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A NOTE ON THE MELNII<:OV FUNCTION 
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Abstract. \Vith one (Poincare section) parameter and a particular motiom law (that 
associated to certain determined point of horno-heteroclinic orbits), the usual f'orm of' the 
l\lelni kov f'unction seems to be not convenient f'or certain problems. Another favourable 
form can be obtained by using a supplementary parameter - the arbitrary time constant 
in the general mentioned motion law. 

1. INTRODUCTION 

As known, for Hamiltonian systems, homo-heteroclinic orbits (when they exist) can 
be destroyed by weak perturbations to generate - on Poincar6 sectio11 - stable and un
stable invariant manifolds and the distance between these manifolds can be estimated by 
the so-called Melnikov function ([1], pp. 356-389; [2], pp. 172-181). This distance is de
fined for manifolds on certain chosen Poincar6 section and at certain determined point 
of the homo-heteroclinic orbits. Therefore, in the usual form of the J\leluikov function. 
besides the parameter specifying the chosen Poincar6 section, a particular motion law is 
usC'd , th(),t associated to the point of interest on the homo-heterocli11ic orbits Varyiug the 
Poincar6 section parameter, we can 011ly study the variation of the mentioned clista11cC' 
on different Poincar6 section at the same point of the homo-heteroclinic mbits. To study 
the variation of the distauce between manifolds on a fixed Poincar6 section and alo11g llic~ 

homo-heteroclinic orbits, we have to "modulate" the aforesaid motion law. This rnodnla
tion can be realized by using a supplementary parameter as presented below . 

2. THE USUAL FORM OF THE l\1ELNIKOV FUNCTION 

Let us consider weakly perturbed Hamiltonian systems governed by differential equa
tions of 1 he form: 

x = J(x) + cg(x, t) (2.1) 

or 

xi= f1(x1 ,:r:2) +cg1(x1,x2,t); fi(x1,x2) = 8H(x1,.x2)/D:c2 

i2 = h(x1, :x:2) + c.<J2(x1, x2, t); h(x1, x2) = -DH(x1, :i;2)/D.c1 (2.2) 

where x is a column vector variable with two components (:x: 1, x2); f and g are colum!l 
vector fullctions with two components (f1, h) and (g1, g2), respectively; ovcrclots cle11otc 
differentiation with respect to time t. g(x, t) represents a small perturbatioll T-periodic 
int: H(:c1, x2) is the Hamiltonian (a scalar-valued function) of the unpertmbcd systC'n1 
( c = 0); c is a small parameter. 
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Assume that the unperturbed Hamiltonian system possesses an orbit C , homoclinic to 
a saddle 0. This homoclinic orbit is destroyed by the small perturbation cg and on each 
Poincare section So specified by the parameter 0 (0:::::; 0 < T), two invariant manifolds arc 
generated: a stable manifold Cs and an unstable one Cn; both these manifolds homoclinic 
to a new saddle O', close to 0. 

The distance between Cs and Cn is defined on certain chosen Poincare section So and 
at certain determined point A of C. As known can be estimated by the so-called Melnikov 
function 

+oo += 

M(O) = J J[xA(t - O)] /\ g[xA(t - 0), t]dt = J J[xA(T)] /\ g[xA(T), T + O]dT (2.3) 
-oo - oo 

where M(O) denotes the Melnikov estimation of the distance (along the normal of C) at 
A between Cs and Cn on the Poincare section So; 0 is the value of the parameter which 
specifies the chosen Poincare section; XA(t) is the motion law (an unperturbed solution) 
associated to A i.e. that satisfying the condition XA(O) = A (thus, the representative 
point XA(t-0) moves along C and passes through A just at the moment t = O); the wedge 
symbol indicates the magnitude of the cross (X) product (i.e. f /\ g = fig2 - hg1). 

Fixing A and varying 0, (2.3) gives - at the same (fixed) point A of C - the variation 
of the distance between Cs and Cn on different Poincare sections. To study - on certain 
chosen (fixed) Poincare section - the variation of the distance between Cs, C,, along C, we 
have to fixe 0 and "modulate" XA(t) i.e. each point A needs its appropriate motion law. 

In particular, to stydy on So ( 0-fixed, given) the distribution of intersection points of 
Cs and Cn along C, we have to solve the equation 

+oo 

j f[xA(t - O)] /\ g[xA(t - 0), t]dt = 0 (2.4) 
-oo 

where x A ( t - 0) is unknown motion law. 
This problem becomes simple - as presented below - by introducing a new parameter 

O' in XA(t). 

3. A MORE DETAILED FORM OF THE MELNIKOV 
FUNCTION 

We remark that the unperturbed Hamiltonian system (c = 0) is autonomous. So, 
each of its solutions contains an arbitrary time constant i.e. if x( t) is certain solution, 
x(t + h) with arbitrary constant his also another solution of same orbit. In other words, 
corresponding to an unperturbed orbit, we have to deal with-not one-but a family of 
unperturbed solutions expressed by x(t+h). We can consider x(t) as a particular solution 
and x(t + h) as the general solution along the aforesaid orbit (not the general solution of 
the system). Evidently, this remark can be applied to the special orbit - the homoclinic 
orbit C. Hence, when we find a particular motion law x(t) along C, the general solution 
along C is x(t + h). . 

