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Abstract. In this paper, after analysing deformations of loading ball-bearing it is able 
to investigate vibrations of rotor-bearing system as the system with non-linear and pe­
riodically varying stiffness. The modelling of the systems is depent on properties of the 
shaft (rigid or flexible) and on measurement techniques for system vibrations (by eddy 
current proximity probe for rotating shaft or on non-rotating parts of the rotor-bearing 
systems) it can be described by a single degree-of-freedom or two-degree-of freedom non­
linear systems subjected to parameteric and external excitations. Therefore it is possible 
to obtain different characteristics of system vibrations with respect to different defects 
of ball-bearing. These symptoms help us to identify and estimate the bearing quality by 
measurement and analysis of system vibrations. 

1. INTRODUCTION 

As we know, vibrations of machine is one of important signals for diagnostics of ma­
chinery condition. If the systems consist of rotating part (rotor) and supported-bearings, 
then it is called as rotor-bearing systems. The rolling element bearings are a type of 
bearings, its rolling element can be balls, rollers, tapered rollers, spherical rollers or nee­
dles. These bodies are positioned within a cage which holds them at a set spacing. In 
this paper the ball-bearing in a rotor-bearing system will be considered for some different 
types of rotors and the technical condition of the ball-bearings are estimated by processing 
and analysis of vibration data, which can be measured for the systems. Loading of the 
bearing leads to movement between the races. Their mathematical relationship must be 
known in order to be able to determine the influence of ball-bearings on the dynamics 
of rotors. Some defects of the ball-bearings are simulated for estimating its influences on 
vibrations of the system. It is necessary to notice that the symptoms for assessment of the 
ball-bearing conditon are depent on the techniques of vibration measurment , for example, 
relative displacement between the journal and bearing (measured by proximity probe) or 
vibrations of the bearings (measured by accelerometers). 

In the below, we introduce breafly some results published from [4-8] and give some 
new supplementary archivements. 

2. THE MODELLING OF ROTOR-BEARING SYSTEMS 

The rotor-bearing systems can be modeled as in the Fig. 1, where !vl ~ rotor mass, 
m- eccentric mass and C, K are damping and stiffness respectively, generated by bearings 
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under loading. If the rotor with shaft is regarded as a rigid body then the system can be 
considered as a system with single degree of freedom. 

Bearing Bearing 

~ ~ 

Fig. 1 

2.1. Analysing rotating motion of a ball-bearing 

, 

~"' ~E 
Fig. 2 
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Consider a single ball-bearing (Fig. 2), which consists of inner race, N balls and outer 
race. In the rotor-bearing system, the inner race rotates together with the shaft of the 
system and outer race is not moved. On the basis of analyzing revolution mechanism of 
the balls-bearing [1,2,3] we can obtain the following results: 

- The contact frequency fi of one point on inner race with N ball: 

Ji = l f N ( 1 + ~ cos o:) , ( 2 .1) 

where o: is contact angle of a ball with races. 
- The contact frequency j~ of one point on outer race with N ball: 

f e = l f N ( 1 - ~ cos o:) . (2.2) 

- The contact frequency fb of one point on a ball with inuer race or outer race 

JD[ (d) 2 
2 l f b = 2 d 1 - D cos o: , (2.3) 



On the technical diagnostics of ball-bearing ... 399 

where f - revolutions per second of inner race (shaft) , N - number of balls , D - pitch 
diameter, d - ball diameter, ex - contact angle. 

From above results, we will have the frequencies of forces generated by different defects 
of ball-bearing. 

If there is one defect in the inner race, then the force appears in the system with 
frequency fi given by the formula (2.1). Similarly, the frequency of force occurcd by one 
defect in the outer race, is fe given by the formula (2.2). On the other hand , if one defect 
is occurred in one ball, then the frequency of force generated by the defect is .h presented 
by the formula (2.3) . 

