Vietnam Journal of Mechanics, VAST, Vol. 29, No.3 (2007), pp. 257269
Special Issue Dedicated to the Memory of Prof. Nguyen Van Dao

NON-LINEAR DYNAMICAL ANALYSIS OF
LAMINATED REINFORCED COMPOSITE DOUBLY
CURVED SHALLOW SHELLS

Dao Huy Bicu AND Vu Do LoNG
Vietnam National Unwversity, Hanot

Abstract. The present paper deals with a non-linear dynamical analysis of laminated
reinforced composite doubly curved shallow shells. The motion equations of shell based
upon the thin shell theory considering the geometrical non- linearity and the Lekhnitsky's
smeared stiffeners technique. Simultaneous ordinary differential equations are obtained
by means of Bubnov-Galerkin’s procedure. Non-linear responses are calculated by us-
ing an iterative procedure in conjunction with Newmark constant acceleration scheme.
Obtained results allow to discover the influence of stiffeners, the shell geometry on the
non-linear response of eccentrically stiffened laminated composite shells.

1. INTRODUCTION

Reinforced laminated structures like plates and shallow shells are widely used in differ-
ent types of structures such as aircraft and hull of ships. The stiffening member provides
the benefit of added load-carrying capability with a relatively small additional weight
penalty. The static and dynamic problems of laminated plates with geometrical non-
linearity were described in a book by Chia [1] extensively. Sathyamoorthy [2] reviewed
a great number of papers dealing with the non-linear vibration of plates. Unreinforced
composite cylindrical shells have been analysed by analytical solution procedure or finite
element technique [3-9]. Static and buckling analyses of reinforced cylindrical shells have
been investigated in [10-14]. However the non-linear analysis of laminated reinforced com-
posite shells in general has received comparatively little attenion, this may be because of
their inherent complexity, when the loading is large the geometric non-linearity of the shell
must be considered. Approximated analytical solutions to the large deflection theory of
unreinforced laminated composite doubly curved shallow shells were considered in [15-17].

The purpose of the present paper is to investigate the non-linear dynamical problem
of laminated reinforced composite doubly curved shallow shells. The motion equations of
reinforced composite shells in terms of displacement are developed based upon the thin
shell theory considering geometric non- linearity and the Lekhnitsky’s smeared stiffeners
technique. Simultaneous ordinary differential equations are obtained by means of Bubnov-
Galerkin’s procedure. Non-linear responses are calculated by using an iterative procedure
in conjunction with Newmark constant acceleration scheme. The influence of stiffeners, the
shell geometry on the non-linear responses of eccentrically stiffened laminated composite
shell are considered.
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2. GOVERNING EQUATIONS ‘

Consider a symmetrically laminated composite doubly curved shallow shells of thick-
ness h and in- plane edges a and b. The shell is reinforced by eccentrically longitudi-
nal and transversal composite stiffeners and subjected to the transverse load of intensity
q(x1, z2,t).

The stiffeners may be also sleeves with SMA wire and the sleeves bonded on the shell
surface. The wire is not bonded to the sleeves, so it may slide freely along the stiffener.
However the wire is embedded within the sleeves, so that it participates in bending of the
stiffeners and the shell.

The non-linear strain-displacement relationships based upon the thin shell theory.
The stress resultants and couples of reinforced composite shells are obtained by using the
constitutive stress-strain equations for the shell composite material and the Lekhnitsky’s
smeared stiffeners technique considered as followings
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are extensional and bending stiffnesses of the shell without stiffeners, n; is the number

of composite layers of the shell, @1(5) arc the transformed stiffnesses of k*" layer. Note
that in a multilayered symmetrically laminated material the coupling stiffnesses B;; are
equal to zero and the extensional Ay, Ao and bending Dqg, Dog stiffnesses are negligible
compared to the other stiffnesses.
E- denotes the effective modulus in the axial direction of the corresponding stiffener;
u,v and w are displacements of the middle surface points along x;, zo and z3 = z
directions respectively ;
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1 |
ki = R ko = s are principal curvatures of the shell, and R, Ro- radii of curvatures;
1 2

Ajq, Ay - cross section areas of the stiffeners;

Iy, Is - inertia moments of stiffener cross sections ;

21, 29 - eccentricities of the stiffener with respect to the middle surface of the shell; the
torsional stiffness of the stiffener is disregarded;

s1, 2 - spacings of the longitudinal and transversal stiffeners respectively.

