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Abstract. In this paper, after analysing deformations of loading ball-bearing it is able
to investigate vibrations of rotor-bearing system as the system with non-linear and pe-
riodically varying stiffness. The modelling of the systems is depent on properties of the
shaft (rigid or flexible) and on measurement techniques for system vibrations (by eddy
current proximity probe for rotating shaft or on non-rotating parts of the rotor-bearing
systems) it can be described by a single degree-of-freedom or two-degree-of freedom non-
linear systems subjected to parameteric and external excitations. Therefore it is possible
to obtain different characteristics of system vibrations with respect to different defects
of ball-bearing. These symptoms help us to identify and estimate the bearing quality by
measurement and analysis of system vibrations.

1. INTRODUCTION

As we know, vibrations of machine is one of important signals for diagnostics of ma-
chinery condition. If the systems consist of rotating part (rotor) and supported-bearings,
then it is called as rotor-bearing systems. The rolling element bearings are a type of
bearings, its rolling element can be balls, rollers, tapered rollers, spherical rollers or nee-
dles. These bodies are positioned within a cage which holds them at a set spacing. In
this paper the ball-bearing in a rotor-bearing system will be considered for some different
types of rotors and the technical condition of the ball-bearings are estimated by processing
and analysis of vibration data, which can be measured for the systems. Loading of the
bearing leads to movement between the races. Their mathematical relationship must be
known in order to be able to determine the influence of ball-bearings on the dynamics
of rotors. Some defects of the ball-bearings are simulated for estimating its influences on
vibrations of the system. It is necessary to notice that the symptoms for assessment of the
ball-bearing conditon are depent on the techniques of vibration measurment, for example,
relative displacement between the journal and bearing (measured by proximity probe) or
vibrations of the bearings (measured by accelerometers).

In the below, we introduce breafly some results published from [4-8] and give some
new supplementary archivements.

2. THE MODELLING OF ROTOR-BEARING SYSTEMS

The rotor-bearing systems can be modeled as in the Fig. 1, where M - rotor mass,
m- eccentric mass and C, K are damping and stiffness respectively, generated by bearings
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under loading. If the rotor with shaft is regarded as a rigid body then the system can be
considered as a system with single degree of freedom.

Bearing Bearing

Fig. 1

2.1. Analysing rotating motion of a ball-bearing
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Consider a single ball-bearing (Fig. 2), which consists of inner race, N balls and outer
race. In the rotor-bearing system, the inner race rotates together with the shaft of the
system and outer race is not moved. On the basis of analyzing revolution mechanism of

the balls-bearing [1,2,3] we can obtain the following results:
- The contact frequency f; of one point on inner race with /N ball:

I d
; =—fN |14 —cos 2.1
fi= 3/ (14 foosa). (2.1
where « is contact angle of a ball with races.

- The contact frequency f. of one point on outer race with N ball:

F = %fN (1 — %COS a> . (2.2)

- The contact frequency f; of one point on a ball with inner race or outer race

; 2
= é-—g- {1 - <~[d3> cos? a} : (2.3)
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where f — revolutions per second of inner race (shaft), N - number of balls, D - pitch
diameter, d - ball diameter, o — contact angle.

From above results, we will have the frequencies of forces generated by different defects
of ball-bearing.

If there is one defect in the inner race, then the force appears in the system with
frequency f; given by the formula (2.1). Similarly, the frequency of force occured by one
defect in the outer race, is f. given by the formula (2.2). On the other hand, if one defect
is occurred in one ball, then the frequency of force generated by the defect is f;, presented
by the formula (2.3).

2.2. Stiffness of ball element bearings
At first, on the basis of analysis of bearing deformations [3,4] we have:
F=F,+F;= [N(l.z)—éd%} (zo + z)3 (2.4)

where F' — total load (both static and dynamic), Fy- static load, Fy — dynamic load, -
dynamic deformation, 2y - static deformation under load Fg, and then

F; = [N(l.Q)‘gdﬂ " (2.5)
From (2.4), it is able to obtain the following expressions:
F=F,+F= [N(1.2)‘3d%] g3l +u) = Pyl +u)t (2.6)
where u = x/x9. Expand (2.6) and taking into account of (2.5), we have:
Fy = Fs(gu + qu - I%u‘s +...) (2.7)
Notice that u = x/xg then the stiffness coefficient for respective lincarized system:
k=35 _3Mg (2.8)

229 2 xp
and the formula (2.7) is in the form:

1 . 1 . ,
Fy = Kxp(u+ Zu‘z - szus s , (2.9)

Here K is measured in N/um, M—in kg, g - in m/s?, d - in mm and 29— in jan.

