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Abstract. A variational principle for channel and pipe flows of incompressible viscous 
fluid is proposed. For low Reynolds numbers this variational principle reduces to the 
principle of minimum dissipation. For high Reynolds numbers it enables one to calculate 
the velocity profiles and the corresponding friction factors with reasonably good accuracy. 

1. INTRODUCTION 

One of long-standing issues in fluid dynamics is how to propose a unified theory of 
channel and pipe flows which can predict the transition from laminar to turbulent regime 
and simultaneously calculate the velocity profile and the friction factors for a ll Reynolds 
numbers [1]. Up to now, most of researchers in the field share the believe that this could 
be done by solving the N avier-Stokes equation [2, 3]. 

The present paper proposes an approach deviating largely from this main stream. 
It focuses on the turbulent modeling [4] rather than solving the Navier-Stokes equation. 
The starting point is the variational principle of minimum dissipation which is indeed the 
direct consequence of the Navier-Stokes equation and which can be used to determine ti1e 
velocity profiles of laminar flows for small Reynolds numbers . As the Reynolds number 
becomes very large the flov.is obey asymptotically the Euler equation of the ideal fluid which 
again admits the variational principle [5, 6]. The aim of this paper is to find the "bridge" 
between these two extreme cases. Our main assumption is that, when the Reynolds 
number exceeds some critical threshold, new vortices occur causing the turbulent mixing 
and energy and momentum transfer from large-scale to small-scale vortices. The Reynolds 
stress which is responsible for the momentum transfer depends on the flow generated by 
these emerging vortices. We attempt at formulating a variational principle involving the 
statistically average velocities of turbulent flow and the flow generated by new vortices 
by incorporating the interaction between large-scale and small-scale vortices through the 
energy cascade [7] . The asymptotic law of wall [8, 9] valid for large Reynolds numbers 
is used to find the nonlinear term responsible for the interaction between vortices. \Ve 
will show that the proposed variational principle reduces to the principle of minimum 
dissipation for small Reynolds number. For large Reynolds numbers it enables one to 
predict the velocity profile and the friction factors for turbulent flows with reasonable 
accuracy as compared with experimental data (see also [10]). 

2. SHEAR FLOW 

Consider an incompressible viscous fluid bounded by two parallel plates of infinite 
extent. The lower plate occupying the plane y = 0 is at rest. To the upper plate occupying 
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the plane y = 2h the constant force T per unit area is applied (see Fig. 1). The shear flow 
(or Couette flow) driven by the motion of this plate exerts the resistance to it through the 
viscous shear stress. If the resistance is equal to the applied force, the stationary flow will 
be settled. The problem is to determine the velocity of the stationary flow as function of 
T. 

> 
> u (y) 

> 

Fig. 1. Shear flow between parallel plates 

It turns out that the solution of this problem exhibits extremely different behaviors at 
small and large T. In the laminar case (at low T) the solution can be found by the following 
variational principle: among all admissible velocity fields 'U(y) satisfying u(O) = 0 the true 
velocity field u(y) minimizes the dissipation functional 

1
2h 1 

V = -rru'2 dy - nl(2h), 
0 2 

(2.1) 

with fJ being the viscosity and the prime denoting the derivative. The first term in (2.1) 
describes the dissipation (per unit area), while the second term corresponds to the power 
of the external force and can be regarded as the energy source. 

It is easy to show that the minimizer of (2.1) satisfies the equation 'rJ'll,' = T which 

leads to the linear profile of velocity u(y) = !._y. Thus, the average velocity fl is equal to 
'r/ 

the velocity in the middle of the flow at y = h, fl= Um = Th/rJ. Consequently, the friction 
coefficient reads 

2T 2 
CJ - -- eu~ - Re' 

with(! the mass density, and Re= (!Umh/rJ the Reynolds number [1]. It is more convenient 
to use another definition of Reynolds number which is directly related to T (the so-called 
friction Reynolds number) 

R = (!U;h, Ur=~· 
Because Re = R 2 for laminar flows, we have in this case cf = 2 / R 2 . 

