4. OSCILLATION OF LIMITED DEGREE-OF-FREEDOM SYSTEMS

In case that the system has n degree-of-freedom, in general we have n individual
frequencies and n types of correspondingly individual oscillations.

In this case, safety conditions are the conditions imposing on individual frequencies
and the types of correspondingly individual oscillations.

In case of parameter-distributed systems, i.e. the systems with numberless degree-
of-freedom, due to the discreting with time and space and, due to the concentration of
mass, numberless degree-of-freedom systems becomes limited degree-of-freedom systems.
If we simplify the problem according to this way, error is sure to be involved. However at
present, there are quite a few research works solving the problem of model’s error.

In technical calculation, another approximate method is being used as follows. Based
on the solution for the deterministic case of the problem (supposing that we have obtained
the solution for the deterministic oscillation problem), we know the dangerous position
and time of the system. By this, the factors of time and space are excluded from the
problem and then, we can have a problem with least degrec-of-freedom as possible.
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Example: Determine individual frequencies and the types of correspondingly individ-
ual oscillations of a cantilever beam that has two degrees-of-freedom (see Fig. 9).

q El 3m m

Y A % =

} o } o }
Fig. 9

Give values to necessary variables [12], we have the individual frequencies:

[ ET | E1
w1 = 0.5345 W’ Wy = 2.50 ]\/[0,3

and the main types of correspondingly individual oscillations:

y11(t) = y11.a1.8in(wit + 1) = a;.sin(wit + ¢1).
y21(t) = yo1.a1.8tn(wit + ¢1) = 3.a;1.sin(wit + 7).

The values a1, ¢1, az, @9 are determined from the initial conditions of the oscillation, i.c,
at the time of t = 0.

arsing; + azsingy = y;(0)

w1aj cos Y + waag cosws = v1(0)
3a; siny] + agsinyy = yg(O)
3wiag cosp; — waag cospy = v2(0)

(3.10)

Let’s choose: =1 = a1, To = sinyi, T3 = ag, T4 = sin g, T5 = cos P, Tg = COS po; the
system (3.10) becomes a system of non-liner algebra equations as follows:

T1%2 + 324 = Y1(0)
w1125 + wozsxe = v1(0)
3z1z9 + 2324 = Y2(0)

3wiT1T5 — worsxze = v2(0) (3.11)
23 4 28 = 1

L a:% +xi=1

The system of non-liner equations (3.11) consists of 6 equations with 6 unknowns.

By solving (3.11) we can find out: z; = X; (w1, we, y1(0), y2(0), v1(0), v2(0)) (i =
1.2,..0) .

With a way similar to that for the above mentioned part, we can determine the relia-
bility of the system according to the resonance and displacement conditions of the beam
with an attention that the system has two degrees-of-freedom. In the ordinary structures,
only the first basic frequency is taken inrto account. However in the tall buildings and soft
structures subject to wind load and seismic load, it is specified that higher frequencies be
taken into account.
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5. CONCLUSION

Up to now, the reliability in the problem of structures’ oscillation has not been much
researched yet. The opinions shown in this paper are the initial results;

The current methods for assessing the safety of the structure when it is oscillating
often use approximate assumptions to simplify the problem. Therefore, the error is not
yet assessed. On the other hand, for some particularly important structures or structures
that are highly-sensitive to excitation force, it is required to assess the error. Therefore,
the view point of probability has to be used to solve the problem in order to expect a good
result.

In this paper, it is supposed that the state equation (2.1) is solvable. What should we
do if solutions of the equation (2.1) are the numerical solutions.

In analyzing structures, for almost all the equations, we can only determine the numer-

ical solutions rather than the analytic solutions(mathematical expressions). Due to the
discreting according to the time, we can change the calculation according to process into
the calculation according to random values, i.e. we have changed the dynamical problem
into the static one of reliability theory. In the static problem of reliability, we are allowed
to use the approximate solutions [2, 3, 4, 6, ...].
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VE CAC BAI TOAN DO TIN CAY CUA KET CAU
CHIU TAI TRONG DONG LUC

Veé mit co hoc, viéc ddnh gid an toan clia cong trinh ¢6 lién quan dén 3 linh vire: d6 ben, 6n
dinh va dao dong cong trinh. Trong bai todn dao dong cong trinh thi dicu kien an toan la cac
dieu kién ve tin s6, bién do, cong hudng, chuyén vi cre dai v.v.. Trong truedong hop ban than cong
trinh chitra cdc tham s3 ngau nhién va chiu tdc dong cla tai trong ngoai Ia cdc dai lwong ngau
nhién (hay qué trinh ngdu nhién) thi viéc ddnh gid theo cdc bat dang thire tit dinh cia co hoc
két cdu la khong c6 nghia. Do d6, ngudi ta phai danh gid theo quan diém xdc sudt, nghia la phai
tinh d6 tin cay.

Tim do tin cAy ciia bai toan dao dong cong trinh gdp nhieu khé khin, vi dau ra cia bai todn
phéan tich két cau 1a cdc qud trinh ngdu nhién (hay truwong ngdu nhién). Trong khi d6, cho dén
nay cac thanh tuu clia todn hoc vé tinh xdc suat dé mot qud trinh ngdu nhién nam trong mot
mién nao do, chwa droc nghién ctru day du.

Trong bai nay, cic tdc gid xudt phat tir dinh nghia tong quét vé do tin ciy cia hé thdng cia
V. V. Bolotin, d¢ ddnh gid d6 tin ciy ctia cong trinh dao déng bang cich tim can trén va dudi clia
do tin cay.

D& xudt cdch tinh cin trén va can dudi cla d6 tin cdy bing cdch chuyén viéc tinh xdc sudt
phu thuéc moét hé bat ding thire ve tinh xac sudt chi phu thudc mot bat ddng thire. Nhor vay, rat
thuan loi cho viéc tinh todn.