@ = St >
a) b)
Fig. &

However, if we are interested in the vertical direction then the stiffness of the ball-
bearing is changed periodically beacause of the revolution of the balls in the bearing. If



400 Nguyen Cao Menh

one ball is located in the lowest position (Fig. 3a) the stiffness is calculated in the form
(2.8), but if the balls are located as in the Fig. 3b, then the stiffness is smaller. Therefore
the stiffness of ball-bearings is changed periodically with the frequency f. in the formula
(2.2) and has the form

K(t) = K(1 — ecoswet) (2.10)

where w, = 27f,, € is a small parameter, and from the formula (2.9) the restoration force
becomes:
| 1
Fig = Kxo(1 — € coswet)(u + ZuQ - 9—1u3 +...) (2.11)
In the below, we will consider some kinds of simulated rotor-bearing systems, which are
depent on properties of roror shafts and measurement techniques of vibration.

3. RELATIVE VIBRATION OF RIGID ROTOR JOURNAL [4,5,6]
3.1. Motion Equation

In this section the vibrations between journal of rigid rotor and bearing-support are
investigated, then it has a modelling in the Fig. 1 and is described by single-degree-of-
freedom system.

Mi + Cz + Fy(x) = F(t) (3.1)

where z- displacement of the shalf in vertical direction, M, C - constans of mass, damping
(because m << M then m is negleted), F'(t)- external forces, which consist of centrifugal
force of unbalance mass and different forces generated by defects of ball- bearings,... In
practice the obtained solutions can be compared with vibrations measured by proximity
probes for identication of bearing defects in rotor-bearing system.

Substituting (2.11) into (3.1) and taking into account of (2.8) we can get:

C 3 ' 1 . 1
i+ ﬁ,a + 5;]—0 [1 — e cos(wet)] (u+ ZUQ - ﬁwﬁ) a7 F(t)
or
L 1 1
i+ 2hi 4 w? [1 — € cos(wet)] (u + Zug — 51113) = o (t) (3.2)
where
C
Hp == ML W = "’1?/;)"’ b=z, (3.3)
and x is given by (2.5), that means:
T Mal2/3
zo = 1.24~1/3 {iﬂﬂ} (3.4)

3.2. External forces

The external forces applied to the rotor-bearing systems consist of the folowing ones:
Inertial cetrifugal force is generated by unbalance mass m. If vertical vibrations are
investigated then this force is in the form:

F; = mr(2n f)? sin(27 ft) [(3.5)

where f — speed of rotor revolution per second.
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If the ball-bearing has a defect on inner race then in the process of operation of rotor-
bearing system the impact is rised and can be able to express as follows:

o0
Fyy =)  Hud(t—iTy) (3.6)
i=1
where F,; is impact force of inner race defect, H); — intensity of the force, § - Dirac
function, Ty- period of impact, T} = (f;)~! and f; is given by (2.1).
It is similar to the case of defect on outer race:

o0
Fyp =)  Hyd(t —iTy) (3.7)
i=1
where Ty = (f.) !, and f, is given by (2.2).
If there is a brokken ball in the bearing then the impact force has the period T3 =
(fb)’l, fv given by (2.3), and expressed by the formula:

oo
Fyg = Hsid (t —iT) (3.8)
i=1
The forces Fy, 1, Fuo, Fy3 are typical ones generated from rotor-bearing system.
Therefore, in right side of the equation (3.2) function F'(¢) can be in the form:

F(t) = Fl(t) i F‘v1 (t) C FuQ(t) 4 Fu:'j([) (JO)

In the expression (3.9), F; is alway existed, because there is usually a unbalance mass
of rotor, and the other forces F,y, Fo, F,3 could not be existed at the same time. In
computation these functions Fy(t) can be expanded in Fourier series and some relevant
terms can be taken:

o0
Fy = 2m fiHyo + Y _ 4 fi,Hyj sin(2mj fit) (3.10)
j=1
where k = I, v1, v2, v3, and fi. = f, fi, fe, fp, respectively.
Notice that this problem will be investigated in frequency domain then some param-
eters such as Hy;, €,... could be chosen and in numerical calculation we choose only some
terms of sum (3.10).