For the Melnikov function, it is convenient to write this general solution as 

x(t-O+a) (3.1) 
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where () is the Poincare section parameter; a: is the parameter attributed to the point 
x(o) =Ac,; x(t) is the motion law associated to the point Ao= x(O). 

Using (3.1), the Melnikov function can be written as: 

+= 
M((), a:)= j J[x(t - ()+a:)]/\ g[x(t - ()+a:), t]dt 

-oo 

+= 
= J f[x(T)] /\ g[x(T), T + () - o]dT (3.2) 

-CXJ 

M((), a:) is thus the distance at A 0 = x(o) between Cs and Cn on So. Fixing a: and 
varying (), (3.2) gives - at the same point A 0 of C - the distance between Cs and Cn on 
different Poincare sections So . If, with 0 fixed, we vary a:, (3.2) gives the variation of the 
distance between Cs and Cn along C, on the already chosen (fixed) Poincare section So. 
In particular, along C, the distribution of intersection points of Cs and Cn along C on So 
is determined by the equation: 

M(fJ, a:)= 0 (3.3) 

where a: is unknown and () is constant. 
Since g(x, t) is T-periodic int, M(fJ, a:) is T-periodic in a:. Hence, when (3.3) admits a 

real root a:, it also admits an infinite number ofroots o+2nT (n-integer). Correspondingly, 
we obtain along C, an infinite number of intersection points of Cs and Cn; theses points 
are located near the points A0 +2mr = x(o + 2mr). 

4. AN EXAMPLE 

For illustration, we use the example 5.16 presented in ([1], pp. 374-377) i.e. we consider 
the externally forced Duffing oscillator governed by the differential equation 

x - x + x 3 = c-{p cos(Dt) - kx} with n = 1 (4.1) 

where x is a scalar variable, p > 0 is intensity of the external forcing exci.tation p cost of 
period 27T; k > 0 is the linear damping coefficient. 

Putting x = x 1 , x = x2 , the equation (4.1) can be written as 

XI = X2, 

X2 =XI - xr + c(pcost - kx2). 

Hence: 

(4.2) 

(4.3) 

( 4.4) 

The unperturbed Hamiltonian system (c = 0) possesses two homoclinic orbits - the right 
C and the left C' - homoclinic to the saddle (origin) 0, respectively encircling two centers 
J(l,O) and J'(-1,0), intersecting the abscissa ~is Ox= Ox1 at A(v12,0) an~ A'(-v12, 0). 
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The equation of these orbits is 

H(x.±) = H(x1, x2) = 0 or ± = x2 = ±~ (4.5) 

where + (-) corresponds to upper (lower)-half homoclinic orbits, respectively. 
The perturbation c(p cost - kx2) destroys C and C' to generate four invariant mani

folds: the right and left unstable manifolds Cn and C~ and the right and left stable one 
Cs and C~. 

Below, our study is devoted to the right homoclinic orbit C and its corresponding 
stable and unstable invariant manifolds Cs and Cn· A particular (unpertubed) motion 
law along C is 

x(t) = x1 (t) = J2sech(t), ±(t) = x2(t) = -J2sech(t)tanh(t) . (4.6) 

For t = 0, we have 

x1(0) = J2sech(O) = J2, x2(0) = -J2sech(O)tanh(O) = 0. (4.7) 

Thus, the motion (4 .6) is that associated to the point A( J2, 0). The usual form of the 
Melnikov function is: 

+oo 

M(O) = - J J2sech(t - O)tanh(t - e){pcost + kJ2sech(t - O)tanh(t - e) }dt. (4 .8) 

-oo 

It gives the estimation of the distance between Cs and Cn on the Poincare section So at 
the point A( ./2, 0). As in [1], if we vary e, we can study only the variation of the distance 
between' Cs and Cn on different Poincare sections So at the same point A. The "general" 
motion law along C is: 

x(t +a:)= J2sech(t +a:), :i:(t +a:)= -v'2sech(t + o:)tanh(t +a) (4 .9) 

and the Melnikov function with two parameters is 

+oo 

M(o:, 0) = - J J2sech(t +a - O)tanh(t +a - 0) x 

-oo 

x {p cost+ kJ2sech(t +a - O)tanh(t +a - e) }dt (4.10) 

or 

+oo 

M(o:, e) = - J V2sech(T)tanh(T){pcos(T + e - a)+ kJ2sech(T)tanh(T) }dT. (4.11) 

-oo 

With ( 4.11) , it is easy to estimate .the distance between Cs and Cn on any Poincare section 
So and at any point of the homoclinic orbit C. For instance, at A( J2, 0) and on So, Sn;2 
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we obtain respectively 

+oo 

M(a. = 0, B = 0) = -v'2 j sech(r)tanh(r){pcosr + kv'2sech(r)tanh(r) }dr, (4.12) 

