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Abstract. This paper presents an efficient algorithm for both limit and shakedown
analysis of 3-D steel frames by kinematical method using linear programming technique.
Several features in the application of lincar programming for rigid-plastic analysis of
three-dimensional steel frames are discussed, as: change of the variables, automatic
choice of the initial basic matrix for the simplex algorithm, direct calculation of the
dual variables by primal-dual technique. Some numerical examples are presented to
demonstrate the robustness, efficiency of the proposed technique and computer prograni.
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1. INTRODUCTION

The theoretical development of rigid-plastic analysis by linear programming (LP) tech-
nique is extensively described in numerous works [1-5]. In this wide subject, we restrict
to mention some practical aspects in a computer program, namely CEPAQO. This pack-
age had been early developed in the Department of Structural Mechanics and Stability of
Constructions of the University of Liege by Nguyen-Dang Hung et al. in the 1980’s [6-10].
The CEPAO is a unified package devoted to automatically solve the following problems
happened for 2-D frames: Elastic analysis, limit rigid-plastic analysis with proportional
loadings; step by step elastic-plastic analysis; shakedown analysis with variable repeated
loadings; optimal plastic design with fixed loading; optimal plastic design with choice
of discrete profiles and stability checks; shakedown plastic design with variable repeated
loadings; shakedown plastic design with updating of elastic response in terms of the plastic
capacity.

With the CEPAO, efficient choice between statical and kinematical formulations is
realised leading to a minimum number of variables and a considerable reduction the di-
mension of every procedure. The basic matrix of LP algorithm is implemented under the
form of a reduced sequential vector, which is modified during each iteration. An automatic
procedure is proposed to build up the common characteristic matrices of elastic-plastic or
rigid-plastic calculation, particularly the matrix of the independent equilibrium equations.
Application of duality aspects in the linear programming technique allows direct calcula-
tion of dual variables and avoids expensive re-analysis of every problem.

In arecent work [11], the semi-rigid behaviour of connections of planar steel frameworks
is implemented in the CEPAO. This paper presents an extension of this general software
to the case of space frame for the limit and shakedown analysis problems.
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2. ASSUMPTIONS AND MODELLING PLASTIC HINGES

The following assumptions have been made:

- Loading is quasi-static and service load domain is specified by lincar constraints;

- The torsional stiffness and the effect of the shear forces are negligible;

- The material behaviour is rigid - perfectly plastic;

- Plastic hinges are located at critical sections.
Modelling plastic hinges

Since the effect of the both shear forces and torsional moments are ignored, the con-
dition of plastic admissibility at the critical sections becomes ®(N, M,, M.) < 0, with N
is the normal force and M, M, are respectively bending moments about to y and z axes.
The plastic hinge modelling is described by the choice of net displacement (relative) - force
relationship at the critical sections. In present work, the normality rule is adopted:

A oP/ON
O, p=A4q 0P/OM, >,
0. OP/OM,
or, symbolically:
e = XNL, (2.1)

where \! is the plastic deformation magnitude; €' is the vector of longitudinal displacement
and two rotations of it" section; N}: is a gradient vector of the yield surface .

The application of the LP techniques requires that the nonlinear yield surfaces must
be linearized. In civil engineering practices, for bisymmetrical wide-flange shapes, several
Standards replace the curvilinear yield surface by a polyhedron sixteen- facet:
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where: Mpy, Mp, are the plastic moment capacity with respect to y and z axis, Np is the
squash load, 0 < a9 < 1, a,...,as are the dimensionless coefficients. The Eqs. (2.2a),
(2.2b) may also be written:

N
ai [N|+ag |My|+ a3 |M.| =Sy for |N1 > ao; (a)
; (2.3)
ay INI + as |]\fy| + ag |1\”[Z| =Sy for I]\, l < q; (b)
])

With Sy is a referential value, and ay, ..., ag are the non-zero coefficients.
At the it critical section, the plastic admissibility defined by Eqs. (2.3a), (2.3b) has
following form:

Yis* s, (2.4)
where matrix Y* contains the coefficients ay, . . ., ag; s¢ collects the vector of internal forces;
the column matrix sj) contains the corresponding terms S.

