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A CAUCHY LIKE PROBLEM IN PLANE ELASTICITY* 

DANG DINH ANG, NGUYEN DUNG 
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Abstract. Let rl be a bounded domain in the plane, representing an elastic body. Let 
ro be a portion of the boundary r of rl, ro being assumed to be parallcd to the x -
axis. It is proposed to determine the stress field in n from the displacements and surface 
stresses given on r 0 . Under the assumption of plane stress, it is shown that ux + uy is a 
harmonic function. An Airy stress function is introduced, from which the stress field is 
computed. 

Consider an elastic body represented by a bounded domain 0 in the plane. Let ro 
be a portion of the boundary r of 0 assumed to be paralled to the x - axis (cf. Fig. 1). 
\Ve propose to determine the stress field in 0 from the displacements and surface stresses 
given on ro. 
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Fig. 1 

Cauchy like problems in plane elasticity are treated in [1], [4] and others (cf. Refer­
ences). For a derivation of basic relations on stresses and displacements, we follow {TG]. 
Assume plane stress. \Ve denote the displacements in the x - and y -directions respectively 
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by u and v and the stress components by ax, ay and Txy· Now, we have 

ou ov Du ov 
Ex = -;:;;-- ; Ey = -;:;;-- ; 'Yxy = -;:;;-- + -;:;;-- , 

ux uy uy ux 
(1) 

{ 

1 1 
Ex= E(ax - Vay), Ey = E(ay - Vax), 

. 1 2(1+v) 
"( xy = GT xy = E T xy 

(2) 

In the absence of body forces, we have 

Oax + OTxy = O 
ox oy 

(3) 

Oay OTxy _ O 
oy + ox - . (4) 

These are t he equilibrium equations for our problem. 
We now derive the compatibility equations. \Ve have 

OU av OU av 
Ex = -;:;;-- , Ey = -;:;;-- , 'Yxy = -;:;;-- + -;:;;--

uX uy uy ux 
(5) 

from which we get upon differentiating with recpect to y, then with respect to x 

o 2Ex o2Ex 02"(xy --+--=--
oy2 ox2 oxoy" 

(6) 

This differential relation, called the condition of compatibility, must be satisfied by 
the strain components. By using Hooke's law, the condition (6) can be transformed into 
a relation between the components of stress. 

We have 

{ 

1 1 
Ex = E (ax - Vay), Ey = E (ay - Vax), 

1 2(1+v) 
'Yxy = G Txy = E Txy· 

(7) 

Substituting into (6), we find 

02 02 02 T xy 
!.1 2 (ax - vay) + !.1 2 (ay - Vax)= 2(1 + v)~ . 
uy ux uxuy 

(8) 

Differentiating equation (3) with respect to x, equation ( 4) with respect to y and 
adding together, we find 

02Txy _ o2ax o 2ay 
oxoy - ox2 - oy2 . (9) 

Substituting into (8), the compatibility equation in terms of stress components be-
comes 

(10) 

Before going further, we make the assumption that there exists an open set n0 with 
ro c non n such that the stress field is analytically continued to r 0 . Let 

lax+ mTxy = X 
may+ lTxy = Y 

on ro, (11) 
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where l, m are the x and y - components of the exterior normal to f o and furthermore 

It can be shown that 

0-x 

0-y 

·u = u(x) 
v = v(x) 

and 
00-x 
--
oy 

and 
00-y 

oy 

on fo. (12) 

are known on fo, (13) 

are known on r 0. (14) 

Thus o-x + o-y is seen as solution of a Cauchy problem on D. As is well-known, the problem 
admits at most one solution. It is also known that the problem is ill-posed. Since by 
(10) O-x + o-y is harmonic on D, it is analytic on fo. Thus if Zn = (xn , k) n = 1, 2, ... is a 
sequence of points of fo with Xi i- Xj for i i- j and accumulating at a point interior to fo, 
then o-x + o-y is uniquely determined by it values on (zn). Hence the Cauchy problem for 
the Laplace equation can be formulated as a moment problem, it has been regularized by 
various methods (cf. e.g. [2] chapter 6). 

Now we introduce the Airy stress function as follows. Let f = O-x + o-y, we define 

+oo +oo 

ip(x, y) = 2_ J J f(~, 17) ln[(x - ~)2 + (y·- 17)2]d~d17 , 
47r . . 

-oo -oo 

where f is set equal to 0 in the complement of n. We let 

- 82ip 

o-y= 8x2' 

(15) 

( 16) 

It can be checked that ax, o-y and Txy satisfy the equalibrium equations and the 
compatibility relation. Hence 

Txy = Txy· ( 17) 
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... , .. ..... " 
BAI TOAN TVA CAUCHY TRONG DAN HOI PHANG 

Xet m<)t v~t the dan hoi bieu di en b&i m<)t mien n bj ch~n trong rn~t phAug. G9i r 0 

la m<)t phan cua bicn I' Cua mien 0 , fo duqc gia tbict la song song v&i tr\tC t<.m (1() T. 

Van de d~t ra la xac d~nh truang (mg suat tron'g n ti.r cac chuycn vj v2t (mg suat m(lt cho 
tru&c trcn r 0 . Du&i cac gia thict cua tmg suiit phAng, bai bao dii chi ra ar; +av la rn<)t 
ham dieu hoa. M<)t ham trng suat Airy duqc gi&i thi¢u de ti.r d6 c6 the tf11h dm:rc tnrang 
(rng suat . 