2.2. Stiffness of ball element bearings 

At first, on the basis of analysis of bearing deformations [3 ,4] we have: 

F = Fs + Fd = N(l.2) - 2d2 (xo + x)2 [ 3 1] 3 (2.4) 

where F - total load (both static and dynamic) , F8 - static load, Fd - dynamic load , x­
dynamic deformation, xo - static deformation under load F s, and then 

Fs = [N(l.2)-~ d~ J xg (2.5) 

From (2.4), it is able to obtain the following expressions: 

F = Fs + Fd = [ N(l.2) -~d] xg (1 + u)~ = Fs(l + u)~ (2.G) 

where u = x/xo. Expand (2.G) and taking into account of (2.5), we have: 

3 3 2 1 3 
Fd = Fs(-'ll + -u - -u + ... ) 

2 8 16 
(2.7) 

Notice that u = x/xo then the stiffness coefficient for respective linearized system: 

J( = ~ Fs = ~ !If g 
2 x 0 2 xo 

(2.8) 

and the formula (2 . 7) is in the form: 

1 2 1 3 
Fd = Kxo(u + -'ll - -u + ... ) 

4 24 
(2.9) 

Here J( is measured in N/µm, 111-in kg, g - in m/s2 , d - in mm and xo- in µm. 

a) b) 

Fig. 3 

However, if we arc interested in the vertical direction then the stiffness of the lm ll ­
bearing is changed periodically beacause of the revolution of t he balls i11 Lhc bearing. If 



400 Nguyen Cao Menh 

one ball is located in the lowest position (Fig. 3a) the stiffness is calculated in the form 
(2 .8) , but if the balls are located as in the Fig. 3b, then the stiffness is smaller. Therefore 
t he stiffness of ball-bearings is changed periodically with the frequency le in the formula 
(2. 2) and has the form 

K(t) = K(l - ECOSWe t) (2 .10) 

where W e = 27Tfe, E is a small parameter, and from the formula (2.9) the restoration force 
becomes: 

1 2 1 3 
Fd = Kxo(l - ECOSWet)(u + - u - - u + ... ) 

4 24 
(2.11) 

In the below , we will consider some kinds of simulated rotor-bearing systems, which arc 
dcpent on properties of roror shafts and measurement techniques of vibration . 

3. RELATIVE VIBRATION OF RIGID ROTOR JOURNAL [4,5,6] 

3.1. Motion Equation 

In this section the vibrations between journal of rigid rotor and bearing-support arc 
investigated , then it has a modelling in the Fig. 1 and is described by singlc-clcgrcc-of­
freedom system. 

Mx +Ci:+ Fd(x) = F(t) (3.1) 

where x - displacement of the shalf in vertical direction, 1\1 , C - constans of mass, dan1ping 
(because m << }vf then mis negleted) , F(t)- external forces , which consist of centrifugal 
force of unbalance mass and different forces generated by defects of ball- bearings .... In 
practice the obtained solutions can be compared with vibrations measured by proxi111ity 
probes for identication of bearing defects in rotor-bearing system. 

Substituting (2.11) into (3.1) and t aking into account of (2.8) we can get: 

or 

where ' 

c 3g 1 2 1 3 1 
ii+ -'u + -- [1 - E cos(wet)] (u + -'ll - - IL ) = -

1
-F(t) 

AI 2 x0 4 24 fv x 0 

1 1 1 
'U + 2hiL + w~ [1 - Ecos(wet)] (u + -u2 

- - 'lL
3

) = --F(l) 
4 24 l\Ixo 

c 
h = -

2M ' 
2 .) I 

w -- - -
n - 2.i:o' 

and x 0 is given by (2 .5) , that means: 

x = 1 ?d- 1/ 3 __2_ 
[
M ] 2/3 

o ·- N 

3.2. External forces 

(3 .2) 

(3.3) 

( 3.4) 

