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Abstract. The paper in question gives consideration to two examples of KBM method
for constructing approximate solutions of Klein-Gordon-Bretherton equations often oc-
curred in practice.

1. INTRODUCTION

Professor, Academician Nguyen Van Dao was tragically killed in Hanoi on December
11, 2006. Nguyen Van Dao was born in August 10, 1937 in the Commune Chi-Tien,
District Thanh-Ba, Province Phu-Tho, Vietnam and dedicated all his life to development
of science, education and culture of Vietnamese people. Throughout his life Professor
Nguyen Van Dao attained great achievements in the field of science and education of
Vietnam. He was the President of the Scientific and Education Council of the Vietnam
National University of Hanoi; Vice President and General Secretary of the National Center
for Scientific Research of Vietnam; Chairman of the Natural Science Council, Ministry of
Science and Technology.

Of great importance is his contribution to creation of scientific community to do re-
search, education and application of mechanics in Vietnam. He was the Founding Director
of the Institute of Mechanics; Head of the Department, Hanoi University of Technology:
President-Founder of the Vietnam Association of Mechanics, the Founding Editor in Chief
of the Editorial Board of Vietnam Journal of Mechanics, the Representative of the Viet-
nam Association of Mechanics in the International Union for Theoretical and Applied
Mechanics.

The scientific activity of Professor Nguyen Van Dao was marked by obtaining impor-
tant results in problems on interaction between nonlinear oscillating systems, non-linear
dynamics and chaos as well as asymptotic methods for studying non-lincar high degree
systems. He published more than 100 scientific works and monographs.

He was also famed for his public activity. He was the member of Presidium of the
Central Committee of Vietnam Fatherland Front; Vice-President of Vietnam Peace Com-
mittee; President of Association for Liaison with Overseas Vietnamese.

The international activity of Professor Nguyen Van Dao was widely known and highly
appreciated in Vietnam and worldwide. He was the Laureate of the Ho Chi Minh Prize
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in the field of Science and Technology, Ukraine National Prize in Science and Technology,
the Holder of the 1-st degree Labor Medal, 2-nd degree Resistance Medal. He was elected
as the Member of the III-d World Academy of Science; Member of the Czech Academy of
Science; Member of Ukraine National Academy of Sciences.

Professor Nguyen Van Dao was exceptionally sweet and hospitable person. 1 got
acquainted with him in 1961 when he first arrived in Kiev to attend the International con-
ference and since then often met with him in Moscow and some cities of Europe including
Warsaw, Prague, Berlin and others.

We had close cooperation in the field of mechanics (non-linear mechanics, dynamic
systems). Since 1980 I have visited Vietnam 8 times and each arrival was like a festival.
Nguyen Van Dao and his wife Chan-Kim-Tyi always met me at the airport, we drove to
a hotel where I would stay or they put me up.

The tragic death of Nguyen Van Dao will be immeasurable loss for Vietnamese science.
As a scientist and a person he will always be within living memory and my memory in
particular. It was Nguyen Van Dao that introduced me to many Vietnamese cities, their
lovely sights and hard-working people which I loved so much.

The result of our close cooperation that lasted for more than 30 years was four gen-
eralized monographs devoted to nonlinear oscillating systems, numerous participation in
various conferences and congresses where we would deliver talks.

2. FIRST OF ALL WE DEAL WITH THE PROBLEM ON
CONSTRUCTING THE ASYMPTOTIC SOLUTION OF PERTURBED
KLEIN-GORDON EQUATION

We consider the equation

0%u 0%u ou Ou
Froie C2W + A2y = sf(ut,u, TR 8—1)
for ¢ = 0, this is the Klein—Gordon equation and, for A = 0, it turns into the classical
wave equation.
Equation (2.1) was studied by many scientists in the course of investigation of nonlinear
wave processes in different branches of natural sciences.

. Below, we dwell on principal aspects of the application of asymptotic methods of
nonlinear mechanics to the construction of approximate solutions of Eq. (2.1). This may
be useful for studying special problems of natural sciences that require the investigation
of wave processes subject to the action of nonlinear perturbation forces and described by
equations of type (2.1). This can also be useful for the analysis of the obtained results.
The development and detailed application of the asymptotic method to the solution of a
special problem that leads to Eq. (2.1), provided that there is no periodic perturbation
with period v, was first realized in [4].

Thus, for € = 0, Eq. (2.1) is the classical Klein—-Gordon wave equation

; (2.1)

2
—Cng—Z + 224 =0 (2:2)

admitting a solution of the form

u = acos(kx — wot + ), (2.3)
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where a and ¢ are constants and k and wy satisfy the variance relation
= %% + X%, (2.4)

Assume that € > 0 is a small parameter and a function f(vt,u,us, uy) is periodic (or

almost periodic) in # = vt and has sufficiently many derivatives with respect to the other

ou 0%u ou 0%u

variables for all their finite values. Denote u; = —, uy = =5 Uz = 7 and ug, = 922

7 s

Then, according to the well-known statements of the asymptotic method of nonlinear

mechanics, we seek an asymptotic solution of Eq. (2.1) for ¢ — 0 in the form of the
following series:

u(t, ) = acostp + euy (a, ¥, 0) + e2ua(a, v, 0) + . ..

(¢ = kz — wot + @), ' (2.5)
where a and 1) are determined by the equations
% = 6A1(a) + €2A2(a) iy
0
8_a = eBi(a) + €2By(a) + .. .,
89” (2.6)
8—th) = —wp + €C1(a) +€2Ca(a) + .. .,
0
8—26 =k +¢eD1(a) +€°Da(a) + .. ..

To simplify calculations, we consider the nonresonance case (v — w).

