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Abstract. The development of motor models, adequate for motor design and optimiza-
tion is still behind the technological state of the art. The reason for this lies in the fact
that a couple of years ago the main emphasis regarding ultrasonic motors was on finding
new principles or prototypes while today this has shifted towards optimization of known
working concepts and motors. A systematic motor optimization demands, among other
things, a detailed dynamical understanding of the motor which not too often exists for
ultrasonic motors in general.

The present study deals with modeling a wobbling disk piezoelectric motor. For
the model the analytic steady state solution is derived and stability of the solution is
investigated. The model and the analytic steady state solution yield a detailed insight in
essential dynamical phenomena by which the motor is driven. The model framework may
be a guideline providing understanding in the working principle, dynamics, weighting of
the parameters with respect to reliable, stable operation and optimization of such motors.
Keywords: wobbling disk, ultrasonic motor, nonlinear dynamics, stability.

1. INTRODUCTION

In this paper we derive a model for a wobbling disk ultrasonic motor (USM) considering
as example CANON’s bar-type motor (Fig. 1). This motor was the first mass produced

Fig. 1. Photograph of CANON’s bar-type ultrasonic motor U400
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USM in the world and has been used in Canon’s autofocus lenses for more than 16 years
now. The design of ultrasonic motors has so far mainly been an empirical process based
on experiments and testing. Design of the parts is done using commercial FE-packages
analyzing the vibrational behavior. However it is rather difficult to choose the parameters
for such models properly. Mathematical models such as the one presented in this paper
are useful to understand the dynamical phenomena and help to identify crucial parameters
that determine the behavior of the motor. Such models may help to optimize the motor
design in early development stages and avoid some testing. Today mathematical models
exist for traveling wave ultrasonic motors, [1,2]. A mathematical model for a wobbling
disk USM is introduced in this paper in which the stability analysis of the steady state
solution is chosen to be in the center of the studies. Stability investigations are essential
to justify the model and a certain robustness of the motor behavior.

Design and Working Principle

An exploded view of the motor is shown in Fig. 2. The major components are the
piezoceramic, the rotor and the stator.

rotor stator piezoceramic

Fig. 2. Exploded view of the motor

A detailed explanation of the design and working principle of CANON’s bar-type USM
can be found in [3] or [4]. In the piezoceramic two bending modes of the stator are excited.
The excitation frequency is chosen near the eigenfrequency of the stator corresponding to
the first bending mode. The two bending modes are mutually perpendicular, so that a
circulating bending mode is generated (Fig. 3). The contact point on the stator’s surface
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Fig. 3. Bending vibrations of the stator
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then describes a circular trajectory. The rotor is pressed onto the stator by a spring such
that there is frictional contact between the highest point of the stator and the rotor for
all times. The rotor is driven by the torque of the frictional contact force between rotor
and stator.

2. MODELING

Experiments and FE analysis have shown that the lower part of the stator is almost
at rest (cf. Fig. 3). Therefore, it is reasonable to model only the upper part of the stator
considering rotor and stator as rigid bodies. The stator is given the degrees of freedom
(DOF) as shown in Fig. 4. A tilting of the stator against the X — Y plane is restrained
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Fig. 4. Schematic drawing of the model

by a restoring torque proportional to the tilting angle. Restoring and damping torque can
be modeled as infinitesimal spring-damper elements distributed about the X — Y plane.
The excitation of the stator is modeled as a torque rotating in the X — Y plane with the
angular velocity 2.

The rotor can move freely in the Z-direction and rotate about the Z-axis as pictured
in Fig. 4. The rotor is pressed onto the stator by a spring. Movement in direction of the
Z-axis is damped proportional to the velocity. We assume that the spring is stiff enough
and that there is enough preload such that rotor and stator are in contact at all times. In
the following we assume that between rotor and stator no slip occurs.

Kinematics

The position of the stator can be fully described by the EULER angles ¢, 6, ¢ that are
defined in Fig. 5.