T he extermiJ forces applied to t he rotor-bearing syst ems consist of the fol ow i11g ones: 
Inert ia l cetrifugal force is generated by uubalance mass rn. If verl ical YibrnLions arc 

invest igated t hen t hi s force is in t he form: 

F1 = mr(27T f) 2 sin (27T f t) (3.5) 

where f - speed of rotor revolution per second. 
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If the ball-bearing has a defect on inner race then in the process of operation of rotor­
bearing system the impact is rised and can be able to express as follows: 

00 

Fv1 = L, Il1;r5(t - iT1) (J.G) 
i=l 

where Fv1 is impact force of inner race defect , I-I1i - intensity of the force, r5 - Dirac 
function , T1- period of impact, T1 = (fi)- 1 and fi is given by (2.1). 

It is similar to the case of defect on outer race: 
00 

Fv2 = L f-I2ir5(t - iT2) (3.7) 
i=l 

where T2 = (fe) - 1 , and fe is given by (2.2). 
If there is a brokken ball in the bearing then the impact force has the period T3 

(fb)- 1 , f& given by (2.3), and expressed by the formula: 
00 

Fv3 = L fhi8 (t - iT3) (3.8) 
i=l 

The forces F1, Fv1, Fv2, Fv3 are typical ones generated from rotor-bearing sy:;te1n. 
Therefore, in right side of the equation (3.2) function F(t) can be in the form: 

F(t) = l~(t) + Fv1(t) + Fv2( t) + Fu3(t) (3.9) 

In the expression (3.9), F1 is alway existed, because there is usually a unbalance mass 
of rotor, and the other forces Fv1, Fv2, Fv3 could not be existed at the same time. Iu 
computation these functions Fk(t) can be expanded in Fourier series and some relevan ~ 
terms can be taken: 

00 

(3.10) 
j=1 

where k = I , vl, v2, v3, and fk = f, fi,.fe, f&, respectively. 
Notice that thfs problem will be investigated in frequency domain then some param­

eters such as Hkj, c:, ... could be chosen and in numerical calculation we choose only some 
terms of sum (3.10). 

3.3. The results of calculation for some cases 

Consider a rotor-bearing system, for example, using ball-bearings 36212 wiLh the fol-
lowing parameters: 

- Rotor mass 1100 kg, uniformly distributed on two bearings, then M = 550 [kg]. 
- Speed of revolution 725 rpm, then f = 12.08 rev /s. 
- Eccentric mass m = 0.2 [kg] 
- Eccentric radius r = 0.4 [m] 
- Number of balls N = 10 
-- Dall diameter d = 15.88 [mm] 
- Pitch diameter D = 85. 1 [mm] 
- Contact angle a = 12°. 
For this example it is able to calculate the following parameters: 
f,, = 108.5 Ih (w11 = 2nf,,), fi = 71.42 Hz , f,, = 49.37 Ilz 
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fb = 33.48 Hz, f = 12.08 Hz, xo = 31.64 µm 
Some cases are follows: 

a) The stiffness of bearings is constant and F(t) = F r(t) + Fv 1 (t), the equation (3.2) 
has the form: 

1 1 
ii,+ 2hu + w~u = ~f F(t) = ~f [.F1(t) + Fv1(t)] 

11-" x 0 111i x 0 
(3.11) 

b) The stiffness of bearings is periodically varying 

I<(t) = K(l - COS Wet) 

and F(t) = F1(t) + Fv1 (t), the motion equation is governed: 

1 
ii,+ 2hil + w; [1 - E cos(wet)] = -

111 
[F1(t) + Fv1 (t)] 

;: XQ 
(3.12) 

c) The stiffness of bearing is nonlinear and F(t) = F 1(t) + F vl (t), the equation (3.2) 
can get: 

ii,+ 2hu + w~(u + ~u2 
- 2-u3

) = ]\fl [F1(t ) + Fu1 (t)] 
4 24 ' XQ 

(3.13) 

d) The stiffness of bearing is periodically varying, nonlinear and F( t) = F1 ( t) + Fv1 ( t), 
the equation (3.2) can get: 

ii,+ 2h·u + w; [1 - E cos( wet)] (u + ~u2 - 2_,u3) = -
1
-[Fi(t) + Fv1 (t)] 