As the Reynolds number increases and exceeds some critical value, new vortices may 
occur. The energy required for the nucleation and motion of these new vortices is tra11s­
fcrred from the energy source through the Richardson cascade [7]. Because of this energy 
transfer the statistically average velocity of the turbulent flow 1t(y) is reduced considerably. 
For the turbulent regime many uncertainties arise except the following balance equation 
of mean momentum for 'U(y) which seems to be firmly established [4, 11] 

:t (1ru' + T F) = 0, 
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where T F is the so-called Reynolds stress. However, F is unknown, and the problem 
of how to close this equation remains (see, for example, the mixing length model or the 
k - E-model in [4]). In this paper we adopt the following two main hypotheses: 

( 1) Function F depends only on <p which is the statistically average velocity of the flow 
generated by new vortices. 

(2) The governing equations for u(y) and <p(y) can be obtained from a variational 
principle. 

Our aim is to show that the following variational principle leads to a satisfactory model 
for both laminar and turbulent flows: among all admissible velocity fields u(y)' and <p (y) 
satisfying the boundary conditions 

u(O) = 0, <p(O) = <p(2h) = 0, (2.2) 

the shear flow is described by those for which the dissipation functional 

1
2

h 1 12 I 1 12 
V= (-TJU +TF(<p)lul--TJ<p )dy-ni(2h) 

0 2 2 
(2.3) 

has an extremum. The first term in (2.3) is the dissipation due to viscosity, the second 
term describes the energy transfer from large-scale to small-scale vortices, with F( <p) a 
nonlinear function of <p, the third term is responsible for the reduction in dissipation due 
to the energy storage by small scale vortices, and finally, the last term corresponds to the 
power of the external force. Here lu'I and I.VJ'! are the scalar densities of the corresponding 
vortices. \Ne also assume that the wall is ideally smooth so that new vortices cannot be 
nucleated there. This assumption is reflected in the second boundary conditions (2.2). 

It is convenient to introduce the following dimensionless quantities 

(=Ry u = _!!__, 0 = :!!__, F(ij;) = F(i{Jur), i) = _!!_ 
h ' Ur Ur TUr' 

with R and Ur being previously defined. We shall deal further only with these dimension­
less quantities, therefore the tildes can be dropped for short. In this problem the velocity 
is monotone increasing, therefore lu'I = u'. Thus, the dimensionless dissipation becomes 

1
2R 1 1 

V = (-u'2 + F(<p)u' - -<p'2 ) d( - u(2R) . (2.4) 
0 2 2 

Varying functional (2.4) we derive from it the Euler equations 

u' + F(<p) = 1, F'(<p)u' + <p11 = 0. (2.5) 

The first equation follows directly from the balance of mean momentum and the boundary 
condition at ( = 2R. Expressing u' through F( <p) in the first equation and substituting it 
into the second equation we obtain the governing equation for <p 

<p11 + F'(<p)(l - F(<p)) = 0. (2.6) 

Equation (2.6) has the form of the equation of motion of a particle with mass 1 in the 
potential well 

1 
V(<p) = F(<p) - 2F 2 (<p) . (2.7) 

The immediate consequence of this is the first integral 

~<p'2 + V(<p) = V( <pm) , (2.8) 
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where 'Pm is the maximal velocity of the vortex flow which is achieved at ( = R. \Ve 
assume that both F(<p) and V(<p) are even function of <p. 

The determination of F( <p) is based on the law of wall [8, 9]. This law states that for 
Reynolds numbers approaching infinity the Reynolds stress F(<p00 (0) becomes a universal 
function f(O, with~ E (0, oo) the so-called "wall coordinate". From various experimental 

1 . 
data (see [4 , 11] we know that f (0 "" 1- - as~ -+ oo, with"'= 0.41 the Karman constant , 

/'\,~ 
and f(O ""a~3 for small~- We use therefore the following semi-empirical formula 

1 
f(~) = 1 - 1 +(a+ b)~3 (2.9) 

for this universal function, with a= 6.10-4 , b = 1.08510- 6 (compare with [11]). Thus, 

1 12 1 I . I 2'Poo + V(<poo(O) = 2 =? <p00 (0 = V 1 - 2V(<p(0) = 1 - f(O. (2 .10) 