By differentiating the right-hand sides of series (2.5) and taking (2.6) into account,
we obtain expressions for u;, uz, uy, and ug,. By substituting these expressions in the
left-hand side of Eq. (2.1) and expanding it in powers of £, we obtain

up — C?ugy + Nu = e{2[woA; + CQkBl] siny} + 8=, (2.7)
Further, by substituting the values
u = acosy + euy(a, ¥, 0) + 2uz(a, ¥, 0) + . . .,
u = awp siny) + e{ Ay cos ) — asinyCy — ufywo — uhr} + €2+ ... (2.8)
uz = —aksinty + e{—asiny Dy + uj k} +€°...
in the right-hand side of Eq. (2.1) and expanding it in powers of €, we get
ef(0,u,us, uy) = ef(0,acosyy, awsiny, —aksinp)
+ e2{f.(8, a cos®, awp sin ¥, —aksin ¥)u(a, ¥, )
+ f1, (6, acos, awg sinyp, —ak sin ) x
X (A; cosp — aCh sinyy — ujwo + ujgv)
— fu.(0,acostp, awsiny, —aksiny)(aDysiny — uy, K)} + e... (2.9

By equating the coefficients of the same powers of € on the right-hand sides of (2.7)
and (2.9) and taking the variance relation (2.4) into account, we obtain the following
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equations for determining u;(a, ¥, 0), ua(a, v, 0),...:

9%u - 0%y 9%y

2 1 _ 1 2 1

A (aw ) 2wov 550 TV a0
= —2[Aywo + C%kBy]siny — 2[Crwy + C2kD1)acosv + fo(0,a, ), (2.10)

82u, 9%u 8%y

2 - 2 2 2

¥ (50 552 © us) 2oV 556 TV Bg
= _2[A2w0 o+ C2k32] siny — 2[02(4)0 + C’ZkDg]a cosy + fi (9, a, w), (2.11)

where

fo(6,a,%) = f(6, a cost, awpsin h, —aksin ),
f1(03 a, w) = f;(e’avw)

It is obvious that the functions fo(,a, ), f1(6,a,),... are 2m-periodic both in
and vt. In addition, they depend on a. The explicit form of these functions is known if
the values Aj(a), Bj(a), Cj(a), Dj(a), and u;(a,,0),j = 1,2,..., are determined.

Let us deterrnme these functlons For this purpose, we expand the function fo(a Y, 0)
in the double Fourier series

fO(aa 1/)7 0) = Z fr(l(y)zl(a)ei(nO-i—mi/)) (212)
where
1 2w 27
Q) =1 / / fola, 1, 0)e~ 0+ gy (2.13)
0 0

As usual, we seek the function u; (6, a, ) in the form of the series

U (0, a, "/)) Z f ’L(n0+mw) (214)

whose coefficients should be defined.

Let us substitute series (2.12) and series (2.14) in Eq. (2.10) and equate the coefficients
of the same harmonics on the left-hand and right-hand sides of the obtained expression.
Taking into account the condition of absence of zero de nominators, after simple calcula-
tion, we obtain the following expression for u;(0, a, 9):

7(107)71 (a)ei(nO—}—Tn‘l/))
u1(0,a,v) = Z X2(1 — m2) + 2vwonm — v2n?

(n0/m#£1)

(2.15)
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We also obtain the following expressions for the functlons on the right-hand sides of
Eqgs. (2.6):

27 2n
2[A1wo + C?%kB;] = / / (6, a, ) sintpdfdyp,
0
et (2.16)
2[Crwo + C%kDy] = //fo(G,a,w) cosdidi.
L

0
Hence, taking into account that y = kx — wot + ¢, we obtain, to within values of the first
order of smallness,

2w 2w
Oa  ,0a
5 +w08—$ = 7r2w //fo (0, a, ) sinydfdy,
2.1
27 27 ( 7)
o 09

E‘*‘WO% m//fo 0 a, (ﬂ) COSlpd@dw,

where w{ = dwp/dk is the so-called group velocity.
By passing to trigonometric functions on the right-hand side of (2.15), we obtain

0
u1(0,a,¢) = % Z {)\2( gos(nf + 1) X

1 —m2) + 2vwonm — v2n?

(n#0m£1)
27 2m

><O/O/fo(e,a,w)cos(n9+mw)d9dw

27 2 .
sin(nf + my) //
2
Y (1 = m?2) + 2vwonm — v2n? (6, a,%) sin(nd + mw)d(?dw} ( 18)
00

where ¢ = kx — wot + .

We set uy = gz = 0, A2 = w?, and wp = —w in Eq. (2.1). Then expressions (2.15)-
(2.18) coincide with the relations presented in [2] for a nonlinear oscillator subject to the
action of the perturbation e f(vt, u,u;) in the non resonance case.

If the right-hand side of Eq. (2.1) does not depend on vt, then, instead of (2.17) and
(2.18), we get the expressions ‘

27

da ;00 € .
5+ wbhge = 5o [ fola,w)sinvay,
' 4 ) (2.19)
¢ Op € /
8t i LL) ax_ zﬂ_woa f()(a, w) cos z/}d'l/)7

0
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2
ul(a,w)=% Z m{cosmw/ﬁ)(a,w)mcoswdw
0

m(mz#+1)
2m

+ sinmap / fola,¥)m sinwdw}, (2.20)
0

which coincide with the relations given in [10]. -

Let us consider in detail the construction of an asymptotic solution of the Klein—
Gordon equation by the Bogolyubov averaging method.

Consider the equation

ugt — C%kugy + Nu = ef(u, ug, ug) (2.21)

and assume that its right-hand side satisfies the same conditions as before. For ¢ = 0, Eq.
(2.21) has a solution

u = acosy, (2.22)

where ¢ = kx — wot + ¢, a and ¢ are arbitrary constants, wg and k satisfy the variance
relation

wi =GPk £ A%, (2.23)
and the following relations hold:
Uy = awp siny, uz = —aksin. (2.24)
Let us introduce new variables a(t, z) and (¢, z) by the relations

u = a(t, z) cosy(t, ), ;
: (2.25)
w = a(t, T)wo sinyY(t, x),

where ¢ (t, x) = kx — wot + ¢(t, ). Then, demanding the expressions (2.25) to be compat-
ible and performing elementary calculations, we get
ag cosp — ap siny = 0,

az cos Y — apy siny = 0. 226)

Multiplying the second relation in (2.26) by w) = C%k/wp and adding it to the first
one, we obtain
(at + whag) cos ¥ — (pt + wypz)asiny = 0. (2.27)
Further, we have
Uy = aywp SinY — awg cos P + awypy cos Y,
(2.28)
Uge = —a kgsiny — ak?, cos ) — akypy cos .

