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A NOTE ON THE MELNIKOV FUNCTION

NGUYEN VAN DiNu
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Abstract. With one (Poincaré section) parameter and a particular motiom law (that
associated to certain determined point of homo-heteroclinic orbits), the usual form of the
Melnikov function seems to be not convenient for certain problems. Another favourable
form can be obtained by using a supplementary parameter - the arbitrary time constant
in the general mentioned motion law.

1. INTRODUCTION

As known, for Hamiltonian systems, homo-heteroclinic orbits (when they exist) can
be destroyed by weak perturbations to generate - on Poincaré scction - stable and un-
stable invariant manifolds and the distance between these manifolds can be estimated by
the so-called Melnikov function ([1], pp.356-389; (2], pp. 172-181). This distance is de-
fined for manifolds on certain chosen Poincaré section and at certain determined point
of the homo-heteroclinic orbits. Therefore, in the usual form of the Melnikov function,
besides the parameter specifying the chosen Poincaré section, a particular motion law is
used, that associated to the point of interest on the homo-heteroclinic orbits Varying the
Poincaré section parameter, we can only study the variation of the mentioned distance
on different Poincaré section at the same point of the homo-heteroclinic orbits. To study
the variation of the distance between manifolds on a fixed Poincaré section and along the
homo-heteroclinic orbits, we have to “modulate” the aforesaid motion law. This modula-
tion can be realized by using a supplementary parameter as presented below.

2. THE USUAL FORM OF THE MELNIKOV FUNCTION
Let us consider weakly perturbed Hamiltonian systems governed by differential equa-
tions of the form:
i = (@) + egla, 1) (2.1)

or

i = fi(zr, z2) +egi(xr, 22, t);  fi(zy, x2) = OH (21, x2) /0o
&g = folay, x2) + €ga(xy, T2, t);  folwy,22) = —O0H (21, x9) /0y (2.2)

where x is a column vector variable with two components (x1,22); f and g are column
vector functions with two components (f1, fo) and (g1, g2), respectively; overdots denote
differentiation with respect to time t. g(x,t) represents a small perturbation T-periodic
in ¢; H(xy,x9) is the Hamiltonian (a scalar-valued function) of the unperturbed system
(¢ = 0); € is a small parameter.
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Assume that the unperturbed Hamiltonian system possesses an orbit C', homoclinic to
a saddle 0. This homoclinic orbit is destroyed by the small perturbation eg and on each
Poincaré section Sy specified by the parameter 6 (0 < 6 < T'), two invariant manifolds are
generated: a stable manifold Cs and an unstable one C,,; both these manifolds homoclinic
to a new saddle O’, close to O.

The distance between C and C,, is defined on certain chosen Poincaré section Sy and
at certain determined point A of C. As known can be estimated by the so-called Melnikov
function

+00 +oo
M(0) = /f[xA(t—9)]/\Q[HCA(t—e)»t]dt: /f[xA(T)]Ag[IA(T)aT+9]dT (2.3)

where M (0) denotes the Melnikov estimation of the distance (along the normal of C) at
A between C and C, on the Poincaré section Sp; 0 is the value of the parameter which
specifies the chosen Poincaré section; z4(t) is the motion law (an unperturbed solution)
associated to A i.e. that satisfying the condition z4(0) = A (thus, the representative
point z 4(t— @) moves along C and passes through A just at the moment ¢ = 6); the wedge
symbol indicates the magnitude of the cross (X) product (i.e. f Ag= figa — fog1).

Fixing A and varying 6, (2.3) gives - at the same (fixed) point A of C - the variation
of the distance between Cs and C), on different Poincaré sections. To study - on certain
chosen (fixed) Poincaré section - the variation of the distance between Cy, C,, along C, we
have to fixe § and “modulate” z4(t) i.e. each point A needs its appropriate motion law.

In particular, to stydy on Sy (6-fixed, given) the distribution of intersection points of
Cs and C), along C, we have to solve the equation

400
[ flaate= 01 Agleate—0),da=0 (2.4)

where z 4(t — ) is unknown motion law.

This problem becomes simple - as presented below - by introducing a new parameter
ain z4(t).

3. A MORE DETAILED FORM OF THE MELNIKOV
FUNCTION

We remark that the unperturbed Hamiltonian system (¢ = 0) is autonomous. So,
each of its solutions contains an arbitrary time constant i.e. if x(¢) is certain solution,
x(t + h) with arbitrary constant h is also another solution of same orbit. In other words,
corresponding to an unperturbed orbit, we have to deal with-not one-but a family of
unperturbed solutions expressed by z(t+h). We can consider z(t) as a particular solution
and z(t + h) as the general solution along the aforesaid orbit (not the general solution of
the system). Evidently, this remark can be applied to the special orbit - the homoclinic
orbit C. Hence, when we find a particular motion law z(t) along C, the general solution
along C' is z(t + h).