Equations (2.5)1 and (2.10) show that for very large Reynolds numbers the vorticity deusi­
ties of turbulent and vortex flows are equal, what seems to be quite natural. \Vitl1 fun ction 
f (0 from (2.9) we find 

<p00 (0 = * [~ ln A~+ 1 
+ ~ (arctan 

2A~ 1 
+ ~ )] 

3 J(A~) 2 
- A~+ 1 v3 3 6 (2.11) 

1 +- ln(l + "'b(1
) 

41'\, 

where A = (a+ b) 113 . The one-to-one correspondence between <p and ~ can be achieved 

v 
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Fig. 2. Function V(<p) 

by setting <p00 (0 = -<p00 (-0 for ~ < 0. This velocity profile possesses the following 
remarkable asymptotic property: <p00 (0 ""ln U"' + c as~-+ oo, where c = 5.41. The plot 
of V(<p) using~ as parameter is shown in Fig. 2. This function applies to all Reynolds 
numbers. It is interesting to mention that function V(cp) behaves like acp3 for small cp a11cl 
1 - e- 2"''P / "'2 for large cp. 
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Fig. 3. Reynolds number as funct ion of 'Pm 

Knowing V(cp) one can integrate equation (2.8) to determine <p and t hen u. In terms 
of the wall co9rdinates ~ we have 

j·~m [1 - J(OJ d~ 
R -

- o J2[v(~m) - v(0] 1 

(2.12) 

where v(() = J(O - ~J2(0. It is easy to show th<1t R tends to infinity as ~m tends to zero 

l.k R {Ii:r(4/ 3) d d . fi . c d . fi . l"k l" 1· . 1 e rv - - (e::/ ) , an ten s to 111 mty as c,m ten s to 111 mty 1 e <1 mear unct10n. 
2a~m r 0 6 

It has one minimum R e = 16.9714 which is achieved at ~m = 8.4397 (or <pm = 7.805). 
For R < Re the extremal <p must vanish. Thus , the value R e = 16.9714 mn be regarded 
as the critical Reynolds number, at which the t ransition from laminar to turbulent shear 
flow takes plt1ce (this corresponds to Rec = 288.028). The plot of R as funct ion of <pm 

is shown in Fig. 3. One can see that the laminar flow is stable in "small" and that the 
transition from laminar to turbulent regime is "hard" in the sense that a finite amplitude 
of velocity of vortex motion is required for it. For example, if t he disturbances of velocity 
of vortex motion is smaller than 0.163 , t hen t he laminar regime can be maintained up to 
t he Reynolds number R = 100. This agrees qualitatively with the stabili ty analysis of the 
Navier-Stokes equat ion [12] . 

F ina lly we find t he distribution of velocity 1L( () of t urbulent flow from cp( () by inte­
grating the equation (2.5)i [10]. The plot of the differenced = 'Llm - In R//'\,. with 'Urn being 
t he velocity in the middle of the flow, as function of R is shown in Fig. 4. As R tends 
to infinity, this difference tends to the val ue 7.1 which coincides with the crnpirkal value 
given in [11]. 

3. CHANNEL FLOW 

Consider next the 2-D flow of the incompressible viscous fluid in a cl1an11el driven 
by the constant pressure gradient (Poiseuille flow) . Both plates arc now at rest. In the 
laminar case (low pressure gradient) the velocity u(:y) is the minimizer of tlic dissipation 
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Fig. 4. Difference d = Um - In R/ fC versus Reynolds number R 

functional 

j ·h 1 j" V = -TJU12 dy + p1 u(y) dy, 
- h 2 - h 

under the constraint 

u(±h) = 0. 