Inserting these values in Eq. (2.21), we arrive at the relation

(@t + whag)wo cos P + (¢t + whpz)woasiny = e f(a cosy, +awgsiny, —aksiny)). (2.29)
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It follows from the system of equations (2.27), (2.29) that

s + w{)@ = if(a cos Y, awp siny, —ak sin) sin,
ot or  wy .
5 A (2.30)
8(/; +w 0690 = ;Tof(a cos Y, awp siny, —ak siny) cos 1,
where ¢ = kx — wot + .
Taking into account that wj = C?k/wy, we write
0u_ Dadv __ 00
ot ~ oot T oy
da da O da
2 2 2.2
k— =Ck——— =C%k :
L ox ¢ oY Ox oy
Hence,
Oa Oa 2,9 9, Oa 2 0a
(g +wbg,) = (C “0) 7 59
Similarly,
&p 0@ 9 _ 20
ot ~ “apoar Doy
dp D OY Oy
2,99 _ ~2,9¢ L2 9P
C kc’)x C k(‘)‘(/) 9 = 0% o
Consequently,
dp  ,0p 2,2 2,0 20¢
= (C°k* — —AT—
Gy b)) = “0g5= oy
Thus, the system of equations (2.30) can be written in the form
9a = —if(a cos ), awp sin 1, —ak siny) sin 1,
oy A2
5 ' (2.31)
ﬁ —if(a cos Y, awp sin Y, —ak sin) cos .

The obtained equations (2.31) are equations in the standard form in the Bogolyubov sense.
The righ‘c—hand sides of Eqs. (2.31) can be represented as the Fourier series

f(a cos Y, awp Sin Y, —aksm Y)siny =efi(a, ) =¢ Z Pl g,

(2.32)
— )\Qf(a cosw, awpsiny, —aksiniy) cosy = € fo(a =g Z fon(a)e™.
a
where
) 27
fin(@) = 5= [ Fila)e™dp, (o / o, W)™,

0
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Denote
lny - mu
(@9) =Y - finla Fala, ) = 3 = fanla)e
n#O n#0
Changing the variables in (2.31) according to the relations
a=ay +evi(a,¥1), ¢ =1 +ewi(a, 1), (2:33)

where ¥ = kt — wot + ¢1, a1 and ¢; are new variables, and the functions v (ay, ;) and
wi(ay, @) satisfy the relations

vi(an, ¥1) = filar,¥1), wilar, 1) = falar, 1), < (2.34)

instead of Eqs. (2.31), we obtain the following system of cquations in the new variables
a; and ¢

o f
a—ﬁ = e fio(ar) + €[ fla(ar, ¥1)vilar, ¥1) + flp(ar, i)wi(ar, )] + €%,

(2.35)
0 s
dizzl = efaolar) + €[ foa (a1, ¥1)vi(ar, ¥1) + fap(at, p)wi(ar, v1)] + €

By neglecting the terms of the second order of smallness with respect to € on the right-hand
sides of system (2.35), we obtain the averaged system of the first approximation

day , Op1
=€ ay), —— =¢€ a 2:36
5 fio(a1), 50 foolay) (2.36)
or, in view of the reasoning presented above, the system
8a1 / 80,1
— twym— = ajwo sin iy, —arksinyy ) siny;dy,
o 05, = on 1wo sin Y1, —ay 1) sin iy dipy
(2.37)
P 9 2m
#1 1 91 € : : :
—— 4wy = ——— aq cos i, ajwp sinyy, —arksinyy) cos i dyy.
% 05, 27rw0a1/f( 1 €OS Y1, arwp sinyy, —ark sinyy) cos Yidi
0

Equations of the first approximation (2.37) can casily be obtained by direct averaging
of the right-hand sides of system (2.31) over % in view of the variance relation (2.4).
Moreover, as expected, Egs. (2.37) completely coincide with system (2.19).

Note that, by using the described asymptotic method of nonlinear mechanics, one can
successfully construct asymptotic approximate solutions of more complicated nonlinear
equations similar to the Klein—-Gordon equation for small . Thus, we can construct
solutions of a nonlinear equation with slowly varyirig parameters of the form

0%u 0%u ou c)u)

a2 Ox? Yot dx)’
where ¢ is a small positive parameter, 7 = ¢t is slow time, and d0/dt = v(7) both in the
resonance and nonresonance case. The obtained relations for both the first and second

approximations allow one to study non stationary conditions for a system described by an
equation of the form (2.38).

— P+ A )u-rf(O u, (2.38)
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Furthermore, it is also very interesting to investigate the action of white noise &~ with
intensity 1 on a system described by a nonlinear equation of the form (2.1). In this case,
we consider the equation

0%u 23 u

du du du :
92 -C b7 +/\2u—sf<u 5 ) + Veg (u, ETR )E , (2.39)

for which the problem is reduced to finding a system of stochastic dxfforcntml equations
for the amplitude and phase and to the construction and analysis of the Fokker-Planck-

Kolmogorov equation for the probability density of the amplitude and phase of the system
under consideration.

These problems will be studied in one of the subsequent papers.

3. NOW WE ARE PASSING TO CONSTRUCTION OF ASYMPTOTIC
SOLUTION OF PERTURBED BRETHERTON EQUATION

Consider the equation
Ugt + Uggzr + Uz +u = ef(VE, u, uy, uy), (3.1)
which, for f(vt,u,us, uz) = u®, turns into the model Bretherton equation [1]

st + Ugpzze + Uz + u = eu®. (8.2)
Here,

d%u 0*u ot

Ut = 81‘2 9 Ugxr — 0.’132 ] Ugprrxr — 01:3

For € = 0; Eq. (3.1) [as well as Eq. (3.2)] degenerates into a nonperturbed equation
Ut + Uppzr + Ups + u = 0, (3.3)
which admits the running-wave solution
u=ugacosyy, Y =kx—wtt+p, (3.4)
where a and ¢ are constants, and k and w satisfy the dispersion relation
= - -1 (3.8)

Below, we present the principal scheme of the construction of the first and second
approximations of an asymptotic solution according to the basic methods of nonlinear
mechanics (the KBM method). This may turn out to be useful for the solution of spe-
cific problems of natural sciences that require the investigation of wave processes, taking
into account the effect of nonlinear time-dependent perturbing forces, random external
perturbations, and other factors.