In the remainder the reference frames defined in Table 1 are frequently used.
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Fig. 5. Reference frames; EULER angles
Table 1. Reference frames
coordinates | name rotation
N | X, Y, Z inertial frame _
A | x,y1, 21 auxiliary frame | ¢ about Z
B | x2,y2, 29 auxiliary frame 0 about x;
K|zvy,z2 body-fixed frame | ¢ about 2z
Table 2. Forces and torques
forces/torques components in N
Fr | restoring force
Fp | damping force
F. | contact force Fs, By, B
Mp | restoring torques | Mg x, My, Mgz
Mp | damping torques | Mpx, Mpy, Mpz
Mg | excitation torque | Mpx, Mgy, Mgz
T | loading torque

Dynamics and equations of motion

The freebody diagram of the motor is depicted in Fig. 6. In the following we derive
the equations of motion for the rotor and stator. Forces and torques (listed in Table 2)
are modeled based on previous assumptions. The detailed mathematical expressions for

the force and torque vectors are explained as we go along.

Formulating the principle of linear momentum of the rigid body of the rotor in the

Z-direction yields:

MZ =F, - Fp— Fp with

Fr=Fy+cr”Z, Fp :(l[gZ,
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M nx + M X
X Mpx

Fig. 6. Freebody diagram

where M, cg, dr, Z and Z are the mass, the stiffness coefficient, the damping coefficient,
the axial coordinate and the time derivative of the coordinate in axial direction of the
rotor, respectively. Fy is the preload. From the balance of moment of momentum about
the Z-axis follows:

Irpr = FR* —T. (2.2)

R* = R cosf — H sinf is the contact radius, I and ¢ are the moment of inertia and
the angular coordinate about the inertial Z-axis of the rotor, respectively. The kinematic
restrictions for permanent contact between rotor and stator are formulated as

Z =F, & (2.3)

From the stick condition, i.e. that the velocities of the contact point on the rotor’s surface
and on the stator’s surface are equal, follows
- (@ X T¢) « €x,
S ALl N 2.4
or T (2.4)
where d is the angular velocity of the stator. Neglecting F., the vector of the contact force
F. expressed in frame A is

F. = —F&,, — Foé,,. (2.5)

The equations of motion for the rotor modeled with 2 DOF are given by (2.1) and (2.2)
can completely be expressed in terms of EULER angles. These equations can be solved for
the components of the contact force.
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In the body-fixed frame K the equations of motion of the stator simplify to EULER’s
2

= Lo Sttty ' B
= MO, (2.6)

Loy = {Lng
[yy‘l)y - (Izz - Imz)wzwl*
Loy, — (ls — Ty Yol

(2.7)

equations:
dt
where I;, Vi € {z,y, 2z} are the entries of the matrix of the moment of inertia and M () is

d 70) _

M© = My — Mg — Mp + 7 x F..

the torque vector given by
In the following, the torque vector shall be discussed in detail. The excitation torque
(2.8)

created by the piezo element Mg is modeled by a vector rotating in the X — Y plane

having an amplitude mg
]\7[[; = mygcos Qt €x + mgsinQt ey .

The restoring and damping torques are depicted in Fig. 7.

|
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Mpx
My,

Fig. 7. Definition of restoring and damping torques

The restoring torque is assumed to be proportional to the tilting angle between the
z —y and the X — Y plane and can be defined as Mpg,, = ¢.0 about the nodal line, so
(2.9)

that the restoring torque is
Mp = c.0 &, + ci[¢+ ¥ cos O] &z.
The second part in (2.9) is a torque proportional to the twisting of the stator about
the Z-axis, where ¢ + ¢ cos6 is the expression of the twisting angle. According to the
(2.10)

phenomenological description (Section 1) the damping torque is given by
MD =d,wx €x + dywy €y + dywy ¢z,
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i.e. a damping torque that is proportional to the angular velocity components of the
stator. The moment of the contact force is defined as

Mg =7, x F. (2.11)