To make the symmetry more transparent, the origin is now chosen in the middle of the flow , 
and we let p' denote the pressure gradient with respect to x which is constant over the cross-

section. It is easy to show that the velocity profile is parabolic: u(y) = -'!;
1 

('12 
- y2

), so 
~17 

the average velocity is equal to u = -p' h2 /3TJ. This yields the following friction coe!Ticient 

-p'h 18 
cf = l .-2 = R2 ' 

2f2U . 

where R = f21lph/TJ, Up= J-p'h/Q. 
As the pressure gradient becomes large, a flow induced by new vortices occurs . \Ve 

let u(y) denote as before the statistically average velocity of turbulent flow and i.p (y) the 
statistically average velocity of How generated by new vortices. Again, there arc many 
uncertainties in the turbulent regime except t he firmly established balance equation of 
mean momentum [4, ll] 

.!!:__ ( TJU1 + p1 hF) = p1
, 

dy 

where p' hF corresponds to the Reynolds stress describing the momentum transfer by the 
turbulent mixing. Adopting the same hypotheses as in the previous case, we try to close 
this equation by formulating the following variational principle: among all admissible 
velocity fields u(y) and i.p(y) satisfying the boundary conditions 

u(±h) = 0, i.p(±h) = 0, (3.1) 

the channel flow is described by those for which the dissipation functional 

j·h 1 1 ;·h I I I I Q I I I 
V = ( - TJU 2 

- p hF(<p)l u I+ p h 21-;:-lu I - ?Tl'P 2
) dy + p u(y) dy 

- h 2 R . o - - h 
(3.2) 
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has an extremum. In comparison with the shear flow the only new term added in this 
dissipation functional is the third term which is responsible for the energy storage of large 
scale vortices, where a is now the universal parameter which is chosen to be equal to 
a = 1.442. It will be shown that the 2/5 scaling law yields the satisfactory agreement 
with the experimental data. 

By changing the variables and unknown functions 

Ry u cp 
( = -h ' 'U f---> -, cp f---> -, 

Up Up 

we transform the dissipation functional to 

D 
Df--->--­

p1hup' 

D = JR ( Lu12 + F( cp) lu1I - ~; 5 lu1 I - ~cp12 ) d( - Jn 2-u( () d( . 
-R 2 R 2 - RR 

(3.3) 

Note that the extremal possesses the following symmetry property: u( () is even and cp( () 
is odd function with respect to(. Due to this symmetry we shall consider the half-interval 
(-R, 0) where u1

(() 2:: 0. 
Observe first that the variational problem (3.3) always has the extremal cp = 0 leading 

to the laminar velocity profile. However, for sufficiently large R there is another extremal 
describing the turbulent flow. For the developed turbulent flow (large R) we assume that 

( E (-R, -l), 
(E(-l , l), 

( E (l,R), 

( E (-R,-l), 
(E(-l,l), 

( E (l , R), 

with Um = const and l being the unknown length which must be subject to variation. This 
assumption means that the flow in the middle of the channel can be regarded as the flow 
of ideal fluid. Then the half-dissipation becornes 

D J-l [ 1 12 ( ) 1 a 1 1 12] ;·O 1 12 2 = 2u1 + F cp1 u1 - R2/5 u1 - 2'P1 d( - 2'Pm d( 
-R - l 

J- l 1 'U l 
- -u1(()d(- ~. 

- RR R 

(3.4) 

The standard calculus of variation leads to the differential equations 

d ( I 1 
- d( u + F( cp)) - R = 0, 

(3.5) 
F 1 

( cp )u1 + cp" = 0, 

for ( E (-R, -l) and 
cp" = 0, (3.6) 

for ( E (-l, 0). The boundary conditions read 

u(-R) = cp(-R) = 0, cp(O) = 0, 

u
1(-l) = 0, cp1(-l + 0) = cp1(-l - 0), 

a l 
F( cp ( - l)) - R2/ 5 = R. 

(3.7) 

Two first boundary conditions in (3.7)2 mean the continuity of the vorticity densities. The 
last condition is obtained by varying ·um, where the influence of the third term in (3.3) 
becomes noticeable for extremals with the assumed behavior. 
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Equation (3.5)1 and the last boundary condition of (3. 7) imply that 

I ( Cl: 
u + F( 'P) = - R + R2/5. (3 .8) 

Expressing u' through F( cp) and substituting into the second equation of (3.5) we obtain 
the following governing equation for cp in ( -R, -l) 

cp" - F'(cp)(~ - R~/5 + F(cp)) = 0. (3.9) 

This equation is subject to the boundary conditions 

cp(-R) = 0, 
l a: 

F( cp( -l)) = R + R2/5' cp' ( -l) = - cp( -l) 
l . (3.10) 

The last boundary condition is the direct consequence of the equation (3.6), the boundary 
condition c.p(O) = 0, and the continuity of cp'. 