Thus, passing to the construction of an approximate asymptotic solution of Eq. (3.1),
we assume that € > 0 is a small parameter and the function f(vt, u,u, u,) is periodic (or
almost periodic) in § = vt and differentiable sufficiently many times with respect to the
other arguments for all their finite values.

Then, according to the known statements of asymptotic methods of nonlinear mechan-
ics (the KBM method), an asymptotic solution of Eq. (3.1) (for £ — 0) is sought in the
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form of the following series with slowly varying parameters ! [3, 4]:
u = a(t,z) cosy(t, ) + eui(a, ¥) + e2up(a, ) + €* .. .,
b = kz — wt + p(t, 3),

(3.6)

where the slowly varying parameters a(t, z) and ¢(t, ) (the amplitude of the first harmonic
and the phase) satisfy the system of equations

% =¢eAi(a) +€2Az(a) +€3...,
L =¢eB)(a) +€2By(a) + 3.,
Ox
5 (3.7)
a—f = eCi(a) + e2Ca(a) + 3. ..,
0
—a—i =eD(a) 4 €2Dy(a) + €3.. ..

Here and in what follows, we denote

Oa da Oy Oy 0%a 0%

—=a 1 s . meithe oo 5 —= = Ay, 5 — Qzxz, ete.
et gl G T T Wm T s 5T

It is clear that

Yy = —w+eCi(a) + 6202((1) I &F v
(3.8)
Y =k +eDi(a) +£2Dy(a) + 5. ...

Differentiating the right-hand sides of Egs. (3.7), we obtain the following expressions
(to within quantities of order £2), which are necessary for further discussion:

dA
(ar)? = e?A%(a) +€3..., ay= eg—il(a—)/h(a) 8%, ..
dB .
(0:) = *BHa) 5. .., tigy = 52———@31(@) +e3...
dCd“ (3.9)
() = 2CHa) +&° vy Y= 52—-6—;5(&—)141@,) T P
dD .
(pz)? =e’Di(a)+€®..., Qaz= EQ%B] (@) +%....
Denote
_ u®(a, ) = a(t, x) cosy(t, x). (3.10)
By differentiating the terms of series (3.6) with respect to ¢ and z, we get
u? = a; cosY — aw; siny + aw sin 1y, (3.11)
s = 2 [atw sin ¢ + apiw cos w]
+ agr cos Y — apy siny — 2a;p0; Siny — agpf cos ) — aw? cos 1, (3.12)

L Below, for simplicity, we assume that the right-hand side of Eq. (3.1) does not depend on vt
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ul = ay costh — aggsiny — aksin, (3.13)
l ul, = —2[axk siny + awk cos w]
+ Gy COSY — AP SINY — 20,0, sintp — agcg cosY — ak? cos P, (3.14)
ud . =4 [azk’ sine + agLk® cos Y] +6 [anapzk + apgak ] siny
— G[aJmk2 — a<pz ] costp + €2+ -+ ak? cos . (3.15)

Further, we determine the derivatives of u;(a, 1) with respect to ¢ and x:

uit(a, ¥) = wia(a, Y)as + uiyla, ¥)er — viy(a, Y)w (

uyee(a, ) = —Q[watuwa(a Y) + wert gy (a w)] + wQ'uww(a, P)+e?. .., (
u1z(a, ¥) = azuia(a, ¥) + prury(a, ¥) + kuiy(a, ¥), (3.18

Uz (s ) = 2[kaztiap(a, ¥) + kptiyp(a, ¥)] + EPuigpp(a, ) + 3. .., (
Uzraz (@, ¥) = 4 [k attiapyy (@, ¥) + K0atipppp(a, ¥)] + Kuigppuy (@, 1) + 5. (3 20)

For the term wuz(a, ), to within quantities of the second order inclusive with respect
to g, we get

uge(a, ) = —ugy(a, P)w+ 3., uaula,¥) = ugyy(a, ¥)w?, (3.21)
u?x(aa w) = U2¢((L, ¢)k + 53 LY UQII(GW ¢) = uQUW(aa L/j)k‘Z’ (322)
Ugzzre (@, V) = Ugyyyy(a, )KL (3.23)

By substituting expressions (3.6), (3.10), (3.12), (3.14), (3.15), (3.17), and (3.19)-(3.23)
for u, ue, Uze, and Uzzz, on the left-hand side of Eq. (3.1) and taking relations (3.9) into
account, to within quantities of order €2, we obtain

2

Ut + Uggrr + Uze + U = —w a cosyy + k*a cos P — k2a cos Y+ acosy

+ e{ [F urgpppp (@, 9) + WPuigpp(a, ¢) + Fuigy(a, ©) + wi(a, )]

+ 2[A; (a)w + (2K — k)Bi(a)] siny + 2[C1(a)w + (3RS — k)D(a)]acosy}
* 52{ [ uogpyn (@, 1) + w?uayy(a, ¥) + kK uopy (a, ¥) + us(a, )]

+ 2[Az(a)w + (9h" = k)Ba(a)] sin¢g + 2[Ca(a)w + (2k3 — k) Ds(a)]a cos

+ [ - dC; (a)A (a) = 2A1(a)Cy(a) + 6(2k231(a)D1(a)
- akQEi——l?j%zBl(aD - adDdla(a)Bl (a) — 2B1(a)D1(a)] sin
+ [Zaia (@) ache) - 6( LB (@42 - aDf)k?)

+ d31 (a)

T Bi(a) — aD%(a)} cos vy + 4[Bl(a)k3u1a¢¢¢(a, )
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+ D] (u)k'guww,w(a, ’l,/))] -2 [u}Al (a)u}aw(a,, L/J) -+ wC’l (a)’LLw,U,(CL, (,/))}
+ Q[Bl (a)kulaw(a, ’(ﬂ) + D1 (a)kuww(a, l/))]} -+ 53 S (321)

By substituting expressions (3.6), (3.10), (3.14), (3.16), and (3.18) for u(a, ), w (a, ),
and wuz(a, ) on the right-hand side of Eq. (3.1) and expanding the result in the Taylor
series, we get

ef(u,ut, uy) = ef(acosyy, awsiny, —aksin )

+,€2{f;(a cos ), awsin ¥, —aksiny)u;(a, )

+ fy,(acos v, awsiny, —aksiny) (A (a) cosy — aC)(a) siny) — wuyy(a, ¢))

+ f;'w(a cos 1, awsin Y, —ak sin w)(Bl(a) cosy — aDq(a)siny + kuyy(a, w))} Y.