3. STATIONARY SOLUTION

At the end of start-up the rotor will not perform any vibrations in Z-direction or
about the Z-axis, which yields: Z =0, Z = 0, =0,0=0and wy =+ cosd = 0. By
substitution of these in (2.6) the stationary solution takes the form

o(t) = Qt+ a, la)
0 = const, 3.1b)
= Qt
Y(t) = ——=+B. (8.1c)
cos 0

The angles o and 8 are phase angles relative to the excitation. Substitution of this
ansatz into (2.6) yields an equation of the form
d= —= = —= =
%L:J\/'E—]\JD—J\IR%-J\IC. (3.2)
Overlined variables denote variables in steady state operation. The expressions in (2.6)
are lengthy in general. However, the equations for the X-direction and Y-direction, re-
spectively are linearly dependent since they only differ by a phase angle of /2. If a 0 can
be found such that the equation for the X-direction is valid for all times it can be shown,
that ¢ = Qt + « satisfies (2.6).
Time is eliminated from (2.6) by summing the equation for the X-direction and the
imaginary unit times the equation for the Y-direction using

cos(Qt + ) + isin(Qt 4 a) = ¢ P (cosa + i sina), (3.3)
yielding an equation of the form
fi(a, 0) +i fo(a, 0) = 0. (3.4)
In order to satisfy (3.4), fi(a, ) and fa(a, 0) have to vanish, i.c.
fi(a, 0)
fa(a, 0)

Equations (3.5a) and (3.5b) can be solved numerically. For the given sct of parameters
(Appendix A) the tilting angle takes the value § = 0.81836- 10~* with the corresponding
phase angle o = 5.16 degrees. From the equation in Z-direction of (2.6) follows

%I

|

0, (3.5a)
0. (3.5b)

%l

1
B = (T + ¢t o) (3.6)
¢ cos .
and hence § = —1.98 degrees. We emphasize however that not for all parameters a

physically reasonable solution to (3.5a) and (3.5b) can be found.
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Fig. 8. Kinematics of an arbitrary surface point of the stator
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Fig. 9. Characteristic excitation frequency Fig. 10. Characteristic load

Discussion of the Stationary Solution

The steady state solution is illustrated in Fig. 8. The contact point of the stator
moves on a circular orbit. Any arbitrary surface point of the stator moves on an elliptical
trajectory. Note that the directions of motion of the contact point and the rotor are
opposite. This becomes obvious following the motion at the instant where the surface
point is the contact point at the same time (cf. Fig. 8).

Linearization of (2.4) for small angles 6 yields an approximate formula for the rota-
tional speed of the rotor

= HO

¢r = 7 Q. (3.7)
Since 6 is small, ¢ is much smaller than the excitation frequency Q. This is a typical
feature for ultrasonic motors which makes the use of additional gears unnecessary in many
applications. This reduces noise effects and simplifies controllability of the motor. One
qualitatively recognizes from (3.7) that the angular velocity of the motor depends on the
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excitation frequency and the angle § which is a function of Q, mg and 7" and the geometrical
parameceters.

Having found the steady state solution one immediately has the characteristics of the
motor, too [4,5]. The most important ones are shown in Figs. 9, 10 and 11.

It is seen that the angular velocity has a maximum near an ecigenfrequency of the
stator at 36.8 kHz (c.f. Fig. 9). From Fig. 10 it is seen that the angular velocity of the
rotor decreases with increasing load. Above a load of 9.7 Nmm slip will occur between
rotor and stator. In agreement with (3.7) an increase of the driving torque will increase
the tilting angle 6 and therefore speed up the rotor.

80

0 4 ‘ ) myg [Nmm} . 12

Fig. 11. Characteristic excitation torque

The steady state solution is also verified by the transient solution of the equations of
motion that has been done in [4,5].

4. STABILITY ANALYSIS

In the following we investigate the stability of the steady state solution previously
found. For the stability analysis we use the stability definition of Liapunov, [6]. A
comprehensive stability analysis including parameter variations was done in [5].

