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ON THE TRANSITION FROM REGULAR TO
CHAOTIC BEHAVIORS IN THE TWO DEGREES OF
FREEDOM DYNAMICAL SYSTEM

NGUYEN VAN KHANG AND NGUYEN HOANG DUONG
Hanot University of Technology

Abstract. The main objective of the present paper is to study the transition from peri-
odic regular motion to chaos in a two degrees of freedom dynamical system by changing
control parameters. The nonlinear differential equations governing motion of the system
are derived from the Lagrange equations. By use of the Poincare map, the dynamical
behavior is identified based on numerical solutions of the ordinary differential equations.
The Lyapunov exponent and the frequency spectrum are calculated to identify chaos.
From numerical simulations, it is indicated that the periodic, quasi-periodic and chaotic
motions occur in the considered system.

1. INTRODUCTION
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Fig. 1. Mechanical model

In recent years, the study of chaotic behaviors and strange attractors in deterministic
nonlinear systems has undoubtedly developed into one of the main topics in the study of
nonlinear phenomena in dynamical systems performed by engincers and applied scientists
[1-10]. Many important and interesting applications are found in nonlincar oscillations,
which does not come as a surprise since nowadays the classical methods of solution for
such nonlinear problems are well known, and also since the new and rather abstract
mathematical tools arise in a rather natural way in nonlinear oscillations. Much interest
has been devoted to the study of chaos in nonlinear oscillators of the Duffing type [1, 7,
8], Mathieu type [1, 12, 13] and Van der Pol type [7, 10, 15, 16].

Let us consider here the two-degree-of-freedom dynamical system (Fig. 1). It is a
system with connects the Duffing and the linear oscillators.
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This dynamical system is described by Lagrange’s equations
miZy + (b1 4 bg)il + (611 + c12)zl + Cglitili — body — 1929 + 631(5172 — 1‘1)3 = Bj COS(Qt)

m,g.’i‘g . bg:'L‘l — C19¥1 + bgi‘z + c129 + 032(1‘2 = 5171)3 = BQ (f()S(Qt)

where By and B are the amplitudes of the excitation forces, and €2 its frequency. Changing
a control parameter B; (i=1, 2) it is possible to obtain the transition from periodic motion
to chaos. In reference [17] J. Szopa studied the influence of chaotic vibrations of the
Duffing part of this system on the linear part in the case B3y # 0, By = 0. In this paper
the numerical simulation is used to study the transition from regular periodic motion to
chaotic behaviors in the two degrees of freedom Duffing system. For the numerical analysis
it has been assumed that m; =mg =1kg, ¢;1 =0, ¢c31 =1 N/1113, ci2 = 1 N/m, eg2 = 0,
Q = 1rad/s, by = by = 0.05 Ns/m.

2. TRANSITION FROM PERIODIC MOTION TO CHAOS BY
CHANGING THE CONTROL FORCE B, , (By; = 0)

The characteristics of chaos which were used in the investigations are the follow-
ing: non-regular displacement, non-existence of limit cycles in phase plane, shape of the
Poincare map, wide frequency spectrum.

2.1. Control force By =12, By =0

The Figs. 2a-2h show the regular periodic motion for B; = 12. The Figs. 2a and
2e present the displacement of x; and x9. The trajectories in phase plane are shown in
Figs. 2b and 2f. The Poincare maps are presented in Figs. 2c¢ and 2g. Two points in
Poincare maps of nonautonomous systems indicate that the period of oscillations is equal
to twice as the period of the excitation force Tp = 27 /2[4, 9]. Figs. 2d and 2h present
the frequency spectrum. As it can be seen from the largest Lyapunov exponents map in
Fig. 2i, the largest Lyapunov exponents for this case are always negative.
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Fig. 2a. Displacement of z; Fig. 2b. Phase orbit
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Fig. 2i. Lagest Lyapunov exponent

2.2. Control force By =12.2, By =0
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The Figs. 3a-3h show the characteristics of chaos for By = 12.2. The Figs. 3a and 3e
present the displacement of z; and x5. The trajectories in phase plane are shown in Figs.
3b and 3f. The Poincare maps are presented in Figs. 3c and 3g. Figs. 3d and 3h present
the frequency spectrum. As it can be seen from the largest Lyapunov exponents map in
Fig. 3i, the largest Lyapunov exponent for this case are always positive.