By equating the coefficients of the same powers of ¢ in expressions (3.24) and (3.25),
we obtain the following chain of equations for the determination of the functions u;(a, v),
Aila), Bila), Ci{n), and Di(a), i=1,2,3,.
€% : —w?acosy + ak? cos Y — ak? cos) + acosyp = 0, (3.20)
5 :lC ’ulwww¢(a, ID) +w uww(a l/)) + A 7,11¢,¢,( s L/}) + ul(a, '(/,!)
+ 2[A;(a)w + 2(k* — k) B, (a)] siny
+ 2[C1(a)w + (k> — k)Di(a)]a cosv
= ef(acosy, awsiny, —aksin), (3.27)

&2 ik uggypy (@, V) + wPugyy(a, ) + KPugyy(a, ¥) + ua(a, )
+ 2[Az(a)w + (2k® — k)By(a )] siny + 2[Ca(a)w + (25 k)Ds(a)]a cos

+ [—adcl( % A1 (a) - 241(a)C1 (a ) +6(2k2B1(a) D1 (a)

+ a8 g ()) — P g, (0) 2, ()1 (0)] sims
+ [P 4 (@)~ aC ) - (BN B, (@02 - anR(wh?
+ (“il‘(f“) Bi(a) ~ aD3(a)] cosy

+4[B1(a)k wiappu (@, ) + D1(a) kP urpypypy (a, )]
— 2[wA) (a)u1ay(a, ¥) + wCi (@)urpy(a, )]
+ 2[Bi(a)kuiay(a, ¥) + Di(a)kuiyy(a, ¥)]
= fi(acosy, awsiny, —aksiny)u;(a, y)
+ fu, (acos, awsin g, —aksin ) (A;(a) cosy — aCy(a) siny — wuyy(a, ¥))
+ fi (acosy, awsing, —aksing)(By(a) cos ¢ — aDi(a)sing + kuip(a, ), (3.29)
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Equations (3.26)—(3.28) can be rewritten in the form

— wacosy + ak? cosp — ak? cos ) + acosyh = 0, (3.29)
Kty (a,9) + (@2 + B uigy(a, ¥) + w (e, ¥) = fola, ¥)

— 2[A1(a)w + (2k% = k)By(a)] siny — 2[Cy (a)w + (2k* — k) D1 (a)]a cos 1, (3.30)

k4u2ﬁ,¢,¢¢(a, V) + (w2 - k2)u2¢¢(a, V) + uz(a, v)

= fi(a,y) — {Q[Az(a)w 4 (28° = k)Ba(a)] — aggd]%L—)Al(a) —2A1(a)C(a)
o 6(2k2B1(a)D1(a) 4 ak? dzla(a)Bl (a)) s alea(a) B (a) — ZBl(a,)Dl(a/)} siny

- {Q[Cg(a)w + (2k* — k) Da(w)]a + dA;CEa)Al(a) — aC%(a)
— G<dBd;am)B1(a)k2 - aD%(a)A72> + dila(a) Bi(a) — aD%(a)} cos 1, (3.31)

where, for simplicity, we have introduced the following notation:

fola,¥) = f(acosy, awsiny, —aksiny), (3.32)
fila,v) = fl(acosy, awsiny, —aksiny)uy(a, )
+ fu, (acosy, awsiny, —aksiny) (A (a) cosyp — aCi(a) siny — wuyy(a, ¢))
+ fo (acos®p, awsiny, —ak siny) (Bl(a) cosy — aDj(a)siny + kujy(a, ’l,/)))
— 4[Bi(a)k*wiayyy(a, ) + D1(a) k> urgppyy (a, ¥)]
+2 [wAl (a)urau(a, ¥) + wCi(a)uiyy(a, w)]
— 2[Bi(a)kuiay(a, ¥) + Di(a)kuiyp(a, ¥)]. (3.33)
By virtue of the dispersion relation (3.5), Eq. (3.29) is identically equal to zero.
To determine ui(a, ), Ai(a), Bi(a), Ci(a), and Di(a) (i.c., = (v %, and %

_ _ _ ' _ ot’ oz’ Ot R
in the first approxi mation) from Eq. (3.30), we consider the Fourier expansion of the

function fy(a, ), which is obviously periodic in ¢ (recall that ¢ = kx —wt + ). We have

fola, ¥) = go(a) + Y [gn(a) cosntp + hn(a) sinny], (3.34)

n=1

where

2
an(@) = 1 [ fola, ) cosmupay,
0

27
1
bula) = ;/fo(a, Y)sinngdy, n=10,1,2,....
0
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We seek the function u;(a, ) in the form of a periodic function of ¢, namely,

o0

ui(a,¥) = vo(a) Z [vn(a) cosny + wy(a) sinny]. (3.36)

=1

By substituting the right-hand sides of expressions (3.34) and (3.36) into Eq. (3.30), we
obtain the expression

a) + Z [kt — (W + E*)n? + 1] [vn(a) cosny + wy(a) sinny]

o(a) + Z [gn(a) cosnyp + hy(a) sinny ]

+ {gl(a) - 2a[Cl(a)w + (2k* — k) D1(a)]} cos ¢

+ {hi(a) — 2[A1(a)w + (2k* = k) B1(a)] } siny, (3.37)
whence, by equating the coefficients of the same harmonics, we get (w? = k' — k2 + 1)
hy (¢
Ci(a)w + (2k3 — k) Dy (a) = 9—12@ . Al@w+ (2K — k)B)(a) = i((i‘l . (3.38)
a 1
gn(a)
/UO(a) == gO(a), Un(a) = b )
A — (02 + k2n2 + 1
] wh= Lt iele (3.39)
IR AT (@) s n=2.8 ...

kind — (w2 + k?)n2 4+ 17
Equalities (3.38) guarantee that the function w;(a,¢) has no secular terms.
Then the required function u;(a, ) can be represented as follows:

oo
1 ; :
w(a, %) = 90(0) + 3 _ T g 9n(@) cosmd + hu(@)sinng), (3.40)
n=2

where g,(a) hn(a), n=0,1,2,3, ..., are defined by (3.35).
Taking the system of equations (3.7) into account, we can represent Egs. (3.38) to
within quantities of the first order of smallness in the form

_82 . 2k3 — k da
ot w 8:6 27rw

) sinyd,

(3.41)
Op 28 —kdp _
ot w Or 27raw

/ folas ) coswpp.