4 24 Af xo 
(3.14) 

e) It is similar for the other cases, for example, there is a defect on outer race, then 
the equation (3.2) is: 

.. . 1 1 1 
u + 2hu + w; [1 - E cos(wet)] (u + -u2 - -u3

) = -
11

{ [F1(t) + Fv2(t)] 
4 24 · XQ 

(3.15) 

The Vibrations and their spectra are expressed in figures 4 and 5 for the cases a) --e). 

4. VIBRATION OF RIGID ROTOR [7] 

In many practical cases, if it is only possible to measure vibrations on non-rotating 
parts of the rotor-bearing system such as on bearing cages, foundations , ... by direct trans­
dusers (such as accelerometors) and using the data for analysis , then it is necessary to 
change the mathematical modelling of the system. If the vertical vibrations will be con­
sidered, then the system modelling consists of two masses, they are the mass of the shaft 
and the rotor placed on ball-bearings and the mass of bearing cages, supported parts and 
foundations (non-rotating parts) on elastic bases. Therefore, in this case, the system mod­
elling is considered as two-degree-of-freedom system of vibration. The main problem is to 
assess the parameters of the system and the excited loads and find out vertical vibrations 
of the non-rotating parts for comparison with the analysis of measurement data. 
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Fig. 4. Vibrations and Spccra for the cases a) and c) 

4.1. Motion equations 

403 

Consider the vibration system consisted of a rigid rotor, two ball-bearings on supported 
parts (machine and foundation). The mass of rotor and shaft is denoted by m, the stiffness 
of ball-bearings in vertical direction is k1, the mass of supported parts is l\iI on elastic base 
with stiffness k2. Assume that unbalance mass of rotor is mo with the distance r from 
shaft line. The modelling of vertical vibrations of the system with rotating rotor is given 
on the Fig. 6. From the modelling of vibration system (Fig. 6) the motion equations arc 
governed by: 

m.7:1 + c1 (:i:1 - :i:2) + k1 (x1 - x2) = F(t) 
Mx2 + (c1 + c2):i:2 + (k1 + k2).r2 - c1 :.C1 - k1x1 = 0 

( 4.1) 

The rotor is supported on two ball-bearings, then k 1 = 2K , in which I< is stiffness of 
one ball-bearing, calculated by the formula [4]: 

J( = (1.25)N213(0.5mgd) 113[N/rLm] (4. 2) 

The other coefficients in the equation ( 4 .1) are found by calculation or cxpcrirneut . Con­
sider a single ball-bearing, which consists of inner race , N balls and outer race. In this 
case, following [3,4], the stiffness of ball-bearings can be expressed by periodically t irnc­
varying function as follows: 

k1 = 2J( [1 - E cos( wet)] (4. 3) 
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b) Parametric Vibration with 
F(t) and Fv1(t) 

d) Nonlinear Parametric Vibration 
with F(t) and Fv1(t) 

e) Nonlinear Parametric Vibration 
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Fig. 5. Vibrations and Spccra for the cases b), d) and c) 

The equation (2.1) has now t he form: 

mx1 + c1 (±1 - ±2) + 2K [1-E cos (wet)] (x1 - x2) F(t) 

0 
( 4 .4) 
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F(t) 

~ c, 

Fig. 6 

This is a system of two differential equations of second order with parametric excitation 
and external forces. The system has two natural frequencies and the responses of the 
system for this case is more complicated. 

4.2. External forces 

In this case, the dynamic loads applied on the system are similar as previous section, 
but here these forces are in right hand of the first equation ( 4 .4) and have the form: 

where the right forces are given by formulae (3.5) - (3.8). 