2.3. Control force B; =18, By =0
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Fig. 4i. Lagest Lyapunov exponent

The Figs. 4a-4h show the characteristics of chaos for B; = 19. The Figs. 4a and 4e
present the displacement of x; and x3. The trajectories in phase plane are shown in Figs.
4b and 4f. The Poincare maps are presented in Figs. 4c and 4g. Figs. 4d and 4h present
the frequency spectrum. As it can be seen from the largest Lyapunov exponent map in
Fig. 4i, the largest Lyapunov exponents for this case are always positive.

2.4. Control force B; =19, B, =0

The Figs. 5a-5h show the characteristics of chaos for By = 19. The Figs. ba and 5e
present the displacement of z; and x5. The trajectories in phase plane are shown in Figs.
5b and 5f. The Poincare maps are presented in Figs. 5¢ and 5g. Figs. 5d and 5h present
the frequency spectrum. As it can be seen from the largest Lyapunov exponent map in
Fig. 5i, the largest Lyapunov exponents for this case are always positive.
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Fig. 5i. Lagest Lyapunov exponent

2.5. Control force B; =20, By =0
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Fig. 6i. Lagest Lyapunov exponent

The Figs. 6a-6h show the characteristics of chaos for B} = 20. The Figs. 6a and Ge
present the displacement of 2; and x5. The trajectories in phase plane are shown in Figs.
6b and 6f. The Poincare maps are presented in Figs. 6¢ and 6g. Figs. 6d and Gh present
the frequency spectrum. As it can be seen from the largest Lyapunov exponent map in
Fig. 6i, the largest Lyapunov exponents for this case are always positive.

3. TRANSITION FROM PERIODIC MOTION TO CHAOS BY
CHANGING THE CONTROL FORCES B, AND B,

3.1. Control force B =6, By =5
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Fig. 7a. Displacement of z; Fig. 7b. Phase orbit
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Fig. 7i. Lagest Lyapunov Exponent

The Figs. 7a-7Th show the regular periodic motion for B) = 6, By = 5. The Figs. 7a
and 7e present the displacement of 21 and z9. The trajectories in phase plane are shown
in Figs. 7b and 7f. The Poincare maps are presented in Figs. 7c and 7g. One point in
Poincare maps of nonautonomous systems means that the period of oscillations is equal
to a period of the excitation force Tp = 27 /. Figs. 7d and Th present the frequency
spectrum. As it can be seen from the largest Lyapunov exponent map in Fig. 7i, the
largest Lyapunov exponents for this case are always negative

3.2. Control force B =6, By =2

The Figs. 8a-8h show the characteristics of chaos for By = 6, By = 2. The Figs. 8a
and 8e present the displacement of x; and zs. The trajectories in phase plane are shown
in Figs. 8b and 8f. The Poincare maps are presented in Figs. 8c and 8g. Figs. 8d and 8h
present the frequency spectrum. As it can be seen from the largest Lyapunov exponent
map in Fig. 8i, the largest Lyapunov exponents for this case are always positive.
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3.3. Control force B; =122, B, =5

The Figs. 9a-9h show the regular periodic motion for B; = 6, By = 5. The Figs. 9a
and 9e present the displacement of x; and x5. The trajectories in phase plane are shown
in Figs. 9b and 9f. The Poincare maps are presented in Figs. 9c¢ and 9g. Figs. 9d and 9h
present the frequency spectrum. As it can be seen from the largest Lyapunov exponent
map in Fig. 9i, the largest Lyapunov exponents for this case are always negative.
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The Figs. 10a-10h show the characteristics of chaos for By = 12.2, By = 2. The Figs.
10a and 10e present the displacement of x; and x5. The trajectories in phase plane are
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Fig. 10i. Lagest Lyapunov Exponents

shown in Figs. 10b and 10f. The Poincare maps are presented in Figs. 10c¢ and 10g.
Figs. 10d and 10h present the frequency spectrum. As it can be seen from the largest
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Lyapunov exponent map in Fig. 10i, the largest Lyapunov exponents for this case are
always positive.

