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Abstract. A variational principle for channel and pipe flows of incompressible viscous
fluid is proposed. For low Reynolds numbers this variational principle reduces to the
principle of minimum dissipation. For high Reynolds numbers it enables one to calculate
the velocity profiles and the corresponding friction factors with reasonably good accuracy.

1. INTRODUCTION

One of long-standing issues in fluid dynamics is how to propose a unified theory of
channel and pipe flows which can predict the transition from laminar to turbulent regime
and simultaneously calculate the velocity profile and the friction factors for all Reynolds
numbers [1]. Up to now, most of researchers in the field share the believe that this could
be done by solving the Navier-Stokes equation (2, 3].

The present paper proposes an approach deviating largely from this main stream.
It focuses on the turbulent modeling [4] rather than solving the Navier-Stokes equation.
The starting point is the variational principle of minimum dissipation which is indeed the
direct consequence of the Navier-Stokes equation and which can be used to determine the
velocity profiles of laminar flows for small Reynolds numbers. As the Reynolds number
becomes very large the flows obey asymptotically the Euler equation of the ideal fluid which
again admits the variational principle [5,6]. The aim of this paper is to find the “bridge”
between these two extreme cases. Our main assumption is that, when the Reynolds
number exceeds some critical threshold, new vortices occur causing the turbulent mixing
and energy and momentum transfer from large-scale to small-scale vortices. The Reynolds
stress which is responsible for the momentum transfer depends on the flow generated by
these emerging vortices. We attempt at formulating a variational principle involving the
statistically average velocities of turbulent flow and the flow generated by new vortices
by incorporating the interaction between large-scale and small-scale vortices through the
energy cascade [7]. The asymptotic law of wall [8,9] valid for large Reynolds numbers
is used to find the nonlinear term responsible for the interaction between vortices. We
will show that the proposed variational principle reduces to the principle of minimum
dissipation for small Reynolds number. For large Reynolds numbers it cnables one to
predict the velocity profile and the friction factors for turbulent flows with reasonable
accuracy as compared with experimental data (see also [10]).

2. SHEAR FLOW

Consider an incompressible viscous fluid bounded by two parallel plates of infinite
extent. The lower plate occupying the plane y = 0 is at rest. To the upper plate occupying
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the plane y = 2h the constant force 7 per unit area is applied (see Fig. 1). The shear flow
(or Couette flow) driven by the motion of this plate exerts the resistance to it through the
viscous shear stress. If the resistance is equal to the applied force, the stationary flow will

be settled. The problem is to determine the velocity of the stationary flow as function of
T

—— y=2h
>
> u(y)
>
y=0

Fig. 1. Shear flow between parallel plates

It turns out that the solution of this problem exhibits extremely different behaviors at
small and large 7. In the laminar case (at low 7) the solution can be found by the following
variational principle: among all admissible velocity fields u(y) satisfying «(0) = 0 the true
velocity field @(y) minimizes the dissipation functional

2h
i
D= / —2—771/2 dy — Tu(2h), (2.1)
0

with 1 being the viscosity and the prime denoting the derivative. The first term in (2.1)
describes the dissipation (per unit area), while the second term corresponds to the power
of the external force and can be regarded as the energy source.

It is easy to show that the minimizer of (2.1) satisfies the equation nu’ = 7 which

2 . T ; e
leads to the linear profile of velocity u(y) = —y. Thus, the average velocity @ is equal to

the velocity in the middle of the flow at y = h, @ = u,, = 7h/n. Consequently, the friction
coefficient reads ‘

22

o= ou?,  Re’
with g the mass density, and Re = pun,,h/n the Reynolds number [1]. It is more convenient
to use another definition of Reynolds number which is directly related to 7 (the so-called
friction Reynolds number)
R = Qurh, B '3 L

n 0
Because Re = R? for laminar flows, we have in this case ¢ r = 2/R2,

As the Reynolds number increases and exceeds some critical value, new vortices may
occur. The energy required for the nucleation and motion of these new vortices is trans-
ferred from the energy source through the Richardson cascade [7]. Because of this energy
transfer the statistically average velocity of the turbulent flow u(y) is reduced considerably.
For the turbulent regime many uncertainties arise except the following balance equation
of mean momentum for u(y) which seems to be firmly established [4,11]