N” denotes the recovery tensile force in SMA wire, this force does not generate a
bending moment, because the wire can move freely along the sleeves.

The motion equations of a laminated doubly curved shallow shell are
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ng, ng are the number of composite layers and d;, do are the widths of cross sections of the
longitudinal and transversal composite stiffeners respectively; p(k) is the mass density of
k™ composite layer.

The substitution of equations (2.1) and (2.2) into the motion equations (2.3) yields
the system of motion equations in terms of displacements
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where L;; are linear operators of the form
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and non-linear functions R-(w), (i=1,2,3),Qs3(u,w), R3(v,w) are represented as
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Note that with k&1 = 0 the system of equations (2.4), (2.5) and (2.6) becomes a system
of motion equations of a reinforced composite cylindrical panel and with k) = ko = 0 we
recieve a system of motion equations for a reinforced composite plate.

A. combination of boundary conditions may be assumed to exist at the edges of the
shell. Morever for dynamical analysis it is necessary to give initial conditions.

3. LINEAR VIBRATION OF A REINFORCED COMPOSITE DOUBLY
CURVED SHALLOW SHELL

Omitting non-linear terms and no considering effect of SMA in the motion equations
(2.4) yields the equations system of linear vibration of a reinforced composite shallow shell
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where linear operators L;; are taken by (2.5).

First of all consider the natural vibration of the shell, i.e with ¢ = 0. The shallow shell
considered in the following analysis is simply supported and displacements of its end cross
sections are not restrained. The boundary conditions can be satisfied if we take the mode
shape as follows
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where m,n are natural numbers representlng the number of halfwaves in the x; and x5
directions respectively.

Substituting expressions (3.2) into the motion equations (3.1) yields the set of three
linear second order ordinary differential equations in term of Uy (t), Viun(t) and Wi, (t)




262 Dao Huy Bich and Vu Do Long

i mm -
11U + 612V + @18 Win = —JoUmn + 1 _”/mna

a21Umn + a22Vinn + a23Wnpn = _'JO‘/mn = Jl b Vs

. ) (3.3)
a31Umn + a32Vimn + azsWin = —JoWpn + JI‘T?Umn
nmw mim 2 nmw
+05 Vo = 2 (7F) 4 () ]
that can be rewritten in matrix form
[M]{j} + [KI{f} =0, (3.4)
where denote
Jo 0 —Ji(mm)/a
[M] = 0m7r Jomr _Jr%z(;m)/b nm d
——Jl— _JIT Jo + J2 [(——)2 = (—)2]
a b
a1 a2 a3
[K]= |a21 a2 a],
a31 az2 ass
T )
(1} =[A0O 2O 5O) = [Uan(t) Vinlt) W ()] (3.5)
the dot sign (.) denotes a derivative with respect to time, [...] denotes a matrix and {.}
denotes a column vector. The coefficients a;; in (3.3) are determined as follows
EA{\ /m nm 2
= (a4 =20) (7) e (77 )
2mn
a1z = ag1 = (AIQ + A66) A
B . _ Aq mrn  FEAjz ymm\3
a;3 = az = [( )h + A12k2]— - — (T) ,
EA mm\ 2
= (t +E2) (22 ()
” EA nm  EAgzy rnm\3 (B4
_ _ _2 nmw 222 (M
azs = agp = [(AZQ + )k2+ A12k1} 5 5 ( 5 > ;
= (D + @) (——) +2(D 2D )(m”)g("—”)2+
33 = | MY g 12 66 )\, b
Ely)\ /nm\4 FAz mm\ 2 EAszo n 2
(D22+—)(T) = S1 ]”(a ) =4 S92 kz(b)

EA, EA
+ (An + ——)k% + <A22 & —E)kg + 2k1k2Aqs.
51 82
Putting {f(¢)} ={fo}e™" into equation (2.4) reduces to

(1K1 - 1) {fo} = 0. (3.7)
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Because the components of {fp} do not vanish simultaneously then the determinant of
coefficients in the equation (3.7) must be equal to zero
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This is an algebraic equation of 3-degree with respect to w? for determining fundamental
frequencies of the natural vibration of the shell.