First approximation method for linear differential equations with periodic co-
efficients

For differential equations with periodic coefficients of the form
% == fix, 1) (4.1)

with f(x,t) = f(x,t 4+ T'), stability of the solution x = 0 is determined by the linearized
differential equation provided that certain conditions hold, [7]. Expansion of f(x, t) about
x = 0 yields

x = A(t)x+ h(x,t), (4.2)

At)=A(t+T).
If h(x,t) is continuous and if there exists a domain such that ¢t > to and |z;| < [, in
which for a sufficiently small constant C

Ih(x, t)llec < C(lz1] + ... + |zul) = Clix|h (4.3)
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holds, one can conclude stability or instability from the first approximation

% = A(f)x, (4.4)
Alt)=A(t+1T).
Equation (4.4) is a linear differential equation with periodic coefficients.

Let ®(t) = [x1(t), ..., Xn(t)] be a system of fundamental solutions of (4.4). From the
theory of linear differential equations one has

®(t+T)=BP(t),
where B is a constant matrix. The equation
IB—MAE|=0 (4.5)

is called characteristic equation of (4.4). It has been shown that the characteristic equa-
tion is independent of the choice of a fundamental system [7]. Corresponding to every
eigenvalue of (4.5) there is a particular solution of the form

= e“kt?(t) ,

1
G = Thl}\k’
£l = 4T,

For stability of the solution x = 0 of (4.4) the following theorem holds:

Theorem: ( [7]) If for every eigenvalue A\ of the characteristic equation of (4.4)
|[A\k| < 1V k holds, and if the conditions for h(x,t) are satisfied, then the solution x = 0 of
(4.1) is asymptotically stable in the sense of LIAPUNOV. If |A\k| > 1 for any k., then the
solution x = 0 of (4.1) is unstable. For the remaining case stability is determined by the
nonlinear term h(x,t).

Stability analysis of the stationary solution
For the analysis of stability we use the first order system of the equations of motion
(2.6)
M(x)x = f(x,t) (4.6)

where x = [¢, 0, ¢, ¢, 0,9]T. Substituting x = X+ Ax in (4.6) yields M(X+ Ax)[X+ Ax%] =
f(X+/A\x, t). The stability analysis of the solution X can therefore be done by investigating
the stability of Ax = 0 and can be performed as described in the previours paragraph.
Equations (4.6) and (4.1) differ by the mass matrix M on the left hand side of (4.6). This
is equivalent to

X+ Ak = ML (X+ AX)E(X + Ax, t) = £(X + Ax, 1), (4.7)

since M is invertible. One now expands ?(i+ Ax, t) about X which, because of X = ?(i, t),
yields

Ax = A(t)Ax + h(Ax,t), (4.8)
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which is an equation of the form (4.2), where

0 ~,_
Qij :T%fi(x’t)v

2
hy = : fl(ﬁ t)slmy, £ €0, %]
Ox;0x

The matrix A is JACOBI matrix of ?, and h is a vector of higher order terms. The linearly
increasing and decreasing components T; and T3 appear in the arguments of trigonometric
functions sin and cos. Other components of X are constant, hence A is periodic. Stability
analysis can now be performed as described in the previous section. The inversion of
M is computationally expensive and makes the calculation of the JACOBlan much more
complicated.

A different approach is to expand both sides of (4.6) directly. An cquation of the form

M(t)Ax =A(t)Ax + h(Ax, Ax, t), (4.9)
M(t) =M(t+T),
A(t)=A@t+T).
is obtained. Note that now h is also depending upon Ax. Since M is invertible, the steps

of the approach described in the previours section remain the same. The only difference
is that (4.3) is now written as

IM(t) Th(Ax, A%, t)||leo < C(|AZY| + ... + |Azy|) = C| O], (4.10)

where C is again a sufficiently small constant. For convenience in the following we use
the cartesian index notation applying EINSTEIN’s summation convention. Equation (4.6)
is then written as

mj (X + Ax)([T; + Aij) = fi(X+ Ox,t). (4.11)