According to the definitions of the matrices N¢, Y, we can see that:

N =Y". (2.5)
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The detailed form of matrix N¢ is below-mentioned by Eq. (3.8).

3. APPLICATION OF LP

A systematic treatment of the application of LP in rigid-plastic analysis can be found
in [4]. In the present work, we restrict to describe some practical aspects of the CEPAO
package applied for the case of 3-D steel frames.

3.1. General formulation

In the CEPAOQO, the canonical formulation of the LP is considered:
Min 7 = ch‘Wx =5 (3.1)

where 7 is the objective function; x, ¢, b are respectively the vector of variables, of costs
and of second member. W is called the matrix of constraint. In the sake of simplicity, the
objective function has a state variable, and the matrix formulation is arranged such that
the basic matrix of the initial solution is appeared clearly as follows:

IR I X1
=t 1 =6 10 qQ ¢
{wl owg} " “{b}' (3:2)
X2
The basic matrix of initial solution is:

1 —el
XU:{O V&;}

Eq. (3.2) can be then written under a general form:
W =b", (3.3)

The matrices W*, x* b* and X, for both limit and shakedown analysis problems will be
accurately calculated in the following sections.

3.2. Limit analysis by kinematical method

Kinematical approach

A kinematically admissible state is defined by a collapse mechanism that satisfies the
condition of compatibility. It leads to a positive external power supplied by the reference
loading. Based on the upper bound theorem of limit analysis, the kinematical formulation
of limit analysis can be stated as a LP problem:

B NcA-—Bd=0
Ming=siX | fTd=¢ (3.4)
A=0
The safety factor will be obtained by:
ft = @/

In Eq. (3.4), A is the vector of the plastic deformation magnitude; B is the kinematic ma-
trix defined in Appendix A; d, f are respectively the vector of independent displacements
and the vector of external load.

Further reduction of the kinematical approach
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In the kinematical method, the unknowns are the plastic deformation magnitude,
lambda, and the independent displacement, d (negative or positive). In LP procedure we
need non-negative variables so that we adopt the change of the variables as in following:

d=d+dy sothat d >0.

. The way to fix the value of dp, which depends on the real structure, such that d’ are
always non-negative is explained with details in the reference [12]. Now, problem of Eq.
(3.4) becomes:
NA— Bdl = —Bd()
Min ¢ =sIA | fTd' =¢+£Tdy . (3.5)
A, d >0
Therefore, the vector of variables, matrix of constraint, vector of sccond member
corresponding to the problem of Eq. (3.3) for limit analysis are given below:
=z xT )=z g & n)

b"=[0 bT]=[0 -Bdy ¢&+£7d]

1 of sl 0
Wr=|0 =B Ng 0
o f7 o’ 1

where 7 is an artificial variable which must be taken out of the basic vector in the simplex
process; £ is a constant chosen in relation with the value of dy [12].

The use of simplex technique we need to find an tnitial admissible solution such
that the initial value of any variable (except the objective function) must be non-negative.
To satisfy this requirement, it appears that the following arrangement leads to good be-
haviours of the automatic calculation:

The lincarized condition of plastic admissibility for the " section (Eq. (2.4)) may be
cxpanded as follows:

N>O N <0
9) asy Ly a3y
| D M s @y | (s M g
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Qo an . Q6) a2
My My

Fig. 1. Projection of the yield surface on the plan M, OM.
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The Fig. 1 describes the projection of 16 planar facets of the polyhedral stress-resultant
yield surface corresponding to the 16 inequalities numbered on the Eq. (3.6).
According to Eqgs. (2.4), (2.5), we sce that Eq. (3.6) can be written under symbolic

formulation:

Put:

N’C{s < sp.
ay A
i i
s @
{4 4

(3.7)

7
G
T
g
1
as

Let us note that: NZC is always non-singular because aﬁ, ag, aé are certainly positive.
Then, matrix N{ in Eq. (3.7) may be decomposed into three sub-matrices:

iT _ =iT
sy =[50
AiT _ [iiT
where:
X’iT

-
o=

"