Now consider the forced vibration of reinforced composite doubly curved shell sub-

jected to excited distributed transverse load of intensity q (x1, 22, t). We represent function
q (x1,x2,t) in the Fourier series
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then the equation of forced vibration of the shell is

[MI{} + [K]{f} = {F}, (3.9)

where [M], [K] are the same as in (3.4), while {F'} is taken by

Fy=(0 0 qu®)".

Suppose the external force {F} = {Fy}sinQt, i.c {Fy = (0,0,4%,)T , we seck a solution
to the equation (3.9) in the form {f} = {f3}sinQt, where {f} is an amplitude of the
forced vibration of the shell being defined by

(1K1 - @20]) {55} = {Fo}- (3.10)

We can see that if ) = w, i.e the frequency of external force coincides with a natural
frequency of the shell , where w satisfies the equation (3.8), then Det|[K] — Q2[M]| = 0
so that the matrix [K] — Q2[M] becomes singular, it leads to the amplitude of the forced
vibration { fJ} to be undefined, that corresponds to the resonance phenomenon. If Q # w,
Det|[K] — Q?[M]| # 0 then the amplitude {f7} is determined by

2y = (171 - 22)) " {Fo). (3.11)
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4. NON-LINEAR VIBRATION OF REINFORCED COMPOSITE DOUBLY
CURVED SHALLOW SHELLS

Because of complexity an approximation is accepted in the representation of the shell
displacements by a single term of a double Fourier serics
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where m, n may be taken arbitrarily.
Substituting expressions (4.1) into the motion equations (2.4) and applying the
Bubnov-Galerkin procedure we obtain a set of equations
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m,n are taken only by odd natural numbers.
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b
(@p)
o

Equations (4.2) can be rewritten in the matrix form

[M{f} + (KOS} = {F}. (4.4)
where [M], {f}, {F'} arc the same as in (3.5), (3.9), but [I(f)] now is not a constant
matrix, it contains non-linear coefficients in addition to the usual linear-matrix

aq1 a2 a3 — 1 f3
[K(f)] = a2 a9 a3 — C2 f3 - (4.5)
a3 — Csfs Qo3 — Cofs sz — cafs+ cafi
To solve equation (4.4) an iterative procedure in conjunction with the Newmark
constant acceleration scheme is used. Divide the time process by time point ¢, =
(n+1)At and solve equation (4.4) step-by-step. Using Newmark’s method, equation
(4.4) can be written as

()it { b = {F b (4.0)

where

[ (Pusa] = (K] + 5 551M)
(Fhass = {Fhass + M) (2t P+ 4+ (). (1.7)

Once the solution {f},41 is known at ¢,1 = (n-+1)At, the velocity and acceleration
at t,41 can be computed from

Fhon =55 (U = 1) = AP b = (b
Fun =0+ S0+ 1)

Since the stiffness matrix [K*(f)n41] in (4.6) 1s non-linear, and iterative procedure
is needed to solve the equation. Using the direct iteration technique, equation (4.0)
can be expressed as-

(4.8)
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where k is the iteration number. At any fixed time for the (A + 1) iteration,

the stiffness matrix [K*(f)nH] is computed using the solution vector from the A"
iteration. The successive solution vector are checked using the following convergence

criterion
3
(k
i=1

where € is a given small value. Convergence may be accelerated using a weighted
average from the previous iterations according to the equation

KR+ (= ) Y = . (1.11)

where 0 < a < 1.
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5. NUMERICAL EXAMPLES

The shallow shell considered here is a spherical panel with in-plane edges a =
b=2 m, k; = ky = 1/R. The shell is simply supported. at all its edges. The
skin of the shell had 4 plies [45/ — 45/ — 45/45], each ply being 1.5 mm. The
typical properties of the fiber-reinforced composite considered in examples refer to
the AS4/3501 graphite/epoxy and are

F, = 144.8 GPa, FEy = 9.67 GPa
G12 = G13 = 4.14GPa, G23 = 3.45 GPa
v = 0.3, p = 1389.23 kg/m®

where E} is the longitudinal modulus associated with 1-direction, s is the transverse
modulus associated with the 2-direction, v is the major Poisson’s ratio, Gia, G3
and Gag are the shear modulii associated with 12,13 and 23 planes respectively. The
material of the composite stiffeners is the same as that of the skin. The height of the
stiffener is equal to 12 mm, while their width 4mm. The spacings of longitudinal
stiffeners and transversal stiffeners s; = 50 mm, and s,=50 mm respectively.