~ For the construction of the second approximation, it is necessary to find us(a, ),
As(a,v), Ba(a,v), Ca(a, ), and Dy(a, ) by using Eq. (3.28) or (3.31). By expanding
the function fi(a, ) in a Fourier series, we get

Fila, )= qo )+ Z[ (1 ) C()bmp+ h( )( )sinm/)}, (3.42)

rie=1



Construction of asymptotic in Krylov- Bogoliubov-Mitropolsky ... 235

where

27
: 1
9{(a) = ;/fl(a,w)cosnwdw,
0

(3.43)
) 2m
h(a) = —/fl(a, Y)sinnydy, n=0,1,2,....
™
0
We seek ug(a, 1)) in the form of a series
ug(a,y) = vél) Z v (a) cosny + h{M(a) sinny], (3.44)
substituting it in Eq. (3.31); the unknown coefficients 'u,(ll)(a), 'w,(ll)(a), = 0,02, .. of

harmonics can be determined as in the previous case. By substituting expressions (3.44)
for us(a, v) and (3.42) for fy(a, ) on the left-hand and right-hand sides of Eq. (3.31) and
equating the coefficients of the same harmonics, we obtain

ey =My, v} = 9 (a)
% 1@ =9 A kind — (w2 + k2)n2 +1° (3.45)
0 h(a) |
w,, () = Fd — (W k1 1 n=2,8,4,...,
and
2[Ca(a)w + (2k3 — k) Do(a)]a + [g%((l)Al(a) — aC%(a)
B 6(dBl Bl(a)AQ . G,Dz( )k2> dBl(a)Bl( )_ aDZ(a):‘ — g( )(a) (3 46)
2[Az(a)w + (2k* — k)By(a)] — ad—ql—(cﬁAl (a) — 2A1(a)Ci(a)

da

+6(20251 () D1 (o) + a2 2L py (0y) - LOALE)

aBy(a) - 2By (a)Dy(a) = h{"(a).

We can now write the following expression for us(a,):

2(a,9) = g8"(a) +Zk4 — wQHQ) 7 [98(@) cosny + WD (a) sinny), - (3.47)

where gy(ll)(a) and hsll)(a), n=20,2,3,...are defined by (3.43). Expressions (3.46) guaran-
tee the absence of secular terms in (3.47).

According to (3.46), we obtain expressions for As(a), Ba(a), Ca(a), and Ds(a) that
are necessary for the construction of Egs. (3.7) in the second approximation:
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(1)
Cg(a)w + (2k3 = k)DQ(a) gll ( ) dAl(a)

2a Qa[ g Fala) = aCile)
= c(dlzléa) Ba(a)k? — DY (a)k?) + d[illa( ) B1(a) - aD23(a)]. .
Ag(a)w + (2K — k) Ba(a) = ’7(1;( D4 15 4y 0) 4 241000 0)
—6(2k2B1(a)D1(a) lﬁdDd( 9) J(a.)) dD(m( ) By (a) + 2B, (a) Dy (a)].

Taking into account that

1 ™
9" (a) = ;/fl((l,w)coswdw,
' (3.49)
! 2
W@ =1 [ hlaw)sinvay,
0

adding the corresponding equalities in (3.38) and (3.48) together, and using Eqs. (3.7)
(and the corresponding coefficients of € and €?), we obtain Eqs. (3.41) in the sccond
approximation in the form

21
0 o
_8_(; +w/a;l . 21w [Efo(a w)—{—g f]( )]Sin(/}dw
0
& dC’l (CL)
tole =
~6(2K (@ Di(0) + a2y (a)

+ %a(a)a&(a) ¥ QBI(G)D’(“)}’

2w

A1 (a) -+ 2A1 ((L)CI (CL)

0 0 1
S G = o [lefola )+ e )] cosuay

0

2
-2 {4 o) - e
6(%{}“)131 (a)k* — a[)%(a)]ﬁ) + fj%li]}l(a) - qu(a,)},

-3

where W' =

is the group velocity [for the linear equation (3.3)] and fy(a,¢) and

w
fi(a,v) are defined by (3.32) and (3.33).
Thus, in the first approximation, the equation

Ut + Ugggr + Uzz + u = € f(u, wy, uy) (3.51)
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has an asymptotic solution
ult, ) = alt, =) cos(t, =), (3.52)

where ¥(t,x) = kx — wt + ¢(t,z), and the slowly varying amplitude a(t,z) and phase
©(t, ) are to be determined from the system of the first approximation

2m
da ,0a e [ .
=% = e e sindi,
ot s ox 27rw/f0(a’w)bmw ¥
v (3.53)
P P 2
79—9; + w'a—: = 27r€wa /fo(a, ) cosdip,
0
9 —k
where w? = k% — k2 41 is the dispersion relation, w’ = ———— is the group velocity [both

w
for the linear equation (3.3)], and fy(a, ) is defined by (3.32).
As is customary in nonlinear mechanics, an improved first approximation is defined
by the expression

u(t,x) = a(t, z) cosy(t, x) + eu (a, ¢), (3.54)
where euj (a, ¢) is calculated according to formula (3.40), and the slowly varying amplitude
a(t,x) and phase ¢(t,z) are determined from the equations of the first approximation

As usual, to obtain the second approximation, it is necessary to substitute the slowly
varying amplitude a(t, ) and phase ¢(t, 2) determined from the equations of the second
approximation (3.50) into expression (3.54).

Consider the first approximation in more detail.