3.3. The results of calculation for some cases

Consider a rotor-bearing system, for example, using ball-bearings 36212 with the fol-
lowing parameters:

~ Rotor mass 1100 kg, uniformly distributed on two bearings, then M=550 [kg].

— Speed of revolution 725 rpm, then f = 12.08 rev/s.

~ Eccentric mass m = 0.2 [kg]

- Eccentric radius r = 0.4 [m]

~ Number of balls N = 10

— Ball diameter d = 15.88 [mm]

- Pitch diameter D = 85.1 [mm]

- Contact angle a = 12V,

For this example it is able to calculate the following parameters:

fr= 108.5 He (o, = o fn). [ = TLA2 Hz, [, = 49.37 Hy
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fo = 33.48 Hz, f =12.08 Hz, o = 31.64 um

Some cases are follows:

a) The stiffness of bearings is constant and F(t) = F;(t) + F,;(t), the equation (3.2)
has the form:

it 4 2ht + wiu =

i

b) The stiffness of bearings is periodically varying
K(t) = K(1 — coswet)

and F(t) = Fy(t) + Fy1(t), the motion equation is governed:

i
it 4+ 2kt + w2 [1 — € cos(wet)] = 7 ——[Fi(t) + Fu1(?)] (3:12)
. Mz
¢) The stiffness of bearing is nonlinear and F(t) = F;(t) + Fy1(t), the equation (3.2)
can get:
i+ 2+ w2 (4l — o) = (t)] [3.15)
i Ut wp(ut+ gu” = gu’) = o vl :

d) The stiffness of bearing is periodically varying, nonlinear and F(t) = I (t)+ 1 (t),
the equation (3.2) can get:
1

1
il + 2hi + w2 [1 — € cos(wet)] (u +4u2—ﬁu3)

PO+ Pa)]  (314)

e) It is similar for the other cases, for example, there is a defect on outer race, then
the equation (3.2) is:

1 1
i + 2ht + w2 [1 — € cos(wet)] (u + 4u2 — 5[Iu‘g)

Ml (1) + Fa(t)] (3.15)

The Vibrations and their spectra are expressed in figures 4 and 5 for the cases a)-c).

-

4. VIBRATION OF RIGID ROTOR [7]

In many practical cases, if it is only possible to measure vibrations on non-rotating
parts of the rotor-bearing system such as on bearing cages, foundations,...by direct trans-
dusers (such as accelerometors) and using the data for analysis, then it is necessary to
change the mathematical modelling of the system. If the vertical vibrations will be con-
sidered, then the system modelling consists of two masses, they are the mass of the shaft
and the rotor placed on ball-bearings and the mass of bearing cages, supported parts and
foundations (non-rotating parts) on elastic bases. Therefore, in this case, the system mod-
elling is considered as two-degree-of-freedom system of vibration. The main problem is to
assess the parameters of the system and the excited loads and find out vertical vibrations
of the non-rotating parts for comparison with the analysis of measurement data.
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4.1. Motion equations

Consider the vibration system consisted of a rigid rotor, two ball-bearings on supported
parts (machine and foundation). The mass of rotor and shaft is denoted by m, the stiffness
of ball-bearings in vertical direction is k1, the mass of supported parts is M on elastic base
with stiffness kg, Assume that unbalance mass of rotor is mg with the distance r from
shaft line. The modelling of vertical vibrations of the system with rotating rotor is given
on the Fig. 6. From the modelling of vibration system (Fig. 6) the motion equations are
governed by:

mi, + C](i‘l = 1"2) + k(xy — CI?Q) = F(f)
Mio + (C] -+ CQ)j?Q -+ (kl -+ ]\“,Q).’IJQ —c1x1 — ki1 =0