4.3. Some results of calculation. 

Consider a rotor-bearing system, for example, using ball-bearings 36309, with the 
following parameters: 

- Rotor mass m = 2000 [kg] 
- Non-rotating parts mass M = 8000 [kg] 
- Eccentric mass m 0 = 0.5 [kg] 
- The distance from mo to the shaft line r = 0.5 [m] 
- Number of balls N = 12 
- Ball diameter d = 17.46 [mm] 
- Pitch diameter D = 72.5 [mm] 
- Contact angle a = 0. 
The other parameters are given in detail computation of different cases 
1) The parameter k1 is calculated from above formulae, and take k2 = 18000 N/cm, 

speed of revolution f = 50 Hz, and in diagnosis of the ball-bearing we are interested in 
frequencies of response of the system, therefore, the other parameters can be chosen. In 
this case, natural frequencies !01 and !02 are found by computation 

!01 = 21.24 Hz; !02 = 107.86 Hz 

After solving the differential equations (4.4) in the case where there are parametric 
excitation and faults of the ball-bearings, we obtain two spectral densities of vibrations of 
the rotating shaft (Fig. 7) and non-rotating parts (foundation, Fig. 8) with frequencies of 
spectral peaks listed in the Table 1 
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From this table, we can see that the vibration spectrum of foundation gives out more 
poor information of vibration frequency than vibration spectrum of rotat ing shaft. 

Vib. spectrum 21.24 
of shaft 

Vib. spectrum 21.24 
of foundation 

llVIH· D 

. . . . . . . :. . . . . . s .. .. .. . '. . . ... ~ - . .... ·'" . . 

SllUSH ······ · · · · · · · · · ····· · ··· 

l IU~H-~ · 

I 01.'K· O · 

" 

·· ·· ···: ··· · 

. . . .. -~ .... ... ; .. . . 
i 
i 

. . . .. - ~ .. 

50. 

50. 

Table 1 

110.46 116.58 177.41 195.37 221.2 227.2 

110.46 116.58 

V!f)IU TH:N CF SUPPORT FCUJHIA llDJri 
llOUU·OG 

. . .. : . . . . : . . . . . . : . . . . " .. .. ~ . . . . 

UfllQ{·DG·· 

auU!·AD. 

102191:·095 

Fig. 7. Spectrum of shaft vibration with fau ls 
of ba ll-bearing f = 50 Hz 

Fig. 8. Spectrum of foundation Vibration 
with fauls of ball-bearing f = 50 Hz 

2) Consider the case where the speed of rotor rotation is less than the first natural 
frequency, f = 20 Hz, then the spectra of the rotating slmft vibration and foundatiou 
vibration are not much different. Therefore, in this case we can use the data of vibration 
measurement of non-rotating parts for diagnosis of the ball-bearing. The computational 
results are given on the Fig. 9 and Fig. 10 with spectral peaks in Table 2. 

Table 2 

Vib.Spectrum of Shaft 20.0 107.6 ,197.8 
Vib.Spcctrum of foundation 20.0 107.G 197.8 

Hence, for assessment of the ball-bearing quality by using data of vibration mcasmc­
mcnt on non-rotating parts it is necessary to notice that the modelling of the rotor-beari11g 
system is two-degree-of-freedom system with parametric excitation and external forces, 
and the rotation speed of the rotor has great effect on the information of mcasmcment 
data. Therefore, the relative vibration measurement between journal and bearing is better 
for di agnosis of ball-bearing quality. 
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Fig. 9. Spectrum of shaft vibration with fauls 

of ball-bearing f = 20 Hz 

Fig. 10. Spectrum of fou 11 clation Vibration 
with fa uls of ball-bearing f = 20 IIz 