[Ne —Ng N, (3.8)
with Ny, is the rest of N& after deducting Nlc and —NE
The decomposition of matrix N 1C leads then to the following form:

s s l=[S o Sl

s =T
A+3 A ]7

=\ A

’\+3 = P\Z /\é

St

X =[N

Let now S' be a diagonal matrix, such that:

St = diag [1 x sign of ((
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with:
T
b = [bsii—1)+1  bsi-1)+2 b3i-1)+3;
Let E be a unity matrix of dimension 3 x 3.
And consider now the new plastic deformation magnitude distribution:

s A
fT-g" g 35,

in which:
A = 0.5(E + SN + 0.5(E — SHA 3;
Xi3 = 0.5(E — SHA" + 0.5(E + S, 3.

With mentioned arrangement, and if the case of initial basis of variables is
1T 2T =T

A A A ], the initial basic matrix may be determined as follows:
(1 —slT 2T .. T o]
0 N};S1 0 M 0
6 6 N8 ... 0 0
Xo = : > 1 . .
0 0 0 e NEE% 0
a & o .. 0 1 |

in which, ng is the number of critical sections.
Easily, we may demonstrate that the initial solution:

xp = X;'b

is certainly non-negative.

Direct calculation of the internal force distribution

The strain rate at critical sections is chosen as variables in kinematical approach.
The collapse factor and mechanism are given as output. To obtain the internal force
distribution while avoiding the static approach, the dual properties of LP are used. The
physical significance of the dual variables may be established as follows:

The canonical dual from of the LP problem of equation (3.1) is:

T Wiy +h=c
1 T ¥ Q¢
Max (b'y+0"h) h>0 , (3.9)
in Eq. (3.9),y" =[s" p],
and h are the non-negative slack variables:
W =07 n'7 n2T .. w7 with:

T T T
h'* =[h'" hly hl.
It may be seen from the equality (3.9) that the internal forces are related to the slack

variables h:
. s I
st = (NICT) (é}) " 111). (3.10)
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It can be shown that the slack variables h are identified exactly as the reduced costs
cof the primal problem (3.3):

h=g= (Xo“pl(l, :)) w*

where Xaé(l, :) is the first row of the inverses basic matrix at optimal solution.

The reduced costs €© necessary for the convergence test of the simplex algorithm are
variable in the output of the primal calculation. The automatic computation by (3.10) of
the internal forces distribution is independent of the type of collapse: partial, complete or
over-complete.

3.3. Shakedown analysis by kinematical method

Reduced kinematic approach

Based on the upper bound theorem of shakedown analysis, the safely factor can be
determined by mihimizing the kinematically admissible multiplier. Since the service load
domain is specified by linear constraints, the kinematic approach leads to a LP problem:

NA-Bd=0
Min ¢=siA| sENcA=¢ (3.11)
A>0

where sg is the envelope of the elastic responses of the considered loading domain.
The safety factor will be obtained by:

fs+ = B/&.
As in the limit analysis, by an apbropriate choice of dy such that:
d=d4dg20,
and by using the new plastic deformation magnitude distribution, the vector of variables,

matrix of constraints and vector of second member corresponding to the problem (3.3) for
shakedown analysis have the following form:

x =g & X @l
b T =0 -Bdy ¢

o’ —sd 0

W* = -B N¢ 0

S =
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With initial basic matrix:

(1 —slT -2T - 0]
0 NS 0 .. 0 0
0 0 NZ8* i B 0
Xo=|. g : v
0 0 0 co. Npgm 0
|0 ST (Ngst) 2T (N2s?) ... sp” (Nys™) 1

T 2T wns' T
And the initial basic variables: [)\1 7,0 .

The problems of equations (3.5) and (3.11) are similar except for the choice of the
initial admissible point in the permissible domain and the shakedown analysis requires
preliminary calculation of elastic responses.

Direct calculation of the residual internal force distribution
Again the dual form of equation (3.11) is written now similarly to equation (3.9) with:

o

¥’ ="

us—: T =[7 n'T n2T  peT)
where p is the residual internal force vector, hil = [fliT ﬁﬂ; F]

From Eq. (3.9), the residual internal forces are related to the slack variables h as the
following relation:

: .y -1 ; - =
o= (NT) (55 - uoNbse - h).