In order that u;(a, ) do not contain secular terms, it is necessary that the functions

Ai(a), Bi(a), Ci(a), and Dy(a) in Eqs. (3.7) satisfy Egs. (3.38):

Av()w + (2K3 — k) By (a) = ’”2(“) , (3.38,)
Ci(a)w + (2k* — k)D;(a) = ‘(jlf)(a) , (3.382)
24
where hy(a) and g;(a) are defined by (3.35).
We have
9?%p _ 0% 0%a B 0%a
Otox  0x0t’ Otdx  Oxot
Therefore, according to Eqgs. (3.7), we can write (in the first approximation)
dD(a) dCi(a) dB(a) dA)(a)
A S — —_— N e N TV 3.55
1(a)— Bi(a)—-—, Aile)—~ Bi(a)—~ (3.55)

Equations (3.38) and (3.55) give four relations for four unknown functions Aj(a),
By(a), Ci(a), and Dq(a). Having solved these equations and found, in the first approx-
imation, the right-hand sides of Eqs. (3.7) that determine the slowly varying amplitude
a(t,z) and phase ¢(t, x), according to relation (3.40), we can determine u; (a, ¢'), which, as

dy
. . . w ¥ .
indicated above, does not contain secular terms. Note that C(a) = n can be interpreted
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0
as a “shift of the frequency w” (in the first approximation), whereas D) (a) = a_np can be
x
interpreted as a “shift of the wave num ber k.”

Nevertheless, in the general case, it is impossible to completely solve the system of
equations (3.38) and (3.55) without certain restrictions on the physical problem.

For example, assume that u(t, ) oscillates according to the sine law for all ¢. In this
case, we can set eC1(a) = pi(t,z) = 0 and €A4;(a) = a¢(t,x) = 0. Then we have

Di(@) = 5=y (®) (3.50)

as a “shift of the wave number k" [eDj(a) = ¢i(t, x )], and

1
Bl = sem o

hi(a). (3:.87)
Otherwise, if we assume that, for all z, we have a purely sinusoidal wave, then we can
set eBj(a) = az(t,x) = 0 and eD;(a) = ¢¢(t,x) = 0 and solve Eq. (3.38) with respect to
eAi(a) = a(t,z) and Cy(a) = ¢i(t, ) to obtain a correction for the amplitude and the
shift of the frequency.

Let us consider an example that illustrates the effect of external perturbation on the
dispersion relation established for a linear nonperturbed equation.

As such an example, we consider the model Bretherton equation (3.2).

For € = 0, a solution of Eq. (3.2) has the form (3.4), and the dispersion relation (3.5)
holds.

Assume that A;(a) and Cj(a) are equal to zero. Then, in the first approximation,
according to Eqs. (3.38), we have

R e %hl(a)’ (2% = k) D1 (a) = %gl(a) (3.58)
or
2
g:% - m /Efo(a cos 1) sinydy,
0 (3.59)

2w

0 1

8_;'0: = -27ra(2k—3_k)/5f0(acosw) cosdi.
0 ,

The right-hand side of Eq. (3.2) is eu® and, consequently, we should replace € fy by
ea® cos® 1 in Egs. (3.59). Then Egs. (3.59) take the form

8a_0 8_@_ 3ea’

ox 0r B8(2K3—k) (3.60)

Let us determine how the “shift of the wave number” k affects the dispersion relation
(3.5). For this purpose, in the dispersion relation (3.5) obtained for the nonperturbed
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equation, we should replace the wave number k by k + ¢,. As a result, we obtain

3eca? 4 3ea? 2
= B | = (Epm———— ] &1
( T e - k)) ( +8(2k3—k)) *
=k*- k%24 34 +14&,

Thus, in the first approximation (to within quantities of order ¢), the dispersion rela-
tion for the model Bretherton equation has the following form:
3ea?

4

To obtain an improved first approximation, it is necessary to determine eu,(a, ). After
simple calculations with the use of relations (3.40) and (3.35), we get

ga®

32(9k4 — )
and, consequently, in the improved first approximation (under the assumptions made
above), a solution of the Bretherton equation has the form

3

ga
329k — 1)

W= - 4+1+

(3.61)

euy(a, ) = cos 3y (3.62)

u(t,z) = acosy + cos 3¢, (3.63)

where
Be®
l/)—— <k+m>l—wt+¢.

Let us now calculate the corresponding corrections for the frequency and wave number in
the second approximation. Since, by assumption, 4;(a) =0, By(a) =0, and C(a) = 0, in
the second approximation, the system of equations (3.50), which defines the slowly varying
amplitude a(t, z) and phase (t, x), takes the form

2m
Oa ,0a 1 2 Ean
= g = %/[Efo(aﬂ/))+€ fila, )] sinvdy,
(3.64)
Oip + @ o /[efo a, ) + €2 f1(a, )] coswdw— ——[6/»1 — 1]D}(a),
ot ox 27rw !
where
3a?
D)= s
In view of the fact that
3
a
ui(a, ) = 32(0k1 = 1) 31,

according to (3.33), the function f)(a, ) can be written as follows:

fi(a, ) = 3a® cos? Yuy (a, ) — 4D;1 ()P urpyyp (a, ¥) — 2D; (a)kuyyy(a, ).



240 Yu. A. Mitropolsky

Taking into account that

(a,v) cl 0s 3¢ (a,v) Blar cos 3
a = ———— / )) == ——m8MM8M  COS ke
S ROKE—1) T Wt 3200kT—1) o0
we get
Ja° 2 3a’ - 18(18k3 — k)
Fule, ¢ = 32—(9mcos Y cos 3y — S(2k% — F)32(9K1 — 1) cos 3.

Thus, it is easy to see that system (34) can be represented as follows:

da ,0a

e 2=

ot e Ox '

(3.65)

2m
2
e a0e. & / [efola, ¥) + £2fi(a, )] cos ydy — ——(6k” = 1) D} ().
0

ot w%_%rwa

Finally, we obtain a correction for the wave number k in the second approximation in the
following form:

9y 3za? 42 3at [ 1 . 3(6k% — 1)}
dr  S(2k3— k) ' © 128(2k® — k) L2(9kT — 1) (23 — k)2

Let us describe a method that is successfully applied to various problems connected
with the propagation of waves in liquids. The core of this method is the averaging of
the Lagrangian and derivation of the corresponding Euler-Lagrange equations (already
averaged). Sturrock [5], Whitham [4, 6-8], Bisshopp [9], and several other scientists de-
veloped this method under the assumption that, in the investigation of wave processes,
the frequency, wave number, and amplitude can be re garded as slowly varying functions
of space coordinates and time. In fact, these assumptions coincide with those made in
the present paper but, in some cases, as is shown below, our method al lows one to ob-
tain the corresponding results in the first approximation in a simpler way. However, it is
worth noting that this method is not always applicable, because we cannot easily construct
the corresponding Lagrangian for all equations. Furthermore, the right-hand sides of Eq.
(3.1) considered in this paper give more possibilities for a detailed investigation of specific
features of perturbed wave processes.