5. VIBRATIONS OF JEFFCOTT ROTOR ON BALL-BEARINGS [8] 

In t his section, the systems consisted of Jeffcott rotor and ball-bearings arc investigated 
(Fig. 11) . The .Jeffcott rotor is regarded as the most simple rotor model co11sistc<l of a 
massless shaft , at whose center is a fixed rigid circular disc and which is suppor ted iu rigid 
bearings. The center of mass S can be coincident with the shaft center \V or can have a 
radial offset, or eccentricity c [1]. But in our case, t he bearings arc flexible , a nd bcariug 
stiffness used in the mathematica l modeling is regarded as periodically varyiug wit h tirne 
and nonlinear. On the basis of this property and the shaft eletst ic deforniat ion it is able to 
explain severa l phenomena obtained from measurement vibrat ions of the system .and t hen 
the technical condi t ions of t he ball-beetrings and the system can be diaguosecl . 

Fig. 11 

5.1. Motion Equations 

Assume that the shaft st iffness is k s and its clamping is <ls (Fig. 1) . For ball-bcming, 
its st iffness is k B a nd the clamping is d13. 

The modelling of the system is described in the Fig. 12. The distance betwcc11 two 
ball-bearings is L , then ks is computated by the formula: 

ks = (. 18EJ)/L3 (5. 1) 

where E - Young's modulus, J - area moment of inertia of shetft cross sect ion. In this case, 
we restrict ourseft to invest igate periodically varying stiffness, th011 the hearing stiffness 
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is calculated by following formula [3,4] 

(5 .2) 

(5.3) 

where N - number of balls, d - ball di ameter (in mm), .A1- mass of rotor , m - mass of 
inner race (in kg) and g - gravity acceleration (in m/s2

) , E is small dirncnsionlcss value, 
We = 2n fe with fe is given by (2 .2). 

Fig. 12 

The motion equations of the system for vertical vibrat ions arc govcrniug as follows: 

Mi1 + ds(:i:1 - ±2) +ks (x1 - x2) = F1 (l) 
mi2 + 2dai:2 - ds(i:1 - ±2) + 
+ 2ka.x2 - ks (xi - x2) = F(t) 

(5.4) 

where ks, k/J are given by formulae (5.1) ,(5.2),(5 .3), the value dn is, in general , small 
and det ermined by experiment. The equation system (5.4) with periodically time-varying 
stiffness kn is excited by external forces. If E is too small, we can take kn = I< f3 and the 
system (5.4) becomes a system with constant coefficients. 

Fig. 13. Vibration X 1 and its spectrum for thC' shaft without parametric excitation (c: = 0) 
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5.2. External forces 

In this case, the dynamic loads applied on the system arc similar as previous sections , 
but here the force in right hand of the first equation (5.4) is centrifugal force F1(t) (given 
by (3.5)) and the forces in right hand of the second equation (5.4) are: 

F(t) = Fv1(t) + Fv2(t) + Fv3(t) 

where the right forces are given by formulae (3.6) - (3.8). 

. : : : : : 
.... . · ......... · ........ · ... . .... . · .. .............. ... . ... . , 

·-- " ... --- ... - -· --- -- .•. ~ .-- .• - ... --: ... .-· :--- --- --- .. -~· --- --- .•. -'. 

I 
'" 

Fig. 14. Vibration X 2 and its spectrum for journal with the inner race in the case E = 0 

........ ········· · ·········· ·-· ··· ······.···. 

' ; 
a .2•1112u: - oo ·· ... .. ......... : ............. : . .... .. ...... . . 

' . . .. .. . . . -~ . . ... --~ .. 

.. ... ...... -} .. . 
; 

. . 
.. . . ... .. _, .. ( .. ....... .. : ............. : . 