Since F( cp) does not have the explicit analytical form, it is convenient to choose the 
wall coordinate~(() as unknown.function in accordance to 

c.p(() = 'Poo(~(()), F(cp) = f(O, 

cp' = (1 - f(O)(, cp" = (1 - f(~))C - f'(~)(2 . 

In terms of the wall coordinate the governing equation becomes 

(1 - f(O)C - f'(~)(2 - f'(O ( .f_ - __::__ + f(O) = o. 
1 - f(O R R2/5 

This equation is subject to the boundary conditions 

~(-R) = 0, -1 l a: 
~(-l) = f (R + R2/5), ((-l) = 

'PooU- 1 (~ +Yim)) 

l ( 1 - h - R~/ 5 ) 

(3.11) 

(3.12) 

(3.13) 

where f - 1 is the inverse function off. Equation (3.12) can also be directly derived from 
the variational principle (3.4). 

The shooting method can be applied to find the solution of the two-point boundary­
value problem (3.12), (3.13). Knowing u'(() we can find the velocity profile u(() and then 
the average velocity u [10]. Fig. 5 presents the graph of d = u - InKR versus the Reynolds 
number R. For R = 1000 the theory predicts d = 3.09 which is close to the empirical 
value 3.3 taken from [11]. · 

4. PIPE FLOW 

For the laminar pipe flow driven by the constant pressure gradient (3-D Poiseuille 
flow) the velocity u(r) is the minimizer of the dissipation functional 

V = -riu'2 2nrdr + p' u( r) 2nrdr, la 1 la 
0 2 0 

under the constraint 

u(a) = 0. 

Here the polar coordinate r is used , with a the radius of the circular cross-section, and p' is 
the pressure gradient which is constant over the cross-section. It is easy to show that the 
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I 

velocity profile is parabolic: u(r) = _l?___(a2 - r 2 ) , which leads to the following resistance 
477 

law 
-p'a 64 

cf = -1-- = R2 ' 
-QfL2 
2 

where R = {!1lpa/77 , 1lp = J-p'a/2(!. 
As the pressure gradient becomes large, a flow induced by new vortices occurs. \Ve 

let u( r) denote as before the statistically average velocity of turbulent flow and lf( r) the 
statistically average velocity of flow generated by new vortices. Similar to the previous 
cases, the only firmly established equation is the balance of mean momentum 

ld(( I 1, I --d rryu +-paF)) = p , 
T T 2 

where ~p' aF corresponds to the Reynolds stress. Since F is unknown, one needs to 
close this equation. Adopting the same hypotheses as before, we formulate the following 
variational principle: among all admissible velocity fields u( r) and lf( r) satisfying t he 
boundary conditions 

u(a) = 0, lf (a) = 0, 

the pipe flow is described by those for which the dissipation functional 

fa 1 12 p' a I p' a Cl: I 1 I I fa 
V =lo (-277u - 2F(lf)lu I+ 2 R 215 lu I- 27](f

2
)27rrdr+p lo u(r)27rrdr 

has an extremum, where, as before, o: = 1.442. 
I3y changing the variables and unknown functions 

Rr 
( =-, 

a 

1l 
'U~ -, 

'Up 

VR 
v ~----

7rp'a2up 

( 4.1) 

(4.2) 
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we transform the dissipation functional to 

v = (-'Ul2 + F(cp)l'Ull - ~l'Ull - -cpl2) (d( - -'U(() (d(. 1R 1 1 j·H 2 

0 2 R 2/ 5 2 0 R 
(4.3) 

The variational problem ( 4.3) always has the extremal cp = 0 leading to the laminar 
velocity profile. However, for sufficiently large R there is another extremal describing the 
turbulent flow. For the developed turbulent flow (large R) we assume that 

for ( E (0, l) , 
for ( E (l, R), ' 

for ( E (0, l) , 

for ( E (l, R), 

with Um = const and l being the unknown length which must be subject to variation. 
Thus, the flow in the middle of the pipe can be regarded as the flow of ideal fluid. Then 

j ·l 1 ;·R 1 1 12 12 I ex I 12 
V = - ?'Pm(d(+ [91L1 - F(cp1)u1 + R215 ui - ? 'P t ](d( 