The rotor is supported on two ball-bearings, then k;=2K, in which K is stiffness of
one ball-bearing, calculated by the formula [4]:

K = (1.25)N?/3(0.5mgd)"*[N/ um] (4.2)
The other coefficients in the equation (4.1) are found by calculation or experiment. Con-
sider a single ball-bearing, which consists of inner race, N balls and outer race. In this
case, following [3,4], the stiffness of ball-bearings can be expressed by periodically time-
varying function as follows:

(4.1)

ky = 2K [1 — € cos(wet)] (4.3)



404 Nguyen Cao Menh

RI#I.S )Ilkt;
i ' t s : 4 . 3
; 4 i

SRR |

Rt
r : : ; : i ; : g A | Lot h f..hl J : i ; 3
ns 368705 3020 Wwats BD?H 0.0 A2 4AR4E 12083800 17 10845 '“7‘0}.2‘7:197
YL DEQHNTLON X} . . . . QAL DESUATION XU ; E
s b) Parametric Vibration with « owe  Parametric Vib. Spectrum : 12, 22,
£ Lo F(t) and Fys(t) ¢ oms 37,49, 61, 71,93, 108, 110, 120,
L} 358043 8 oplp2
A g i 147

g g
E 3 £ .
8 ¥ 0;
M i
Ll B 8]
3 5 i N ¥ ; : ; : A l : l { A :
%7 30005 0TR WINE 36 170 2 Bt H 1] 18790818 ,'E:EIKI.M
L el ) ) Junasinst . Spectrum of The Vibration has
e d) Nonlinear Parametric Vibration o freq. 12; 57; 70; 94; 107; 119;
T ~0.05047 . [ 0145 * r 1 . Sl H
ioam with F(t) and Fyq(t) T e 142; 156
; : g ; i e A E o

o.

ha.7iE : :n.:m - :n.;ol : a5 : snt;z b5 A i 1: Zs_‘—‘;—hg:mz
(7AL_DEQUATSOR X1 AL BEQUATIDR X1 . . .
P ¢) Nonlinear Parametric Vibration T Spectrum of The Vibration has big
P ~ with Fy(t) and Fyzt) P freq: 12, 49, 98,107, 110, 119, 147, 157

Fig. 5. Vibrations and Specra for the cases b), d) and e)

The equation (2.1) has now the form:
mZy + ¢1(21 — T2) + 2K [1—¢ cos (wet)] (1 — 22) = F(t)

4.4
MZo + (c1 + c2)&o + 2K [1—€ cos (wet)] (x2 — 1) + koxza — 12y = 0 vl
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This is a system of two differential equations of second order with parametric excitation
and external forces. The system has two natural frequencies and the responses of the
system for this case is more complicated.

4.2. External forces

In this case, the dynamic loads applied on the system are similar as previous section,
but here these forces are in right hand of the first equation (4.4) and have the form:

F(t> = FI(t) =+ Fvl(t) = Fv?(t) + FUS(t)
where the right forces are given by formulae (3.5) - (3.8).

4.3. Some results of calculation.

Consider a rotor-bearing system, for example, using ball-bearings 36309, with the
following parameters:

— Rotor mass m = 2000 [kg]

— Non-rotating parts mass M = 8000 [kg]

— Eccentric mass mg = 0.5 [kg|

— The distance from mg to the shaft line 7 = 0.5 [m)]

— Number of balls N = 12

- Ball diameter d = 17.46 [mm]

— Pitch diameter D = 72.5 [mm]

— Contact angle v = 0.

The other parameters are given in detail computation of different cases

1) The parameter k; is calculated from above formulae, and take ko = 18000 N/cm,
speed of revolution f = 50 Hz, and in diagnosis of the ball-bearing we are interested in
frequencies of response of the system, therefore, the other parameters can be chosen. In
this case, natural frequencies fp; and fyo are found by computation

for =21.24 Hz;  fop = 107.86 Hz

After solving the differential equations (4.4) in the case where there are parametric
excitation and faults of the ball-bearings, we obtain two spectral densities of vibrations of
the rotating shaft (Fig. 7) and non-rotating parts (foundation, Fig. 8) with frequencies of
spectral peaks listed in the Table 1
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From this table, we can see that the vibration spectrum of foundation gives out more
poor information of vibration frequency than vibration spectrum of rotating shaft.