' ............ , .. 
; 

Fig. 15. Vibration X2 and its spectrum when J = 12.08 Hz, E = 0 

5.3. Some results of calculation 

Let us consider the system, in which there arc a Jcffcott rotor supported by two 
ball-bearings of type 36212 (Fig. 11), with following parameters: 

- Mass of the rotor M = 1140 (kg). 
- Mass of two inner races and journals m = 10 (kg) 
- Pitch diameter D = 2R = 85.1 (mm) 
- 13all diameter d = 2r = 15.88 (mm) 
- Distance between two bearings: L = 1 (m) 
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- Diameter of the shaft D 1 = 2r1 = 0.067 (rn) 
- Area inertial moment of shaft cross section. J = (nD1f)/32 = 1.978 x 10- G (M1), 

- Unbalance mass m 0 = 0.5 (kg) 
- Unbalance mass eccentricity r = 0.4 (rn) 
- Number of balls: N = 10 
- Rotating speed: f = 12.08 (Hz) (= 750 Rev./min) 
- Damping coefficient: ds = (0.1) M 
- Damping coefficient: 2da = (0.3) M 
- Small parameter E = 0.3 
On the basis of previous formulae it is able to calculaLc coefficients and solutions of 

equation (5.4) for some cases. 
1) There is no parametric excitation (E = 0) in the equation system (5.4) , but c.Tist 

centrifugal force F1 (t) and F(t) = F v1 (t) + Fv2(1) + Fv3(t). 
The solution of equation (5.4) is given in the Fig.13 , where on the left there is vibration 

of rotor shaft x 1 and on the right is its spcctrnrn. There arc only two peaks of spectrum at 
centrifugal excitation frequency (the bigcst) aud first natural frequency (a srnall0r). Dut 
in the Fig.14 , given vibration x2 and its spectrum of journal (wiLh inner race), thcr0 arc 
five peaks in spectrum at natural frequency an<l at frequencies of cxcit ntions produced by 
uubalance mass, and defects of inner race, outer race and brcakiug hall (Table 3). 

Table 3. 

Frequency 20.65 40 103 162,6 237 
Intcusi ty 1.8E-6 6.2E-G 1.2E-5 l.13E-5 1 . 981~-5 

Then if we can measure the vibration of journ<tl at bearings , on the basis of spcclrnl 
analysis it is able to show the types of defects in the ball bearings. 

Notice that if there exists pararncteric excitation with E sufficiently srnall (for exam pk 
E = 0.05) then the vibration spectrum x2is not much diffcrcut from the Fig. 14, that 111ce:ws 
we can use the results as in the case E = 0. 

2) There are centrifugal force Fi(t) with frequency f = 12.08 llz (750 rev/rrrin) (1,nd 
parametric excitation with E = 0.3, but F(t) = O in the equations (5.4). 

In this case, the vibration x 1 and its spcctum arc similar as on the Fig. 13 with two 
peaks at frequency f = 12.08 Hz, and at first natural frequency f 11 = 20.65 l lz. The 
vibration x2 and its spectrum are expressed in the Fig.15 and t.hc peaks of spcctrnrn is 
givcu in Table 4. 

Table 4. Parametric excitation frequency j~, = 49.12 IIz 

Frequency f = 12.08 20.65 37.0 Gl.lG 
Intensity 3.E-6 4.5E-7 2.7E-7 3.2E-7 

On the basis of calculation, the parametric excitation frequency is '19.12 Ilz. then we 
have a remark from the t able 4 that besides two peaks \vitli frcq1w1wics f aud / 11 , tlicrc 
arc two other frequencies 37.0;::::: 49.12 · 12.08. and 61 .16 c:::::: 49.1~ + 12.08 , that rneaus 
it exposes the illfluence of parametric excitation. For belief of the previous remark , we 
Lake f = lG .5; 30 and 40 Hz and get t lie followillg results (Table 5) . 
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Table 5. 

fp = 67.l Freq. peak 16.5 20.65 50.04 83.11 
In tens. 9.7E-6 l.2E-6 l. lE-6 l.5E-6 

fp = 122. Freq. peak 20.65 30. 91.68 151.28 
In tens. 2.lE-6 9.9E-6 l.4E-G l.5E-6 

fp = 162.67 Freq.peak 20.65 40. 121.89 202 .31 
In tens. 2.0E-6 6.6E-6 l.2E-6 9.6E-7 

Check results in the Table 5 as previous remark, the frequencies in two final columns 
are approximately equal fp - f and fp + f , the vibration x2 and its spectrum for t he case 
fp = 122 Hz and f = 30 Hz are given in the Fig. lG. 