0 ~ l ~ ~ 

'Ll l
2 ;·R ') 1n ...., 

-- - - U1 (() (d(. 
R I R 

( 4.4) 

By the similar method we derive the differential equations 

( cp'()I = 0, (4.5) 

for ( E (0, l) and 

d I ex 2( 
-d([(u -F(cp)+ R2/5)(]-R=O, 

(4.6) 
-F1 

( cp )u1 
( + ( cp1 

()
1 

= 0, 

for ( E (l , R). The boundary conditions read 

cp(O) = 0, u(R) = cp(R) = 0, 

u1 (l) = 0, cp1(l + 0) = cp1(l - 0), 
ex l 

F( cp ( l)) - R2 /5 = R. 
(4.7) 

The last condition is obtained by varying Um. 

Equation (4.6) 1 and the last boundary condition of (4.7) imply that 

I ( ) ex ( 
u - F cp + R2/5 = - R. (4.8) 

Expressing u 1 through F( c.p) and substituting into the second equation of (4 .6 ) we obtain 
the following governing equation for c.p in (l, R ) 

(c.p1
()

1 
- F 1('P)( F (c.p) - 5_ - ~ )( = 0. 

R R2/5 
(4.9) 

This equation is subject to the boundary condi t ions 

l ex 
F (cp(l)) = R + R2! 5 , cp

1
(l ) = 0, cp( R ) = 0. (4 .10) 

The second boundary condition is the direct consequence of the equation ( 4.5 ), the bound­
ary condi t ion c.p(O) = 0, and the conti1mity of :p'. 
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In terms of the wall coordinate the governing equation becomes 

(1 - J(O)('( - J'(~)(2( + (1 - 1(0)( - f'(O (J(O - 5_ - ~ )( = o. 
1 - J(O · R R2/5 

This equation is subject to the boundary conditions 

_ 1 l a 
~(l) = f (R + R215 ) , ((l) = 0, ~(R) = 0. 
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Fig. 6. Difference d = u - In R/ r;, versus Reynolds number R 
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(4.11) 

(4 .12) 

By using t he shooting method one can find the velocity profi le ll(() and then the 
average velocity u [10]. In Fig. 6 the plot of d = u - ln R/ /'\, versus the Reynolds number 
R is shown. For the Reynolds number R = 10000 the numerical calculations yield 'i1 = 
24.4576 and d = 1.9934. This is in excellent agreement with the empi rical value 1.96. 
Introducing the skin-fr ict ion coefficient CJ, the fri ct ion factor>. and the Reynolds number 
Re in accordance to 

=> 2Q·ua 
he =--

T/ 
we derive from here t he well-known Prnndtl's friction law for turbulent flows 

1 
:\ = 2 log10 (Rev0.') - 0.8 . 

5. CONCLUSIONS 

The unified theory of channel and pipe flows proposed in this paper is based on the 
following hypotheses: 

• The Reynolds stress depends on the mean velocity of the flow generated by uew 
vortices 

• The g;overniug equations for the mean velocities of the turbulent flmY and of the 
flow generated by new vortices can be obtained from a vnriatio1wl principle 

• The asymptotic law of wall holds true for large Reynolds numbers. 



396 Khanh Chau Le 

It is shown that this theory leads to the satisfactory description of channel and pipe flows 
for both laminar and turbulent regimes. For large Reynolds numbers the theory predicts 
the velocity profile and the friction factors with reasonable accuracy as compared with 
experimental data. 
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DONG ROI TRONG KENH VA ONG 

Nguyen ly bien phan doi v6i cac dong chat 16ng nh&t khong nen dugc trong kenh 
va ong dugc de xuat. Doi v&i nhung so Reynolds thap nguyen ly bien phan rut gQn ve 
nguyen ly hao tan qrc tieu. Doi v&i cac so Reynolds cao c6 the tfnh profile v~n toe va h~ 
so ma sat tmmg (mg v&i d9 chfnh xac kha hqp ly. 