4. BIFURCATION DIAGRAMS

The bifurcation diagram is a modern technique used to analyze nonlinear systems.
In a bifurcation diagram, dynamical behaviors may be viewed globally over a range of
parameter values and it is possible to compare simultancously different types of motions.
Thus the bifurcation diagram provides a summary of essential dynamics and is therefore
a useful tool for acquiring the overview.

Based on the numerical solution of motion equations, the Poincare map can be con-
structed by sampling the displacement and the velocity of the mass mwith a time 27r/Q.
To show bifurcation diagrams in a plane, the Poincare maps have to be projected into the
parameter B; axis. The bifurcation diagrams are presented by varying respectively the
amplitude B; (i=1, 2) of the control forces for all other parameters fixed.

15 T T T T

Fig. 11. Bifurcation diagram with By = 0; B; = [0.25]

The Fig. 11 is the bifurcation diagram via the changing amplitudes B; of the control
force By cosQt. The Fig. 12 presents the bifurcation diagram via the changing amplitude
By of the control force By cosQt. In all cases, there have been obtained many interesting
phenomena. For example in the neighborhood of chaos there exist regular and quasi-
periodic solutions. Several values are given in the table 1 [17, 18]. In the first column
are the values of B; (B2 = 0) and in the second the period multiplied by Tp = 27 /€.
Numerical calculations are made by the assumption that all initial conditions are zero.
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Table 1
By period*Ty By period*Ty
12.0 2 17.5 3
12.1 quasi-periodic 17.6-20.3 chaos
12.2 = 124 chaos 20.5 quasi-periodic
12.5 725 20.7 7
12.6 5 21.0 1

Based on the numerical solution of motion equations one can obtain the following

Table 2 [18]

Fig. 12. Bifurcation diagram with By = 12; B> = [0, 12]

Table 2
6 12 12.2 18
BZ
0 periodic periodic chaotic chaotic
2 chaotic chaotic chaotic chaotic
5 periodic periodic periodic periodic
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5. CONCLUSIONS

In this paper, the authors investigate the transition from regular periodic motion to
chaotic behaviors in the two degrees of freedom Duffing system by changing amplitudes of
the harmonic excitation forces. The Lagrange equations are applied to develop the differen-
tial equations of motion. Using the Software MATLAB the nonlinear dynamical behaviors
of system are numerically investigated by means of the displacement, the Poincare map,
the phase portrait, the frequency spectrum and the largest Lyapunov exponent. Bifur-
cation diagrams are presented to show the displacement and velocity projections of the
Poincare maps changing respectively with the amplitudes of the excitation forces.
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VE SU CHUYEN DOI TU TINH CHAT CHUYEN PONG CHINH QUI SANG

TINH CHAT CHUYEN DONG HON LOAN TRONG
HE DONG LUC HAI BAC TU DO

Chil dé chinh clia bai bdo nay la nghién ciru sw chuyén déi tir chuyén dong chinh qui tuin
hoan sang chuyén dong hon loan trong mét hé dong lic hai bac tw do bang cach thay déi cic tham
s6 dieu khién. Ap dung phurong trinh Lagrange loai hai thiét lap cdc phwong trinh vi phan chuyén
dong phi tuyén cta hé. Dua trén cdch gidi bang s6 cdc phwong trinh vi phan thuong, ta cé thé
x4c dinh dwoc s6 mi Liapunov, phd tan s, ban do Poincare va do thi chuyén dong theo thoi gian.
T d6 dé dang nhan biét chuyén dong hon loan hay chinh qui (tuan hoan hodc hiau tuan hoan).