As h is identified to be the reduced costs of the primal problem (3.11), the distribution
of residual internal force is directly obtained without performing a second static approach.

4. NUMERICAL EXAMPLES AND DISCUSSIONS

The present of two following examples aim at the both of the comparison the CEPAO’
results with those of some other authors, and the comparison the results analysed by
different models in CEPAQ. Therefore, we present not only the results given by limit and
shakedown analysis but also those calculated by step-by-step method (the content not
present in this paper).

In those examples, with the elastic-plastic analysis by hinge-by-hinge method, the
plastic interaction function proposed by Orbison [13] for compact wide-flange sections is
introduced in the CEPAO:

®=1.15n2 + m2 + mz + 3.67p°m?2 + 3p6m§ + 4.65m§m§ -1=0,

in which n = N/N,, is ratio of the axial force to the squash load, m, = M, /M, and m. =
M. /M, are the ratios of the minor-axis and major-axis moments to the corresponding
plastic moments, respectively. This yield surface is already used in several references
[14-16] that we consult to compare with our results.

In the direct analysis by LP, the plastic strength of cross sections using in the AISC
[17] is installed in the CEPAO, with the value of aj,...,as and a in the Egs. (2.3a),
(23b) are: a1 = SO/Np; as = SSo/gj\/Iyp, ag = 850/9]\[Zp, ag = 50/2]\‘7,,, as = SO/A[y])'
aeg = So/sz. o=0.2.
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Ezample a —Siz story space frame: Fig.2 shown Orbinson’s six-story space frame. The
yield strength of all members is 250 MPa and Young'’modulus is 206.850 MPa. Uniform
floor pressure of 4.83; kN/m?; win loads are simulated by point loads of 26.73, kN in the
Y -direction at every beam-column joint.
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Fig. 2. Example a-Six story space frame (a-perspective view, b-plan view)

Ezxample b —Twenty story space frame: Twenty-story space frame with dimensions and
properties shown in Fig. 3. The yield strength of all members is 344.8 MPa and Young’modulus
is 200 MPa. Uniform floor pressure of 4.80; kN/mQ; win loads = 0.9635 kN/mQ7 acting in
the Y direction.

Concerning the loading domain (for two examples), two cases are considered for shake-
down analysis: a) 0 < 1 < 1,0< B <landb)0< f; <1, -1 < f < 1. For fixed
or proportional loading, we obviously must have: 8; = (32 = 1. The uniformly distributed
loads are lumped at the joints of frames.

The load ratios corresponding to the elastic-plastic second order given by CEPAO
compare well with those of some authors (Table 1). The results analysed by CEPAO with
different methods shown on the table 2, Fig.4, and Fig. 5 point out:

- An expectable coincidence of results calculated by limit analysis and elastic-plastic
analysis first order, it allow to deduce: the good convergence between the dual methods
in the CEPAO (kinematic and static method); and the good correlation between the
Orbison’yeild surface and this in AISC-LRFD.

- In the case of symmetric horizontal loading (seismic load or win load), the load
multipliers determined by shakedown analysis are the smallest (alternating plastic occurs).

5. CONCLUSIONS

Though the performed work, we can withdraw the following conclusions:
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Fig. 8. Example b- Twenty story space frame (a- perspective view; b- plan view)
Table 1. Comparison of results (elastic-plastic 2nd order)
Load multiplier
Author Model
Example a Example b
J. Y. R. Liew - 2000 [14] Plastic hinge 2.010 -
S. E. Kim -2001[15] Plastic hinge 2.066 -

C. G. Chiorean - 2005 [16]

Distributed plas-

2.124 (n=30)

1.062 (n=30)

ticity
C. G. Chiorean -2005 [16] | Distributed plas- | 1.998 (n1=300) | 1.005 (n=300)
ticity
Cuong Ngo-Huu - 2006 [18] | Fiber plastic hinge | 2.040 1.003
J. Y. R. Liew - 2001 [19] | Plastic hinge - 1.031
X. M. Jiang - 2002 [20] Fiber element - 1.000
CEPAO - 2007 Plastic hinge 2.038 1.024

- It appears in this paper that the simplex technique constitutes

the automatic rigid-plastic analysis of 3D steel frameworks.