We linearize (4.10) and show that the linear system fulfills the criteria mentioned in the
previours section guaranteeing that stability of (4.6) depends on the linear system only, [5].
We expand m;; and f; about Ax = 0 and get

0
mi; (X + Ax) =m;;(X) + e —mi;(X) Ay + T (4.12a)
a
Fi®+ 0%, ) = fi(%, ) + 5— i(R, ) Dy + T, (4.12b)
Tk
Since
10 0 0 1
0 1 0 0
0 0 1 0
M = o o o
maa(T1, To, T3) mus(T1, T2, T3) mae(Z1, T2, T3)
msa(Z1, T2, T3) mss(T1, To, T3) mse(T1, T2, T3)
L O oo vuo mpa(EB1, Bo, B3) . mies(F1, B0y Ta) mies(Try T B3)
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Q . .
and X = {2, B, "1 0,10, 0]7 we have 88 g () Az = 0. my(X)m; = KX, 1) yields
Tk
N T .
(X)L = ani(x, Az + hi(Ax, Ak, 1), (4.13a)
k
where
hal b, Bk, 8y =T —h < Az i 31
i(&x, A%, t) =T;? — T, (T; + Odj) — 0z (K] e g5 (4.13b)

Showing that (4.13b) meets the criteria for stability by first approximation we note that
all terms in (4.13b) are continuous, since M(x, t) and f(x,t) are arbitrarily often differ-
entiable. It remains to be shown that (4.10) holds. Hence, we first note that since (4.3)
holds in a domain around zero it follows from (4.8) that ||A%]|ec < o0 for ||A%|ae < H
since M and f are periodic with respect to 7" and bounded. Furthermore, M is invertible.
The higher order terms from (4.12a) and (4.12b) are given by

Tigﬁll =Nz =———m;(E, ) Az € € [0, %],

82
Ox0x;
2

TH? = Ay, Az n e [0, A%].

o 88 fin
The entries m;; and f; are bounded periodic functions. Therefore
52
CERT
92
Ox0x;

0
aTkmiJ( ) <Cz]k

fi(m, )<C]k n € [0, Ax]AVE >t

———m;;(£,t) SChyy £ €[0,Ax]AVE > 1o,
vVt > to,

where C7; are real constants with C7, < co. There is a domain ||Ax|[oc < H, in which
hi(Dx, Ak, t) < CL kDT ATk + C'UMA“A:E;(% + Ady) + C3 DT AL
holds. Since T; + Ax; is bounded it follows
hi(Ax, Ax,t) < Cf kDT AT + ) DT ATy,

The elements m;;(X) are periodic with respect to T and bounded, therefore this also holds
for the mi_jl, where mi_].1 are the entries of the inverse of M(X) = M(t) = m;;(X). It follows
that there exists a domain @ with ||Ax||ec < H in which

m (Ohi(Ax, Ak, t) < Ty Day, + Crg Az A, (4.14)
is valid. From (4.8) follows:
Dy = if()? Az + —81—}7(5 HAx; Az £ € [0, Ax]
= 81'3‘ i\Ry T OIj&rk i\SH 9 k )
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where f = M~!f. Hence from (4.14) follows, that within Q

mi‘jl(t)hj(Ax, Ax, 1) SC«:jkAa:ijk + E?jkij(%ﬁ(i, t) Ay
8 =

.. 9., Ik 5 m) ,A
& 01'181'771 fk(&-’f)AxlAl‘ ) f € [0 X]

holds and hence

S AT ATy (4.15)

m ! (Ohi(Dx, Dk, t) < Ty

The right hand side of (4.15) is of order 2 and m;jl(t)hj(Ax = 0, Ax,f) = 0. Henee it
has been shown that there exists a domain ||Ax|s < H where (4.10) is valid. There-
fore stability for the system of the type Mx = f can also be determined by the first
approximation.