Table 1
Vib. spectrum | 21.24 | 50. | 110.46 | 116.58 | 177.41 | 1956.37 | 221.2 | 227.2
of shaft
Vib. spectrum | 21.24 | 50. | 110.46 | 116.58
of foundation
. . V!BRA"O’I ‘)f W‘A”NF‘SHAFT . “ﬂ i VISR‘A”UH CF S:UPPDRT FB‘UNDUIDN . "‘{";ﬁ
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t I} T H oF (& J%}lm Lo TS . I_znrf,iiia

P T Y F YT T AL QLG 11

Fig. 7. Spectrum of shaft vibration with fauls Fig. 8. Spectrum of foundation Vibration

of ball-bearing f = 50 Hz

with fauls of ball-bearing f = 50 Hz

2) Consider the case where the speed of rotor rotation is less than the first natural
frequency, f = 20 Hz, then the spectra of the rotating shaft vibration and foundation
vibration are not much different. Therefore, in this case we can use the data of vibration
measurement of non-rotating parts for diagnosis of the ball-bearing. The computational
results are given on the Fig. 9 and Fig. 10 with spectral peaks in Table 2.

Table 2
Vib.Spectrum of Shaft 20.0 | 107.6 |,197.8
Vib.Spectrum of foundation | 20.0 | 107.6 | 197.8

Hence, for assessment of the ball-bearing quality by using data of vibration mecasure-
ment on non-rotating parts it is necessary to notice that the modelling of the rotor-bearing
system is two-degree-of-freedom system with parametric excitation and external forces,
and the rotation speed of the rotor has great effect on the information of measurement
data. Therefore, the relative vibration measurement between journal and bearing is better
for diagnosis of ball-bearing quality.
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Fig. 9. Spectrum of shaft vibration with fauls Fig. 10. Spectrum of foundation Vibration
of ball-bearing f = 20 Hz with fauls of ball-bearing f = 20 Hz

5. VIBRATIONS OF JEFFCOTT ROTOR ON BALL-BEARINGS (8]

In this section, the systems consisted of Jeffcott rotor and ball-bearings are investigated
(Fig. 11). The Jeffcott rotor is regarded as the most simple rotor model consisted of a
massless shaft, at whose center is a fixed rigid circular disc and which is supported in rigid
bearings. The center of mass S can be coincident with the shaft center W or can have a
radial offset, or eccentricity e [1]. But in our case, the bearings are flexible, and bearing
stiffness used in the mathematical modeling is regarded as periodically varying with time
and nonlinear. On the basis of this property and the shaft elastic deformation it is able to
explain several phenomena obtained from measurement vibrations of the system.and then
the technical conditions of the ball-bearings and the system can be diagnosed.

S Ball-bearing
. ~
*:

4
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=
=~
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5.1. Motion Equations
Assume that the shaft stiffness is kg and its damping is ds (Fig. 1). For ball-bearing,
its stiffness is kp and the damping is dp.
The modelling of the system is described in the Fig. 12. The distance between two
ball-bearings is L, then kg is computated by the formula:
ks = (A8EJ)/L? (5.1)

where E ~ Young’s modulus, J — area moment of inertia of shaft cross section. In this case,
we restrict ourseft to investigate periodically varying stiffness, then the bearing stiffness
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is calculated by following formula [3,4]

kp = Kp[l — & cos(wet)]

Kp = (1.25)N2/3qY/3(Mg/2)' 3N/ jum)

(5.3)

where N — number of balls, d — ball diameter (in mm), M- mass of rotor, m — mass of
inner race (in kg) and g — gravity acceleration (in m/s?), e is small dimensionless value,
we = 27 f, with f. is given by (2.2).