- Without difficulty other alternative yield surfaces may be introduced in the CEPAO
as proposed in different current Standards (American Standard, European Standard, .. .).

- The present version of 3D-CEPAO is still an auto-controlled algorithm. Indeed, we
can verify easily the results by using resident equivalent procedure. For example, limit
analysis and analysis hinge -by-hinge method must lead to the same load factor, while
they are based on tow dual methods (kinematic method and static method).

- The present extensions suggest that with its automatic aspects, CEPAO may con-
stitute a source for future implementation and researches in civil engineering practices

today.

an efficient tool in
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Table 2. Results given by CEPAO with different analysis

Method Iéiz(fn;}glspher e b Limit state
Hinge-by-hinge, first order 2.489 1.689 Formation of a
mechanism
Hinge-by-hinge, second order | 2.033 1.024 Unstableness
Limit analysis 2.412 1.698 Formation of a
mechanism
Shakedown analysis, domain | 2.311 1.614 Incremental
load a plasticity
Shakedown analysis, domain | 1.670 0.987 Alternating
load b plasticity

In the near future, we hope to present the rigid-plastic design problems of 3-D steel
frames in the CEPAO.

Appendix A: Compatibility relation

Let e;f =[A4 Oya 0.4 Ap 0Oy 0.p]bethe vector of the axial displacement and
the net rotation of the member ends (Fig.Ala). Assemble for the frameworks (system of
the elements) we have the vector e.

Let A = [dy dy d3 dy4 ds dg d7 dg do dig di1 dig der] be the vector of the member
independent displacements in the global coordinate system O XY Z, like shown in Fig. Alb.
Assemble for the frameworks we obtain the vector d.

In the sense of limit analysis, we may think that: d;, ds, d3, d7, ds, dg are the displace-
ments corresponding to the deflection mechanisms (beam and sideways mechanisms); dy,
ds, dg, dio, d11, di2 are the displacements showing the joints mechanisms; d, displace-
ment in the longitudinal direction of the element, describes the bar mechanisms (the bar
translates along this axis). Since the torsional stiffness of the elements is negligible, we
must eliminate the degree of freedom that only provokes pure torsion in the bars.

The compatibility relation is defined as:

e = Bd,

where B namely the kinematic matrix that is determined by:

B =) A;TiLy. (A1)
k

In Eq. (A1), Ly, is a localization Boolean matrix of member k; and
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(a) - Example a

(b) - Example b

(From the left to the right: Elastic-plastic first order; Elastic-plastic second order; Limit

analysis, Shakedown analysis, load domain a; Shakedown analysis, load domain b.

The points on the Fig (a) are the plastic hinges)

at limit state given by CEPAO

Fig. 4. Deformation
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Hinge-by-hinge first order ~——— Hinge-by-hinge second order
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Fig. 5. Load-deflection results at point A (Fig.2, Fig.3) given by CEPAO

a - Relative displacements b - Member’independent

at critical sections displacements {global axis)

Fig. 6. Member k
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C11 C12 Ci13
CrL=| co1 coo co3 is the matrix of direction cosines of element k;
C31 (€32 C33
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0y = .
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PHAN TiCH THICH NGHI VA GIGI HAN TU DONG CUA
GIAN THEP 3-D

Bai bdo nay trinh by mot thuit todn hiéu qua cho cd phan tich thich nghi va gi¢i han cia
gidn thép 3-D bdi phwong phap dong hoc dung ky thuat quy hoach tuyén tinh. Nhicu tinh chat
trong rng dung cta quy hoach tuyén tinh d8i véi phan tich rdn-déo cia gian thép 3 chicu dwoc
thdo luan, nhw: sw d@6i bién, chon tu déng ma tran co s& ban dau d6i véi thuat todn don hinh,
tinh todn trwe ti€p cla cdc bién d6i ngdu bang phwong phdp ddi ngau co ban. Mot s6 vi du bing
s6 dwoc trinh bay dé minh hoa tinh téng quét va hiéu qua cia phuwong phap da de nghi va chwong
trinh tinh.