-oo 

+oo 

M(a. = 0, B = ~) = -v'2 j sech( r)tanh( r) { - p sin r + kv'2sech( r)tanh( r) }dr. ( 4.13) 

-oo 

Let B(l, J2/2) be the maximum point of C. The value a.* corresponding to B satisfies 
the equations: 

(4.14) 

Solving (4.11), we find a.*= ln(J2-1):::::: -0.88137. Therefore the distances at B between 
Cs and Cn on S0 , Sn;2 are estimated respectively by the integrals: 

+oo 

M(a.*, 0) = -J2 J sech(r)tanh(r){pcos(r - a*)+ kv'2sech(r)tanh(r) }dr, (4.15) 

-oo 

+oo 

M(a.*, ~) = -J2 J sech(r)tanh(r){ - psin(r - a.*)+ kv'2sech(r)tanh(T) }dr. (4.16) 

- oo 

Following the procedure given in [1], we expand (4.11) as: 

M(a., B) = -kh - pJ2 cos(B - a.)h + pJ2 sin(B - a.)h ( 4.17) 

where 

+oo +oo 

Ii = J i:2 (r)dr, 12 = J sech(r)tanh(r) cosrdr, 

- oo -oo 

+oo 

h = J sech(r)tanh(r)sinrdr. (4.18) 

-oo 

Using (4.5), it is easy to calculate the first integral 

V2 0 V2 

Ii= J Jx2 
- x 4 /2dx - J Jx2 

- x 4 /2dx = 2 J Jx2 
- x 4 /2dx = ~ · (4 .19) 

0 V2 0 

The second integral h = 0 because its integral is odd. 
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Using h = 0 and the transformations u = e7
, v = e- 7

, the third integral can be put 
in the forms: 

+oo oo 

h = ~ j sech(r)tanh(r)ei7 = ~ j Ui (:2

2
; 

1
\ 2du, ( 4.20) 

-oo 0 

+oo +oo 

I 2 J ( )i i v2 - 1 d 2 -71" j v2 - 1 d 
3=-;; -1 v(v2+1)2 v=-;;e Vi(v2+l)2 v. (4.21) 

-oo -oo 

Hence, we can write: 

+oo 

I - 2 J 2 u2 - 1 
3 - i(l + e-11") u (u2 + l)2du. ( 4.22) 

-oo 

The integral ( 4.22) has a two folds singularity at u = i. Following the method of residues, 
we obtain 

2 d { 2 u
2 

( u2 
- 1)} 7r h= . ·27ri·lim- (tl-i) = 7rsech-· 

i(l+r- 71") u~idu (u2 +1)2 2 
(4.23) 

Finally: 

4 J2 7f M(a, 0) = - 3k + p7r 2sin(O - a)sech 2 · ( 4.24) 

Thus: 

M(O, 0) = -~k; M( 0, ~) = -~k + p7rJ2sech~ 
M(a*,O) = -~k+p7rJ2sina*sech~ . 

7f 4 In 7f 
M(a*, 2 ) = - 3k + p7rv2 cosa*sech2 ( 4.25) 

Using (4.24), we can easily study the distribution of intersection points of Cs and Cn along 
C and - for intance - on So. Indeed, by solving the equation 

M(a, () = 0) = -~k - p7rJ2sinasech~ = 0 (4.26) 

we obtain 
4k 

sina = - 7r 
3p7r vf2sech -

2 

(4.27) 

· In 7f 37f 
Fork~ 0.5990222, sma ~ -v2/2, a 1 = - 4 + 2k7r, a 2 = - 4 + 2k7r corresponding to 

a1 , we obtain: 
- fork= 0, -1, -2,. .. Xo = 1.0676459, X- 1 = 0.002408, X - 2 = 0.000004 
- fork = 1, 2, 3, ... Xl = 0.0115845, X2 = 0.00000216, X3 = 0.0000004. 
These are respectively the abscissae of the points of the upper and lower half-homoclinic 

orbit C close intersection points of Cs and Cn· . 
Similarly, from a2, we can immagine another infinite number of intersection points of 

Cs and Cn , distributed along and close to C and accumulated in the neighbourhood of 0. 
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5. CONCLUSION 

From the above presented note, we see that, by introduci ng the time constant in 
the motion law i.e. by using the general motion law along homo-heteroclinic orbits, the 
Melnikov function can be put in a form containing two parameters and shows to be more 
convenient. 
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MQT GHI CHU VE HAM MELNIKOV 

D<tng quen biet cua ham Melnikov trong ly thuyet chuyen d~mg hon lo<tn chi chtra mi;it tham 
so xac d\nh thiet di~n Poincare duc;rc Iva ch9n. Neu dua them m<;it tham so gan cho C<.ic c1icm trcn 
c1uang dong di clinic, c6 the viet ham Melnikov ch<ra hai tham so. De:tng sau t6 ra thm~n ti<;n han 
khi nghien ClrU S\r phan bo giao diem cac c1a t<tp 011 d\nh va khong 011 c1\nh. 