Eigenvalues of the Monodromy Matrix

We now calculate the monodromy matrix corresponding to (4.9). One integrates
M(t)Ax = A(t)Ax over one period T with linearly independent initial conditions. The
columns of the monodromy matrix B consist of the solution vectors calculated with the
different initial conditions

B = [x{T,xp = 81), - %L, x5 =1ea)]

with e; = [1,0,0,0,0,0]7, e; = [0,1,0,0,0,0]7,.... For the given set of parameters (cf.
Appendix A) the eigenvalues of the monodromy matrix B are given in Table 3. One sees

Table 3. Eigenvalues of B (3 DOF motor model)

eigenvalue || value absolute value
AL, A2 -0.7101 £+ 0.5908i | 0.9238
A3 0.8416 0.8416
Aq 0.8272 0.8272
As, Ag -0.6570 + 0.0189i | 0.6573

that as shown in Fig. 12 all eigenvalues of the monodromy have an absolute value which
is less than 1. Hence the steady state solution for the given set of parameters is stable in
the sense of LIAPUNOV.

Parameter variations show that if a steady state solution exists this solution is always

stable, [5].

5. EXTENSION OF THE MODEL

According to the assumptions the case of slip between rotor and stator has not been
included so far. As a consequence with a sufficiently large excitation torque it was always
possible to drive the rotor for any arbitrary loading torque T'. The restrictions of the
contact condition F} < pF, had to be checked separately. This can be improved by a
modified contact condition.
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Fig. 12. Eigenvalues of the monodromy ma- Fig. 13. Friction characteristic
trix for the set of parameters given in Appen-

dix A

Formulating the contact condition allowing slip

In order to allow slip in the model an additional degree of freedom has to be created.
When slip occurs the angular velocity of the rotor is no longer coupled to the variables of
the stator. Avoiding to switch between one model with 3 DOF and one with 4 DOF, the
driving force for the rotor is described by

E :/Jf('Urel)Fn 3 (51)

Vrel =U¢c — (.L)RR* , With Ve = (u_j 3 F({) ‘ ell .

The characteristic u(vye) is given in Fig. 13. Analytically the characteristic of Fig. 13 is
given by

1= po arctan(Kuvper) . (5.2)

The parameter pp determines the maximum of u, x is the parameter for the slope of the

curve. Again, we assume that there is contact between rotor and stator at any time.
Hence, (2.3) remains valid.

Consequences for the equations of motion

Due to the new contact condition (5.1) the model now has an additional DOF, namely
¢r. The kinematic constraint (2.4) is no longer valid since slip between rotor and stator is
possible. The new equations of motion are derived by substituting (5.1) into the equations
(2.2) and (2.6). The equations of motion can again be written as a first order system

M(x)x = f(x,t), (5.3)
where M is a 8 x 8 matrix and f(x,¢) is a 8 x 1 vector. The vector x is given by

X = [¢R’ ¢7 0) 11), Q.va Q.Sv 0.3 w]T ¥
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Table 4. Eigenvalues of B (4 DOF motor model)

eigenvalue value | absolute value
A1, A2 0.2616 + 0.49341 | 0.5585
A3 0.7702 | 0.7702
A 0.8269 | 0.8269
A5, A6 —0.8021 £ 0.27127 | 0.8467
A7 0.8654 | 0.8654
As 111

Analysis of the stationary solution

The stationary solution of (5.3) is derived analogously as described in Section 3. The

state vector takes the form

- - Ot 3
X = ¢Rt7Qt+a79’——"+ﬁv¢R’QaO,_
cos

Q

cosf |’

where qlﬁn = const. The system of equations is then analogously formulated to the case of
stick, with th.e unknowns ¢g, 0, a, 3. For the given set of parameters and po = 0.3, k =20
one obtains ¢ = —10.34 1/s, = 0.81836- 1074, o = 5.12 and 8 = —5.12.

Stability analysis of the ext

ended model

Stability analysis is performed as described in Section 4. Substituting the steady state

solution into (5.3) and expanding about X yields a linear system of equations with periodic
coefficients. As in stability investigations for the model having 3 DOFs the FLOQUET
theory is applied here analogously. For the given set of parameters (Appendix A) and
o = 0.3, kK = 20 one obtains the eigenvalues presented in Fig. 14 and listed in Table 4.