Fig. 16. Vibration X2 and its spectrum when f = 30 Hz, f p = 122 Hz 

3) All forces produced by unbal ance mass and defect s of inner race, outer race and 
breaking ba ll are applied together to the system with pa rametric excitation (c: =J 0) 

In this case we t ake f = 40 Hz, c: = 0.2 , and the frequencies arc calculated and 
ohtained f ; = 237 Hz , f e = fp = 162.67 Hz, fb = 103 Hz. The result of calculat ion is given 
in the Fig. 17 for vibration x2 and its spectrum. In graphics of vibration spcc:trulll there 
arc some peaks besides excitat ion frequencies because of parametric excitation (Table G). 

Table 6. 

Freq. 20.65 40. 59 74 .5 103 162.67 174 237 
In tens. l.9E-G 6.3E-6 l.5E-6 l.3E-6 l.2E-5 l.lE-5 l.2E-G 2.0E-5 

Notice that , besides domination frequencies of excitation forces , other peaks of spec­
trum gives the informations of ball-bearing quality as remark iu t he case 2). In this cm;c, 
the vibration measurement data x1 of rotor shaft (not at bearings) can not be used for 
estimation of ball-bearing quality. 

6. CONCLUSION 

For assessment of the ball-bearing quality by using dEtta of vibration measurement, 
the three mechanica l models for simulation of t he rotor-ball bearing syst ems a rC' proposed. 
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Fig. 17. Vibration and its spectrum for the case 3) 

They are non-linear systems with parametric excitation and subjected to centrifugal force 
and impact forces produced by defects of ball-bearing (for example, inner race, outer race, 
breaking ball, ... ). If vibrations of rotor-bearing system are measured by eddy current 
proximity probe, that means, they are relative vibrations between journal and bearing 
cage, the models of simulation are single-degree-of-freedom system for rigid rotor and 
two-degree-of-freedom system for Jeffcott rotor. If vibrations of rotor-bearing system arc 
measured on non-rotating parts by accelerometers then the modelling of the rotor-bearing 
system is two-degree-of-freedom system. After simulation of the systems and solving 
differential equations, the vibrations of the systems are obtained and analysed in the form 
of spectral density functions. their peaks are symptoms for identification and assessment 
of the ball bearing quality. 
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VE CHAN DOAN KY THU~T CUA 0 BI DlfA TREN MO HINH Hit RO TO -

GOI DO' BANG PHUONG PHAP DAO DQNG 

Trong bai nay, sau khi phan tich bien d~ng c1'm obi chju tai, ta c6 the khao sat dao d9ng cua 
h9 ro to - goi da nhu h9 v&i d9 ci'.rng phi tuyen va bicn thien tui'tn hoan theo thai gian. 110 hlnh 
cua h9 nay phv tlm9c vao tinh chat cua cua trvc ( ci'.rng ho~c mem) va vao plmcrng phap do dao 
d9ng cua h9 (b&i dau do dong xoay khong ticp xuc v&i trvc quay hay b&i dau do gia toe trcn phan 
khong quay cua h¢), 116 c6 the la h¢ phi tuyen m9t b:\\,c t11 do ho~c hai b:\\,c t1! do chju tac d9ng 
cua kich d9ng tham so va l\fC ngoai . Do c16 c6 the nh:\\,n dm;rc nhi'rng di'.lc tinh khac nhau c16i v&i 
dao d9ng cua h¢ tmrng i'.rng v&i cac khuyct t<%-t khac nhau cua o bi. Cac dau hi¢u nay gii'.1p chung 
ta nh:\\,n d~ng va danh gia chat lm;mg cua obi bKng vi9c do va phan tich <lao d9ng cua h9. 