d
%(nul 4] =1,
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where 7F is the so-called Reynolds stress. However, F' is unknown, and the problem
of how to close this equation remains (see, for example, the mixing length model or the
k — e-model in [4]). In this paper we adopt the following two main hypotheses:
(1) Function F depends only on ¢ which is the statistically average velocity of the flow
generated by new vortices.
(2) The governing equations for u(y) and ¢(y) can be obtained from a wariational
principle.
Our aim is to show that the following variational principle leads to a satisfactory model
for both laminar and turbulent flows: among all admissible velocity fields u(y) and ¢(y)
satisfying the boundary conditions

the shear flow is described by those for which the dissipation functional

]
[\V)
R

2h
1 1
D= | (gm?+ 7P| - 5ne) dy — ru(2h) (2:3)
0

has an extremum. The first term in (2.3) is the dissipation due to viscosity, the second
term describes the energy transfer from large-scale to small-scale vortices, with F(y) a
nonlinear function of ¢, the third term is responsible for the reduction in dissipation due
to the energy storage by small scale vortices, and finally, the last term corresponds to the
power of the external force. Here |u'| and |¢'| are the scalar densities of the corresponding
vortices. We also assume that the wall is ideally smooth so that new vortices cannot be
nucleated there. This assumption is reflected in the second boundary conditions (2.2).
It is convenient to introduce the following dimensionless quantities
(=2, a=l =% F@)=Fu), D=_,
Ur Ur Tl

with R and u, being previously defined. We shall deal further only with these dimension-
less quantities, therefore the tildes can be dropped for short. In this problem the velocity
is monotone increasing, therefore |u’'| = u'. Thus, the dimensionless dissipation becomes

2R
1 1
D= / (547 + Flg)' — 5¢”) dC ~ u(2R). (2.4)
O .
Varying functional (2.4) we derive from it the Euler equations
W+ Flp)=1, F'(p)u+¢"=0. (2.5)

The first equation follows directly from the balance of mean momentum and the boundary
condition at ¢ = 2R. Expressing u’ through F() in the first equation and substituting it
into the second equation we obtain the governing equation for ¢

¢" + F'(p)(1 - F(p)) = 0. (2.6)

Equation (2.6) has the form of the equation of motion of a particle with mass 1 in the
potential well

|
V(p) = F(p) = 5F*(¢). (2.7)
The immediate consequence of this is the first integral

%99'2 +V(p) = V(em), (25)
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where ¢,, is the maximal velocity of the vortex flow which is achieved at ( = R. We
assume that both F(p) and V(y) are even function of ¢.

The determination of F(y) is based on the law of wall [8,9]. This law states that for
Reynolds numbers approaching infinity the Reynolds stress F'(¢oo(€)) becomes a universal
function f(§), with & € (0, >0) the so-called “wall coordinate”. From various experimental

1

data (see [4,11] we know that f(§) ~ 1— 3 as & — oo, with k = 0.41 the Karman constant,
K

and f(&) ~ a&® for small £&. We use therefore the following semi-empirical formula

1 be3d

f(é):]‘_1+(a+b)£3_l+l{b£47

(2.9)

for this universal function, with a = 6.10™%, b = 1.085107° (compare with [11]). Thus,
1 i
SRVl =5 = GO =VI- W@ =1-/). (210

Equations (2.5); and (2.10) show that for very large Reynolds numbers the vorticity densi-
ties of turbulent and vortex flows are equal, what seems to be quite natural. With function

f(&) from (2.9) we find

lln —ha + L (‘11“Ct‘mQA£—_1 + z)
30 V- AEr1 B\ VB 6 ATy

+4—1f; In(1 + rbe")

Poo(§) = %

where A = (a + b)l/ 3. The one-to-one correspondence between ¢ and € can be achieved
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0.5
0.4
0.3
0.2
0.1
25 5 75 10 125 15 ©
Fig. 2. Function V(p)
by setting voo(§) = —poo(—E) for £ < 0. This velocity profile possesses the following

remarkable asymptotic property: ¢oo(§) ~ In&/k+ ¢ as £ — oo, where ¢ = 5.41. The plot
of V(p) using £ as parameter is shown in Fig. 2. This function applies to all Reynolds
numbers. It is interesting to mention that function V() behaves like ag? for small ¢ and
1 — e 2% /k? for large .
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Fig. 3. Reynolds number as function of ¢y,