The motion equations of the system for vertical vibrations are governing as follows:

Miq + ds(i'] == 12) + kg (;L‘l = .’EQ) = F] (f)
mo + 2dpde — ds(T1 — T2)+
+ 2kpro — ks (.’l’] = 1172) = 17(1)

where kg, kp are given by formulae (5.1),(5.2),(5.3), the value dp is, in general, small
and determined by experiment. The equation system (5.4) with periodically time-varying
stiffness k3 is excited by external forces. If € is too small, we can take kp = Kp and the
system (5.4) becomes a system with constant coefficients.
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Fig. 13. Vibration X; and its spectrum for the shaft without parametric excitation (¢ = 0)
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5.2. External forces

In this case, the dynamic loads applied on the system are similar as previous sections,
but here the force in right hand of the first equation (5.4) is centrifugal force Fy(t) (given
by (3.5)) and the forces in right hand of the second equation (5.4) are:

F(t) = Fvl(t) + Fv?(t) I Fvl&(t)

where the right forces are given by formulae (3.6) - (3.8).
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Fig. 14. Vibration X5 and its spectrum for journal with the inner race in the case ¢ = 0
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Fig. 15. Vibration X5 and its spectrum when f = 12.08 Hz, ¢ = 0

5.3. Some results of calculation

Let us consider the system, in which there are a Jeffcott rotor supported by two
ball-bearings of type 36212 (Fig. 11), with following parameters:

— Mass of the rotor M = 1140 (kg).

— Mass of two inner races and journals m = 10 (kg)

— Pitch diameter D = 2R = 85.1 (mm)

- Ball diameter d = 2r = 15.88 (mm)

— Distance between two bearings: L = 1 (m)
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- Diameter of the shaft D; = 2r; = 0.067 (m)

- Area inertial moment of shaft cross section. J = (7D{)/32 = 1.978 x 107° (m?),

— Unbalance mass mo = 0.5 (kg)

— Unbalance mass eccentricity 7 = 0.4 (m)

- Number of balls: N = 10

— Rotating speed: f = 12.08 (Hz) (= 750 Rev./min)

- Damping coefficient: ds = (0.1) M

— Damping coefficient: 2dp = (0.3) M

— Small parameter € = 0.3

On the basis of previous formulae it is able to calculate coefficients and solutions of
equation (5.4) for some cases.

1) There is no parametric excitation (¢ = 0) in the equation system (5.4), but exist
centrifugal force F(t) and F(t) =F,1(t) + Fuo(t) + Fu(t).

The solution of equation (5.4) is given in the Fig.13, where on the left there is vibration
of rotor shaft x; and on the right is its spectrum. There are only two peaks of spectrum at
centrifugal excitation frequency (the bigest) and first natural frequency (a smaller). But
in the Fig.14, given vibration x5 and its spectrum of journal (with inner race), there are
five peaks in spectrum at natural frequency and at frequencies of excitations produced by
unbalance mass, and defects of inner race, outer race and breaking ball (Table 3).

Table 3.

Intensity | 1.8E-6 | 6.2E-6 | 1.2E-5 | 1.13E-5 | 1.981:-5

Frequency | 20.65 40 103 162,6 237 <'

Then if we can measure the vibration of journal at bearings, on the basis of spectral
analysis it is able to show the types of defects in the ball bearings.

Notice that if there exists parameteric excitation with € sufficiently small (for example
£ = 0.05) then the vibration spectrum xsis not much different from the Fig. 14, that means
we can use the results as in the case € = 0.

2) There are centrifugal force F1(t) with frequency f = 12.08 Hz (750 rev/min) and
parametric excitation with € = 0.3, but F(1)=0 in the equations (5.4).

In this case, the vibration x; and its spectum are similar as on the Fig. 13 with two
peaks at frequency f = 12.08 Hz, and at first natural frequency f,, = 20.65 Hz. The
vibration xo and its spectrum are expressed in the Fig.15 and the peaks of spectrum is
given in Table 4.

