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A CAUCHY LIKE PROBLEM IN PLANE ELASTICITY*
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Abstract. Let Q be a bounded domain in the plane, representing an elastic body. Let
T'ys be a portion of the boundary I' of ©, I'y being assumed to be paralled to the x -
axis. It is proposed to determine the stress field in Q from the displacements and surface
stresses given on I'g. Under the assumption of plane stress, it is shown that o, + 0y is a
harmonic function. An Airy stress function is introduced, from which the stress field is
computed.

Consider an elastic body represented by a bounded domain €2 in the plane. Let I'y
be a portion of the boundary I" of 2 assumed to be paralled to the x - axis (cf. Fig. 1).
We propose to determine the stress field in €2 from the displacements and surface stresses
given on I'y.

v

Fig. 1

Cauchy like problems in plane elasticity are treated in [1], [4] and others (cf. Refer-
ences). For a derivation of basic relations on stresses and displacements, we follow {TG].
Assume plane stress. We denote the displacements in the = - and y -directions respectively
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by u and v and the stress components by 0,0y and 75,. Now, we have
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In the absence of body forces, we have
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These are the equilibrium equations for our problem.
We now derive the compatibility equations. We have
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from which we get upon differentiating with recpect to y, then with respect to x
e, O%. _ 0y (6)
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This differential relation, called the condition of compatibility, must be satisfied by

the strain components. By using Hooke’s law, the condition (6) can be transformed into
a relation between the components of stress.

We have
By == —1—(az — voy), £y = i(ay — VOg),
1 214 1) (7)
VYzy = ETxy = ——E—Txy-
Substituting into (6), we find
2 52 827.xy

é—y——i(ax—uay)+ w(ay—uoz) =2(1+v) 910y’ (8)

Differentiating equation (3) with respect to x, equation (4) with respect to y and
adding together, we find
82713, B 8%0, 620y 9
dzdy 0z 9y’ ©)
Substituting into (8), the compatibility equation in terms of stress components be-
comes

02 02

Before going further, we make the assumption that there exists an open set Qg with
o € Qo N Q such that the stress field is analytically continued to I'g. Let

log + mTey = X

moy + U1y =Y on T, 1)
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where [, m are the z and y - components of the exterior normal to I'y and furthermore

u = Tu(x)
Uzﬁ(w) on Fo. (12)
It can be shown that
0oy
o, and 3 are known on Iy, _ (13)
Y
Joy
o, and - are known on Ty. (14)
Y

Thus o, + 0y is seen as solution of a Cauchy problem on €. As is well-known, the problem
admits at most one solution. It is also known that the problem is ill-posed. Since by
(10) o + oy is harmonic on €, it is analytic on I'g. Thus if 2, = (2, k) n = 1,2,...is a
sequence of points of I'g with x; # z; for i # j and accumulating at a point interior to I,
then o, + oy is uniquely determined by it values on (z,). Hence the Cauchy problem for
the Laplace equation can be formulated as a moment problem, it has been regularized by
various methods (cf. e.g. [2] chapter 6).
Now we introduce the Airy stress function as follows. Let f = o, + o,, we define

+00 400

pay) =5 [ [ Hembite— 7+ v = nldgan, (15)

—00 —00
where f is set equal to 0 in the complement of 2. We let

e | _Fe . _
0x2’ Y dx0y’

(16)

Oy == Oy =
x 6’[.]2, Yy

It can be checked that &,, @, and 7., satisfy the equalibrium equations and the
compatibility relation. Hence

Ty = O Ty = Ty Ty = T (17)
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BAI TOAN TUA CAUCHY TRONG DAN HOI PHANG

Xét mot vat thé dan hoi biéu dién bdi mot mien Q bi chan trong mat phang. Goi I'y
la mot phan cia bién I' ciia mien Q , Iy dwoc gia thidt 1a song song vai truc toa do x.
Véan de dit ra la xdc dinh trueong (g suét trong € tir cdc chuy®én vi vi tmg sudt mit cho
trude trén Iy, Dudi cée gia thiét cia tmg sudt phang, bai bdo da chi ra o, + o, 14 mot
ham dieu hoa. Mot ham tng suat Airy duoc gidi thieu dé tir dé ¢6 thé tinh dugce truong
ing suat .