For the Melnikov function, it is convenient to write this general solution as

z(t— 0+ a) (3.1)
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where 0 is the Poincaré section parameter; « is the parameter attributed to the point
z(a) = Au; z(t) is the motion law associated to the point Ag = x(0).
Using (3.1), the Melnikov function can be written as:

BTG, ) = / Fla(t = 0+ 0)] A glz(t — 0+ o), dt

= /f ) A gla(r), 7+ 60 — aldr (3.2)

M (0, ) is thus the distance at A, = z(a) between Cs and C, on Sp. Fixing a and
varying 6, (3.2) gives - at the same point A, of C - the distance between Cy and C,, on
different Poincaré sections Sy. If, with 6 fixed, we vary «, (3.2) gives the variation of the
distance between Cs and C,, along C, on the already chosen (fixed) Poincaré section Sp.
In particular, along C, the distribution of intersection points of Cs and C), along C' on Sy
is determined by the equation:

M(6,0) =0 (3.3)

where « is unknown and 6 is constant.

Since g(z, t) is T-periodic in ¢, M (6, a) is T-periodic in a. Hence, when (3.3) admits a
real root a, it also admits an infinite number of roots a+2nT" (n-integer). Correspondingly,
we obtain along C, an infinite number of intersection points of Cy and C,,; theses points
are located near the points Ag4onr = x(a + 2nm).

4. AN EXAMPLE

For illustration, we use the example 5.16 presented in ([1], pp. 374-377) i.e. we consider
the externally forced Duffing oscillator governed by the differential equation

i-z+a2%=¢e{pcos(M) — ki} with Q=1 (4.1)

where z is a scalar variable, p > 0 is intensity of the external forcing excitation pcost of
period 2m; k£ > 0 is the linear damping coefficient.
Putting x = 21, £ = x9, the equation (4.1) can be written as

T = T2,
@y = x; — 23 + e(pcost — kxy). (4.2)
Hence:
fi=x0, fo=x1 - m?, g1 =0, go =pcost — kxa, (4.3)

2 4 2

x{ T T
w4 = B i N M.
The unperturbed Hamiltonian system (e = 0) possesses two homoclinic orbits - the right
C and the left C’ - homoclinic to the saddle (origin) O, respectively encircling two centers

I(1,0) and I'(—1,0), intersecting the abscissa axis Oz = Oxz; at A(v/2,0) and A'(—v/2,0).

(4.4)
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The equation of these orbits is

1
Hizd)=H(z1,23) =0 or §=@= i\/xl—% (4.5)

where + (—) corresponds to upper (lower)-half homoclinic orbits, respectively.

The perturbation (pcost — kxg) destroys C and C’ to generate four invariant mani-
folds: the right and left unstable manifolds C, and C, and the right and left stable one
Cs and C;.

Below, our study is devoted to the right homoclinic orbit C and its corresponding
stable and unstable invariant manifolds Cs and C,. A particular (unpertubed) motion
law along C is

z(t) = z1(t) = V2sech(t), @(t) = z2(t) = —v/2sech(t)tanh(t). (4.6)
For t = 0, we have
x1(0) = V2sech(0) = V2, x4(0) = —v/2sech(0)tanh(0) = 0. 4.7)
Thus, the motion (4.6) is that associated to the point A(v/2,0). The usual form of the
Melnikov function is:

M) = - / V2sech(t — 0)tanh(t — 0){pcost + kv2sech(t — O)tanh(t — 0) }dt.  (4.8)

It gives the estimation of the distance between Cy and C,, on the Poincaré section Sy at
the point A(v/2,0). As in [1], if we vary 6, we can study only the variation of the distance
between Cs and C), on different Poincaré sections Sy at the same point A. The “general”
motion law along C is:

z(t+ a) = V2sech(t + a), z(t+ o) = —v2sech(t + a)tanh(t + «) (4.9)

and the Melnikov function with two parameters is

M(a, 0) / V2sech(t + a — 0)tanh(t + a — 6) x
x {pcost + kv/2sech(t + o — O)tanh(t + o — 0) }dt (4.10)
or
M, 6) / v/2sech(r)tanh(r ){pcos(t+ 0 — a) + kv/2sech(7)tanh(7) }dr.  (4.11)

With (4.11), it is easy to estimate the distance between C; and C,, on any Poincaré section
Sp and at any point of the homoclinic orbit C'. For instance, at A(v/2,0) and on Sy, Sr/2
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we obtain respectively