Table 4. Parametric excitation frequency f, = 49.12 Iz

Frequency | f =12.08 | 20.65 | 37.0 | 61.16
Intensity 3.E-6 | 4.5E-7|2.7E-7 | 3.2E-7

On the basis of calculation, the parametric excitation {requency is 49.12 Hz, then we
have a remark from the table 4 that besides two peaks with frequencies [ and f,, there
are two other frequencies 37.0 = 49.12 - 12.08, and 01.16 =~ }9.12 + 12.08, that means
it exposes the influence of parametric excitation. For belief of the previous remark, we
take f = 16.5; 30 and 40 Hz and get the following results (Table 5).
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“able 5.

fp =671 | Freq. peak | 16.5 20.65 | 50.04 | 83.11

Intens. 9.7E-6 | 1.2E-6 | 1.1E-6 | 1.5E-6
f, = 122. | Freq. peak | 20.65 . 30. 91.68 | 151.28
Intens. 2.1E-6 | 9.9E-6 | 1.4E-G | 1.5E-G
f, = 162.67 | Freq.peak | 20.65 40. 121.89 | 202.31
Intens. | 2.0E-6 | 6.6E-6 | 1.2E-G | 9.6E-7

Check results in the Table 5 as previous remark, the frequencies in two final columns
are approximately equal f, - f and f, + f, the vibration x5 and its spectrum for the case
fp =122 Hz and f = 30 Hz are given in the Fig. 16.
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Fig. 16. Vibration X5 and its spectrum when f = 30 Hz, f, = 122 Hz

3) All forces produced by unbalance mass and defects of inner race, outer race and
breaking ball are applied together to the system with parametric excitation (¢ # 0)

In this case we take f = 40 Hz, ¢ = 0.2, and the frequencies are calculated and
obtained f; = 237 Hz, f. = f, = 162.67 Hz, f, = 103 Hz. The result of calculation is given
in the Fig. 17 for vibration zo and its spectrum. In graphics of vibration spectrum there
are some peaks besides excitation frequencies because of parametric excitation (Table 6).

Table 6.

Freq. | 20.65 40. 59 74.5 103 | 162.67| 174 237
Intens. | 1.9E-6 | 6.3E-6 | 1.5E-6 | 1.3E-6G | 1.2E-5 | 1.1E-5 | 1.2E-6 | 2.0E-5

Notice that, besides domination frequencies of excitation forces, other peaks of spec-
trum gives the informations of ball-bearing quality as remark in the case 2). In this case,
the vibration measurement data x; of rotor shaft (not at bearings) can not be used for
estimation of ball-bearing quality.

6. CONCLUSION

For assessment of the ball-bearing quality by using data of vibration measurement,
the three mechanical models for simulation of the rotor-ball bearing systems are proposed.
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Fig. 17. Vibration and its spectrum for the case 3)

They are non-linear systems with parametric excitation and subjected to centrifugal force
and impact forces produced by defects of ball-bearing (for example, inner race, outer race,
breaking ball,...). If vibrations of rotor-bearing system are measured by eddy current
proximity probe, that means, they are relative vibrations between journal and bearing
cage, the models of simulation are single-degree-of-freedom system for rigid rotor and
two-degree-of-freedom system for Jeffcott rotor. If vibrations of rotor-bearing system are
measured on non-rotating parts by accelerometers then the modelling of the rotor-bearing
system is two-degree-of-freedom system. After simulation of the systems and solving
differential equations, the vibrations of the systems are obtained and analysed in the form
of spectral density functions. their peaks are symptoms for identification and assessment
of the ball bearing quality.
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VE CHAN POAN KY THUAT CUA O BI DUA TREN MO HINH HE RO TO -
GOI b0 BANG PHUONG PHAP DAO bONG

Trong bai nay, sau khi phan tich bién dang ctia 6 bi chiu tai, ta cé thé khio sit dao dong cla
hé 1o to - gdi d& nhw hé véi do cirng phi tuyén va bién thién tuiin hoan theo thoi gian. Mo hinh
cta hé nay phu thudc vao tinh chdt cliia cla truc (cirng hodc meém) va vao phuwong phdp do dao
dong cta hé (bdi diu do dong xody khong tiép xice véi true quay hay béi dau do gia tde trén phan
khong quay cta hé), né ¢6 thé 1a hé phi tuyén mot bac tw do hoac hai bac tw do chiu tdc dong
clia kich dong tham s3 va lirc ngoai. Do d6 c¢é thé nhan dwoc nhirng dac tinh khac nhau déi véi
dao dong cla hé twong ng véi cde khuyét tat khic nhau cia 6 bi. Cac ddu hiéu nay gitp ching
ta nhan dang va ddnh gid chdt lwong clia 6 bi biang viée do va phan tich dao dong cta hé.