Below, we describe the application of this method to the model Bretherton equation
(3.2), following the elegant presentation due to Nayfeh [10].

It easy to verify that this equation is the Euler-Lagrange equation that corresponds
to the Lagrangian

(3.66)

il 1 )l 1
L= 5“? - iuiz + 51@ - §u2 + iulx, (3.67)

Indeed, according to the variation principle for Lagrangian (3.67), we obtain an Euler-
Lagrange equation of the form

2(@>+2(8_L>_0_2< e
Ot \ Ouy Ox \ Ouy Ox? ou
By substituting expression (3.67) for the Lagrangian £ in Eq. (3.68), we obtain Eq. (3.2).

0. 3.68
OUgr ( )
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We seek a solution of Eq. (3.8), taking into account the form of its right-hand side, in
the form of the expansion

oo
: u(t,x):acosw+EZAncosnw+52..., (3.69)
n=1
where, as before, ¥ = kx — wt + @, i.e., ¥, = k, ¥y = —w, and, consequently,
ky Fwi =0, ' (3.70)

and the quantities a, w, k, and A; are slowly varying functions of ¢ and x.

Since, in the direct expansion, secular terms appear first among the terms of order ¢,
we assume that the quan tities a., at, wy, we, kz, and k; have the order .

Thus, we can write

o
U = aw sin ¥ + a; cos Y + ew E nA,sinnyg +€2.. .,

n=2

Uy = —aksiny + a, cosy — ek Z nApsinny + 2. .., (3.71)

n=2

o
Upe = —ak? cos Y — 2a,ksiny — ek? Z n? A, cos ny + £ e

n=2

By substituting expressions (3.71) and (3.69) in Lagrangian (3.67), we obtain a La-
grangian that implicitly depends on t and x via the functions ¢, a, w, k, and A;. The terms
of this Lagrangian are 27-periodic in 9 and, as % runs through the interval [0, 27], the
changes in the other parameters are very small, whereas the Lagrangian varies much faster.
Therefore, as is accepted in all modifications of the averaging method, the Lagrangian
should be averaged with respect to 1 over the interval [0, 27| under the assumption that
the quantities a, w, k, and A; re main constant.

By averaging the right-hand sides of expressions (3.68) and (3.70), we obtain

3
o= §a4+5...,
1
ﬂ?:§a2w2+5...,
(3.72)
1
ﬂ§:§a2k2+s...,
1
ﬂgm:§a2k2+€....

By substituting expressions (3.72) into the right-hand side of (3.67), we obtain the
averaged Lagrangian

= ' 3
L= Z(u}2—k4+k2—1)(12-+—3—;a4—i—52..., (3.73)

which explicitly depends on a and implicitly on ¢ via w and k (according to expression
(3.70) and the relations ¥ = k and ¢y = —w).
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By using the averaged Lagrangian (3.73), we write the Euler-Lagrange equations (the
averaged equations) that Correspond to the variables a and 1. The Euler-Lagrange equa-
tion for a has the form

oL
da
whence we immediately get the dispersion relation

=0, (3.74)

3e
g = k2+1+4a N (3.75)

Thus, in the first approximation, the dispersion relation (3.75) obtained with the use of
the averaged Lagrangian completely coincides with the dispersion relation (3.64) obtained
by the KBM method.

By using expression (3.70) and the fact that ¢ = k and ¥, = —w, we can write the
Euler-Lagrange equation for the variable ¢ in the form

9 10L o 1oL oL
o B -~ B 8.7
Bt [awt] L [awz} o5~ 0 LB
or
o 0L 8 1oL
L cicead (BT bt P, 3.77
5tla0) + 3alar) =° B
By differentiating the right-hand side of (3.73) with respect to w and k, we get
0L 1 OL 1,3 . o5 o
30 = 39% < BE = 2(21» k)a®+¢e.... (3.78)
We can now represent expression (3.77) in the form
0
8t(wa )+ —[(215” k)a*] =0 (3.79)
or, taking into account the expression for the group velocity w’ = dw/dk introduced above,
0 7]
5 [waQ] e [ww'aQ] =1, (3.80)
or
a2 0 9 o'
[8t +5-(wa )}—i—a [we + wwe] = 0. (3.81)

Since w = w(k), according to (3.75), we have wy = w’k; and, hence, in view of (3.70),
wt + w'wy = 0 and Eq. (3.81) takes the form

8(1 0 )
0. 3.82
o T We)= (3.82)
Furthermore, we can represent expression (3.70) in the form
ok 0k
- = 0. 3.83
ot e or {58

Thus, in the first approximation (to within quantities of order ¢), for the solution of
the Bretherton equation (3.2) u = a cos¢ (¢p = kx —wt), the dependence of the amplitude
a, frequency w, and wave number k on the space coordinates and time:is determined by
relations (3.75), (3.82), and (3.83).
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The first equation in system (3.26) obtained for the Bretherton equation (3.2) by the

KBM method (under our assumptions concerning the physical meaning of the problem)
coincides with Eq. (3.82). Furthermore, it is easy to show that the sum on the right-
hand side of expression (3.69) for the solution of Eq. (3.2) completely coincides with the
expression for u;(a, 1) obtained above [see formula (3.62)].

6.

T

8.
9.
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XAY DUNG NGHIEM TIEM CAN THEO NGHIA
KRYLOV-BOGOLIUBOV-MITROPOLSKII
CHO PHUONG TRINH SONG

Trong bai bdo da nghién ctru hai vi du 4p dung phuwong phap KBM dé xay dung

nghiém gan ding cia phuong trinh Klein-Gordon-Bretherton hay gap trong nhi¢u trng
dung.