Knowing V() one can integrate equation (2.8) to determine ¢ and then w. In terms
of the wall coordinates £ we have

e [ L= ) de -

0 V2[v(Em) — v(6)]

where v(€) = f(§) — 5 f2(£). It is casy to show that R tends to infinity as &, tends to zero
like R ~ .| M, and tends to infinity as &, tends to infinity like a linear function.
\/ 20&,, T(5/6)

It has one minimum R, = 16.9714 which is achieved at &,, = 8.4397 (or ¢,, = 7.805).
For R < R. the extremal ¢ must vanish. Thus, the value 2, = 16.9714 can be regarded
as the critical Reynolds number, at which the transition from laminar to turbulent shear
flow takes place (this corresponds to Re. = 288.028). The plot of R as function of ¢,
is shown in Fig. 3. One can see that the laminar flow is stable in “small” and that the
transition from laminar to turbulent regime is “hard” in the sense that a finite amplitude
of velocity of vortex motion is required for it. For example, if the disturbances of velocity
of vortex motion is smaller than 0.163, then the laminar regime can be maintained up to
the Reynolds number R = 100. This agrees qualitatively with the stability analysis of the
Navier-Stokes equation [12].

Finally we find the distribution of velocity u(¢) of turbulent flow from ¢({) by inte-
grating the equation (2.5); [10]. The plot of the difference d = w,,, —In R/, with w,, being
the velocity in the middle of the flow, as function of R is shown in Fig. 4. As R tends
to infinity, this difference tends to the value 7.1 which coincides with the empirical value
given in [11].

3. CHANNEL FLOW

Consider next the 2-D flow of the incompressible viscous fluid in a channel driven
by the constant pressure gradient (Poiseuille flow). Both plates are now at rest. In the
laminar case (low pressure gradient) the velocity u(y) is the minimizer of the dissipation
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Fig. 4. Difference d = u,, — In R/k versus Reynolds number R

functional
h 1 h
D= / ~nu?dy + p' / u(y) dy,

—h 2 —h

under the constraint
u(Lh) = 0.

To make the symmetry more transparent, the origin is now chosen in the middle of the flow,
and we let p’ denote the pressure gradient with respect to @ which is constant over the cross-

o (
section. It is easy to show that the velocity profile is parabolic: u(y) = ~{1)—(h,2 —y?), s0
2n
the average velocity is equal to @ = —p’'h?/3n. This yields the following friction cocfficient
—-p’h 18

B e 2 e
/ %Q’L_LQ R?

where R = ouph/n, up = \/—p'h/o.

As the pressure gradient becomes large, a flow induced by new vortices occurs. We
let u(y) denote as before the statistically average velocity of turbulent flow and ¢(y) the
statistically average velocity of flow generated by new vortices. Again, there are many
uncertainties in the turbulent regime except the firmly established balance equation of
mean momentum [4, 11]

i(77?/ +p'hF) =p,

dy
where p’hF corresponds to the Reynolds stress describing the momentum transfer by the
turbulent mixing. Adopting the same hypotheses as in the previous case, we try to close
this equation by formulating the following variational principle: among all admissible
velocity fields u(y) and ¢(y) satisfying the boundary conditions

wl(th) =0, p(th)=0, (3.1
the channel flow is described by those for which the dissipation functional

oh h
1 g
D= (=nu? — p'RF(p)|u] + p’h%(,)ﬂull — Zne?) dy + p' u(y) dy (3.2)
~h 2 R2/5 2 —h
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has an extremum. In comparison with the shear flow the only new term added in this
dissipation functional is the third term which is responsible for the energy storage of large
scale vortices, where « is now the universal parameter which is chosen to be equal to
a = 1.442. Tt will be shown that the 2/5 scaling law yields the S&tlbf&CtOI‘Y agreement
with the experimental data.

By changing the variables and unknown functions
U % D
= —— u — sy — o, D = — s
¢ h'’ up w Uy p'hu,

we transform the dissipation functional to

Rl
D / (24 + Flg )]1L'[—R2/D}u/§—~ dg/ (€) dc. (3.3)

Note that the extremal possesses the following symmetry property: «(¢) is even and ¢(()
is odd function with respect to ¢. Due to this symmetry we shall consider the half-interval
(=R, 0) where u/(¢) > 0.