Note |Ag| = 1 which is due to a cyclic variable. Since the absolute value of all other
1 e "
// \\\_
Tm(\;) / \\
// & \\
[ x \
| \,
0f | 0K X
\ /
\ /
\ x //
\\ //
. /
\\‘ /'/'.
_1 \\\\ _________ "(”/
=4 B Re() |

Fig. 14. Eigenvalues of the monodromy matrix for model with 4 DOF
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eigenvalues are < 1 the solution for the given set of parameters is also stable in the sense
of LIAPUNOV.

For both models (3 and 4 dof) stability investigations including parameter variations
for mg, Q, and T" have been performed, [5]. In both cases the steady state solution is
always stable if the solution for the given set of parameters exists.

6. CONCLUSION

In this paper we introduced a simple mathematical model of a wobbling disk USM.
In particular the stationary behavior of the motor and its stability were investigated
in detail. The model offers insight in dynamic phenomena and identifies crucial motor
parameters which influence the performance of the motor. The reduction in speed between
the rotational speed of the rotor and the excitation frequency is of the order of magnitude
~ 10%, ..., which accounts for one of the advantages of piczoclectric traveling wave motors.
While the excitation frequency influences the rotor speed directly, other parameters such as
the excitation amplitude and the loading torque vary and control the rotor speed indirectly
via the tilting angle. The stability analysis proves that the steady state solution is robust
against small disturbances.

Only few motor models, adequate for motor design and optimization, exist today.
Motor developments done through experimental efforts indicate long procedures and often
times do not provide a deeper insight into the mechanisms. An advanced understanding
of the USM, which is provided by analytical studies, is precious in the sense of reducing
such experimental efforts. Problems such as e.g. the occurrence of parasitic vibrations
which often result in an unsteady operation or the appearance of squealing in the ecarly
stage of motor design can not only be analyzed with such a mathematical background but
also their origin may be identified. Due to the complexity and computational expenses of
piezoelectric motors in general a simple mathematical model such as presented in this paper
enhances the optimization process by providing detailed understanding of the dynamical
behavior of such a motor.
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A. PARAMETERS

Table 5. Motor parameters

parameter || value unit
mg || 0.005 Nm
T16.46-107° Nm

Fy | 0.4 N

cr || 4000 N/m

dr | 0.1632 Ns/m

¢ || 10000 Nm

cr || 924.6677 Nm

ds [19.1232-1077 | Nms
d, | 2.3865-1071 | Nms
R || 0.005 m
H || 0.003 I
Ir |[7.9522-107° | kgm
Iz || 1.7109- 1078 | kgm
Iy, || 1.7109 - 1078 | kgm
I, 2.3120- 107 | kgm

=

N N N

N
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MO HINH HOA VA PHAN TIiCH ON DINH DONG CO SIEU AM

Viéc phét trién cic mé hinh déng co phu hop véi qud trinh thiét ké va téi wu hiay con chwa

dap tng duwoc tinh trang ky thuit hién nay. Ly do 1a trong may nim trude day ngudi ta thuong
nhan manh t&i viéc tim kiém céc nguyén ly hay ché tao kiéu mau méi cho dong co siéu am trong
khi hién nay da doi hdi phai t6i wu hod hé thdng dong co. Bai bdo trinh bay viéc mo hinh hoa
dong co piezoelectric dang dia rung. Da xiy dung loi gidi binh 6n va nghién ciru 6n dinh. Dieu
nay cho phép hiéu biét siu sic ban chit cla cdc qua trinh dong lue hoc clia dong co. Cac két qua
c6 thé gitp dinh huwéng trong viée hiéu biét nguyén 1y lam viéc, dong lwe hoc, danh gid cdc tham
s6 lién quan dén d6 tin cay, hoat dong 6n dinh va tdi wu hod céc loai dong co trén.