+o00
Mla=0,0=0)=—v2 / sech(7)tanh(7){pcosT + kﬂsech(r)tanh(T)}dT, (4.12)

400
M(a=0,0= g) = /2 / sech(7)tanh(7){ — psinT + k\/§sech>(7)tanl'1(r)}d7-. (4.13)

Let B(1,+/2/2) be the maximum point of C. The value a, corresponding to B satisfies
the equations:

V2sech(aw) = 1, —V/2sech(a,)tanh(a,) = ? (4.14)

Solving (4.11), we find a. = In(v/2—1) ~ —0.88137. Therefore the distances at B between
Cs and Cy, on Sp, Sy, are estimated respectively by the integrals:

+o00
M(ow,0) = —V2 / sech(r)tanh(r){p cos(t — a) + k\/ﬁsec}’l(r)tanh(T)}dT, (4.15)

o
M (o, g) = —4/2 / sech(r)tanh(7){ — psin(7 — a,) + kv/2sech(r)tanh(r) }dr. (4.16)

Following the procedure given in [1], we expand (4.11) as:

M(a,0) = —kI, — pV2cos( — a) I + pV2sin(0 — a)l3 (4.17)
where
+00 +o0
I = / &2(r)dr, Ip= / sech(7)tanh(7) cos Tdr,
“o0 o0
400
Iy = / sech(7)tanh(7) sinTdr. (4.18)

Using (4.5), it is easy to calculate the first integral

V2 0 V2
L :/ /;EQ—:;:‘l/Qdac—/«/xQ—a:4/2d$:2/~/$2~9«'4/2d$= % (4.19)
0 NG) 0

~

The second integral Is = 0 because its integral is odd.
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Using I = 0 and the transformations u = e”, v = ¢~ 7, the third integral can be put
in the forms:

+0oo . 9 [e’s} 9 1
1 . =
I3 = ; /SeCh(T)tanh(T)ClT = ;/Uz(%mdu, (420)
. 0
9 +00 2 ! 9 +00 9 ]
L. U°— ve —
Is = - —D'——sdv=-e""  ————=dv. 4.21
. i/( )“(v2+1)2” i /”’(u2+1)2” 21}
—0 : —00
Hence, we can write:
g to ., .
Iy = Bt i, 4.22
P i te ™ /“ W+ 12 e
—00

The integral (4.22) has a two folds singularity at u = 7. Following the method of residues,
we obtain

2 o d ] 2u2(u2 -1) T '
I3 = 2mi Illl_rg du{(u i) 21 1)? } » 7rscch2 (4.23)
Finally:
4
M(e, 0) = —gk + prV/2sin(0 — a)sechg : (4.24)
Thus:
4 T 4 ™
= ——K: —_ = ——K C 1 —_
M(0,0) = —k; M(o, 2) 3k +‘p7r\/580012
Mo 1) = —%k +p71'\/§sinOz*sech—;E
M (s, g) = —%k + pmv/2 cos a*sechg (4.25)

Using (4.24), we can easily study the distribution of intersection points of Cs and C,, along
C and - for intance - on Sy. Indeed, by solving the equation

M(a,8=0) = _%k — pwxfisinasech—g =) (4.26)
we obtain
sina = —%— : (4.27)
3p7r\/§sech§

For k =~ 0.5990222, sina ~ —v/2/2, oy = —% + 2km, ag = —?%r + 2k corresponding to
a1, we obtain: N

-for k=0,-1,-2,... o= 1.0676459, z_; = 0.002408, x_5 = 0.000004

-for k=1,2,3,... 1 =0.0115845, zo = 0.00000216, z3 = 0.0000004.

These are respectively the abscissae of the points of the upper and lower half-homoclinic
orbit C' close intersection points of Cs and C,,. ‘

Similarly, from aws, we can immagine another infinite number of intersection points of
Cs and C,, distributed along and close to C' and accumulated in the neighbourhood of O.
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5. CONCLUSION

From the above presented note, we see that, by introducing the time constant in
the motion law i.e. by using the general motion law along homo-heteroclinic orbits, the

Melnikov function can be put in a form containing two parameters and shows to be more
convenient.
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MOT GHI CHU VE HAM MELNIKOV

Dang quen biét clia hAm Melnikov trong 1y thuyét chuyén dong hon loan chi chira mot tham
s6 xac dinh thiét dién Poincaré dwoc Ira chon. Néu dwa thém mot tham s6 gén cho cdc diém trén
duwomg dong di clinic, ¢6 thé viét haAm Melnikov chita hai tham s8. Dang sau té ra thuan tién hon
khi nghién ciru s phan bé giao diém cdc da tap 6n dinh va khéng 6n dinh.