Observe first that the variational problem (3.3) always has the extremal ¢ = 0 leading
to the laminar velocity profile. However, for sufficiently large 2 there is another extremal
describing the turbulent flow. For the developed turbulent flow (large R) we assume that

ul(C)’ G € (_R> _l)v Sol(C)a 6 & (_R? —l),
u(g) = 3 Um, C = (_17 l)a ) SO(C) = 50771(4)7 C € (_l7 l)a
’LL}(—C), C & (la R)7 —"101(—{)7 C € (l R)v

with u;, = const and [ being the unknown length which must be subject to variation. This
assumption means that the flow in the middle of the channel can be regarded as the flow
of ideal fluid. Then the half-dissipation becomes

D _ll 2 /
/ ) 1)ul R2/5 1_ 5 d< / 29"7n

(3.4)
1 Ul
—/_R —ui(¢)dg ~ 2t
The standard calculus of variation leads to the differential equations
- S+ Fle)) = 5 =0, .
Fl(p)u' +¢" =0,
for ( € (R, —!) and
= 0 (3.8)
for ¢ € (={,0). The boundary conditions read
u(—R)=p(-R) =0, ¢(0)=0,
« l (3.7)

/ o 1 e g A . S

Two first boundary conditions in (3.7)2 mean the continuity of the vorticity densities. The
last condition is obtained by varying wu,,, where the influence of the third term in (3.3)
becomes noticeable for extremals with the assumed behavior.
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Equation (3.5); and the last boundary condition of (3.7) imply that

/ - ¢ Q
Expressing v’ through F(p) and substituting into the second equation of (3.5) we obtain
the following governing equation for ¢ in (—R, —1)

n__ o ¢
¢ = Fe)(5 - R2/5+F( ¢)) = 0. (3.9)
This equation is subject to the boundary conditions
o - l « 0 . @(_l)
P(-F) =0, Fle(-D) =5+, () =-E—L (3.10)
The last boundary condition is the direct consequence of the equation (3.6), the boundary

condition ¢(0) = 0, and the continuity of ¢'.
Since F(¢) does not have the explicit analytical form, it is convenient to choose the
wall coordinate £(¢) as unknown function in accordance to

P(C) = v(€(C)),  F(w) = f(£),

/ / " " / 2 (3'11)
o =1-f()E, ¢ =1-[(E)E — f(&E"
In terms of the wall coordinate the governing equation becomes
" ’ 2 f/(g) ¢ a .
(1~ FE" — P10 — Tl — g + HED =0 (3.12)
This equation is subject to the boundary conditions
/ . ‘pOO(fAl(#+ R?/S)) » &

§(-R)=0, &-)=f" (”R‘ +1—22—/5) 5?*1) =TTl L- oy (3.13)

where f~! is the inverse function of f. Equation (3.12) can also be directly derived from
the variational principle (3.4).

The shooting method can be applied to find the solution of the two-point boundary-
value problem (3.12), (3.13). Knowing u/(¢) we can find the velocity profile u(¢) and then
the average velocity @ [10]. Fig. 5 presents the graph of d = @ — I“HR versus the Reynolds
number R. For R = 1000 the theory predicts d = 3.09 which is close to the empirical
value 3.3 taken from [11]. ‘

4. PIPE FLOW

For the laminar pipe flow driven by the constant pressure gradient (3-D Poiseuille
flow) the velocity u(r) is the minimizer of the dissipation functional

a 1 a
D= / —nu/? 2mrdr + p’/ u(r) 2mrdr,
0o 2 0
under the constraint
wla) = 0.

Here the polar coordinate r is used, with a the radius of the circular cross-section, and p’ is
the pressure gradient which is constant over the cross-section. It is easy to show that the
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Fig. 5. Difference d = @ — In R/k versus Reynolds number R

/

velocity profile is parabolic: u(r) = —5—(&2 — r2), which leads to the following resistance
n

law

—pla 64

Ct = == g
! 19712 R2

2

where R = pupa/n, up = /—p'a/2p.