Next, results for the dynamic analysis of laminated stiffened shallow shells are
presented. The time step At is taken as 7/300 where 7' = 27/1450 and t,, = n.At
for all the transient problems considered. The applied harmonic uniform load is of
the form q(xz;, x9,t) = psin 1450, where the magnitude p may be taken variously,
while the first natural frequency of the mentioned reinforced composite shell is wy =
1406s7!.

Figs. la and 1b show the linear and non-linear transient responses of unstiff-
enedand cross- stiffened shallow shell with R=5 m respectively under the applied
harmonic load with magnitude p=75.10> N/m?
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I . B
| | 4 i
& AV
o | iy
1t { \ =
iy ! } L
01 2. OS: \\JI ‘\j “\,ll \\I,
Fig. la. Linear and non-linear transient re- Fig. 1b. Linear and non-linear transient re-
sponses of an unstiffened shallow composite sponses of a stiffened shallow composite shell
shell

The effect of geometric non-linearity is apparent from the figure; the linear re-
sponse is harmonic while the non-linear one is very complicated. It is evident from
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the Fig. 2 that the effect of stiffeners is to decrease the amplitude of the center
deflection w(a/2,b/2).

w(ar2b2) 4
{m) o,1§ Unstiffened shell ',f\
] Stiffened shell {
0,08 i
] "\ {
0067 '{/ !
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002
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Fig. 2. The effect of stiffeners on amplitude of deflection
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Fig. 3a. Non-linear transient of an unstiffened Fig. 8b. Non-linear transient of a stiffened
shell for various applied uniform loads

shell for various applied uniform loads

Figs. 3a and 3b show the effect of magnitude of load on the non-linear transient
response of an unstiffened shell and a stiffened shell with curvature radius R = 5m
respectively.

The effect of increasing load on the amplitude of the center deflection is apparent
from the figures.

Finally, the effect of shell geometry on the non-linear transient response of an
unstiffened shell and a stiffened shell under applied load with p=75.10*N/m? is

studied. The results are shown in Figs. 4a and 4b. The shell with greater curvature
has the lower amplitude of the center deflection.
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Fig. 4a. Non-linear transient of unstiffened Fig.  4b. Non-lincar transient of stiffened
shells for various curvatures shells for various curvatures

6. CONCLUSION

The non-linear dynamical behavior of cccentrically reinforced laminated compos-

ite doubly curved shallow shells is investigated using the thin shell theory consider-
ing the geometrical non-linearity and the Lekhnitsky’s smeared stiffeners technique.
The resulting non-linear equations are solved by the direct iteration technique in
conjunction with the Newmark constant acceleration scheme. Eccentrically stiff-

e
p

ned laminated shells with various curvature radius are analyzed and the results arce
resented for non-linear dynamic responses.
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PHAN TiCH DONG LUC PHI TUYEN VO THOAI HAI DO CONG
COMPOSITE LOP CO GAN GIA CUONG

Bai bdo d¢ cap dén phan tich dong lire phi tuyén vo thodi hai do cong composite 1ép ¢é gan gia
cwong. Phirong trinh chuyén dong cia vé dwoc thiét 1ap duwa tren 1y thuyét vo mong 6 tinh dén
phi tuyén hinh hoc va ky that tinh gan gia cuwong theo Lekhnitsky. Nho phuwrong phap Bubnov-
Galerkin nhan dwoce heé phrong trinh gidi cac phwong trinh vi phan thwong phi tuyén. Ddp g
phi tuyén cia vé duge tinh todn nho so do NewMark va thuat toan gan dung licn ticp. Kdt qua
nhan dwrge cho thay anh hwdng cia gan va hinh hoc noi tai eia vé dén ddp g dong cia vo
composite 1&p ¢6 gan dat lech tam.