As the pressure gradient becomes large, a flow induced by new vortices occurs. We
let u(r) denote as before the statistically average velocity of turbulent flow and (r) the
statistically average velocity of flow generated by new vortices. Similar to the previous
cases, the only firmly established equation is the balance of mean momentum

1 1
;%(T(m/ +5p'ak)) =7,
where %p’ aF' corresponds to the Reynolds stress. Since F' is unknown, one needs to
close this equation. Adopting the same hypotheses as before, we formulate the following
variational principle: among all admissible velocity fields w(r) and o(r) satisfying the
boundary conditions
u(a) =0, ¢(a)=0, (4.1)

the pipe flow is described by those for which the dissipation functional
| pa Pa «
D = = 12 e _F !/ 7
e - B+ B 2
has an extremum, where, as before, a = 1.442.
By changing the variables and unknown functions
Rr u DR

. ¥
=y W= @rr—, Diso——e—,
a Up Uy mp'acuy,

1 a
|| — 57199/2) 2mrdr + *p// u(r) 2rrdr  (4.2)
0
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we transform the dissipation functional to

1l s T k2 .
D= [ G+ P - gl - ge e - [ zuOcac @

The variational problem (4.3) always has the extremal ¢ = 0 leading to the laminar
velocity profile. However, for sufficiently large R there is another extremal describing the
turbulent flow. For the developed turbulent flow (large R) we assume that

w(C) = 4 Um for ¢ € (0,1), _ om(C) for ¢ € (0,1),
&= {U1(C) for ¢ € (I, R),’ #(¢) {sol(c) for ¢ € (I, R),

with u,, = const and [ being the unknown length which must be subject to variation.
Thus, the flow in the middle of the pipe can be regarded as the flow of ideal fluid. Then

Ty 11'/2d Rl/? F""/ a,/ 1/2 1
- 5%m 6dC + 1 [Sur - (wl>Ul+W“1—§m]CfC

4

'LL,,JQ R P (44)
G
By the similar method we derive the differential equations
(¥'¢)' =0, (4.5)
for ¢ € (0,1) and
d , , a 2¢
—F'(pW'C+ (#/¢) =0,
for ¢ € (I, R). The boundary conditions read
©(0) =0, u(R)=¢p(R)=0,
. y - ’ a1 (4.7)
w(l)=0, ¢(l+0)=¢(1-0), F(el)) I
The last condition is obtained by varying wu,.
Equation (4.6); and the last boundary condition of (4.7) imply that
, a ¢ .
u — F(p) + S R (4.8)

Expressing «’ through F(¢) and substituting into the second equation of (4.6) we obtain
the following governing equation for ¢ in (I, R)

AN . B Cn - £ _ L - 4 C
This equation is subject to the boundary conditions
) o 7 Am Fu

The second boundary condition is the direct consequence of the equation (4.5), the bound-
ary condition ¢(0) = 0, and the contiuuity of ¢’
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In terms of the wall coordinate the governing equation becomes

(1= FO)' - (€% + (1= FO - TER (7O - - ) =0 (@)
This equation is subject to the boundary conditions
€0 =1 (5 + o) €W =0, &R)=0. @12
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Fig. 6. Difference d = o — In R/k versus Reynolds number R

By using the shooting method one can find the velocity profile u(¢) and then the
average velocity @ [10]. In Fig. 6 the plot of d = u — In R/k versus the Reynolds number
R is shown. For the Reynolds number R = 10000 the numerical calculations yield u =
24.4576 and d = 1.9934. This is in excellent agreement with the empirical value 1.96.
Introducing the skin-friction coefficient cy, the friction factor A and the Reynolds number

Re in accordance to
A —2pa 201a
Cf ) e 22 —5 s R@ ==
4 ou n
we derive from here the well-known Prandtl’s friction law for turbulent flows

1
5= 2log;o(ReVA) — 0.8.

5. CONCLUSIONS

The unified theory of channel and pipe flows proposed in this paper is based on the
following hypotheses:
e The Reynolds stress depends on the mean velocity of the flow generated by new
vortices
e The governing equations for the mean velocities of the turbulent flow and of the
flow generated by new vortices can be obtained from a variational principle
e The asymptotic law of wall holds true for large Reynolds numbers.
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It is shown that this theory leads to the satisfactory description of channel and pipe flows
for both laminar and turbulent regimes. For large Reynolds numbers the theory predicts
the velocity profile and the friction factors with reasonable accuracy as compared with
experimental data.
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DONG ROI TRONG KENH VA ONG

Nguyén 1y bién phan d6i véi cdc dong chdt 1dng nhét khong nén dwgc trong kénh
va ong duoc deé xudt. D6i véi nhirng s6 Reynolds thap nguyén 1y bién phan rut gon ve
nguyen 1y hao tén cuc tidu. Déi véi céc s6 Reynolds cao c6 thé tinh profile van téc va heé
s6 ma sat twong tng v&i do chinh xdc kha hop 1y.



