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Abstract. Van der Pol's oscillator under parametric an.d forced excitations is studied. 
The case where the system contains a small parametrer being quasilinear and the general 
case (without assumption on the smallness of nonlinear terms and perturbations) are 
studied. In the first case, equations of the first approximation are obtained by means of 
the Krylov-Bogoliubov-Mitropolskii technique, their averaging is performed, frequency­
amplitude and resonance curves are studied, on the stability of the given system is 
considered. In the second case, the possibility of chaotic behavior in a deterministic 
system of oscillator type is shown. 

1. INTRODUCTION 

It is well-known that there always exists an interaction of some kind between nonlinear 
oscillating systems. N. Minorsky stated that "Perhaps the whole theory of nonlinear 
oscillations could be formed on the basis of interaction" [3]. Different interesting cases of 
interaction have been investigated by us and published in the monograph [3], using the 
effective asymptotic method of nonlinear mechanics created by Krylov N. M., Bogoliubov 
N. N. and Mitropolskii Yu. A. · 

The present paper introduces our research on the behaviour of a Van der Pol's oscillator 
under the parametric and forced excitations. The dynamic system urider consideration 
is described by an ordinary nonlinear differential equation of type (2.1 ). The section 1 
is devoted to the case of small parameters. The amplitudes of nonlinear deterministic 
oscillations and their stability are studied. Analytical calculations in combination with a 
computer are used to obtain amplitude curves, which show a very complicated form in 
Figs. 1 - 4. In the section 2 we study the chaotic phenomenon occurring in the system 
described by equation (2.1) without assumption on the smallness of the parameters. 

As known, the fundamental characteristic of a chaotic system is its sensitivity to the 
initial conditions. The diagnostic tool used in this work is the Liapunov exponents. The 
positiveness of the largest Liapunov exponent will help us to define the values of parameters 
with which the chaotic motions are occurred. Chaotic attractors and associated power 
spectra will be presented. 
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2. THE CASE OF SMALL PARAMETERS 

In this section, let us consider the case when the parameters are small. The opposite 
case will be investigated in the next section. The smallness of parameters is characterized 
by introducing a small positive parameter E. For this case the asymptotic method of Krylov 
- Bogoliubov - Mitropolskii (K-B-M) [1, 2] is used to seek the approximate solutions aud 
to study their stability. 

2.1. The differential equation of oscillation and its stationary solution 

The system under consideration is described by the equation 

x +w2x = E {~x -1x3 + h (1- kx2
) :i; + 2pxcos2wt + ecos(wl +CJ)} , (2.1) 

where h > 0 and k > 0 are coefficients characterizing the self-excitation of a pure Van der 
Pol's oscillator, 2p > 0 is the intensity of the parametric excitation, e > 0 is the intensity 
of the forced excitation and CJ, 0 ~ CJ ~ 27f is the phase shift between the parametric 
and forced excitations. Bellow, two subcases will be investigated separately for a weak 
parametric excitation when p2 < h2 and for a strong parametric excitation when p2 > h2 . 

The solution of (2.1) is found in the form 

x=acos'ljJ, x=-awsin'ljJ, 1/J=wt+e, (2.2) 

where a and e are new variables, which satisfy the following equations in the standard 
form 

E 
a= -- { ~x - 1x3 + h(l - kx2 )x + 2px cos 2wt + e cos(wt +CJ)} sin 'l/J, 

w 
iJ = _ ..!_ { ~x - 1x3 + h( 1 - kx2 )x + 2px cos 2wt + e cos( wt + CJ)} cos 'ljJ . 

aw · 

(2.3) 

Following the K-B-M method, in the first approximation these equations can be replaced 
by averaged ones 

E E { (ka
2 

) } a=--Jo=-- hw --l a+pasinW+esin(e-CJ) , 
2w 2w 4 

· E E{ 3 3 } ae=--90=-- ~a--1a +pacosW+ecos(e-CJ) . 
2w 2w 4 

(2.4) 

The '.1-mplitude a and phase e of stationary oscillations are determined from the equations 
a = e = o: 

Jo~ hw(k~' - I )a+ pa sin 28 + esin(O - a) c 0, 

9o =~a - 41a3 +pa cos 2e + e cos(e - CJ) = 0. 
(2.5) 

These equations are equivalent to 

or 

J =Jocose - 9~sine = (p- ~.+ ~1a2)asine + hw(k:
2 

- 1)acose - esinCJ = 0) 

9 = Jo sine+ 9o cos e = hw ( k:
2 

- 1) a sine+ (P + ~ - ~1a2) a cos e + e cos CJ = 0 , 
(2.6) 

J = A sine+ B cos e - E = 0 , 
9 = G sine + H cos e - K = 0 , 

(2.7) 
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where 

2.2. 

A= (p-.6.+~l'a2)a, B=hw(k:
2 

-l)a, E = esina , 

G = hw(k:
2 
-l)a, H = (p+.6.-~/'a2)a , K = - ecos a . 

The amplitude-frequency relationship and resonan~e curve 

The characteristic determinants of equations (2.7) are 

(p-.6.+~l'a2)a hw(k:
2 

- l)a 

hw(k:
2 

- l)a (p+.6. - ~~a2)a 
= a2 { (P + .6. - ~/'a2) (p- .6. + ~/'a2) - h2w2(k: - 1 r} 

D-IA Bl_ - G H -

I 
E B I esina hw(ka

2 
- 1 )a 

D1 = K I{ = ( 4 3 ) 
-e cos a p + .6. - 4,,a2 a 

= ae { (P + .6. - ~/'a2 ) sin a+ hw ( k:
2 

- 1) cos a} , 

I I 
(p- .6. + ~ /'a2)a esina 

D2 = ~ i = k 2 
hw ( : - 1) a - e cos a 

=-ae{ (p-.6. + ~l'a2)cosa+hw(k:
2 

- l)sina}. 
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(2.8) 

(2.9) 

Below, in the (.6., a)-plane we identify the regular region in which the characteristic 
determinant D is nonzero and the critical region in which D is identically zero. 

I3y solving equations (2. 7) relatively to sin 0 and cos 0 and eliminating the phase 0 we 
obtain the amplitude- frequency relationship 

W(.6., a) = Dr+ D~ - D2 = 

{ 
3 (ka2 ) }

2 
= a2e2 (p + .6. - 4,,a2) sin a+ hw 4 - 1 cos a + 

+a2e2 { (p - .6. + ~/'a2 ) cos a+ hw ( k:
2 

- 1) sin a} 
2 

(2.10) 

4 { 3 2 3 2 2 2 ( k~ 2 
) 

2
} 

2 

-a (p - .6. + 4 /'a ) (p + .6. - 4 /'a ) - h w 4 - 1 = 0 . 

The regular part C1 of the resonance curve satisfies (2.10) and lies in t he regular 
region, where D "I- 0. 

The critical part C2 of the resonance curve lies in the critical region, where 

D = 0 or p2 - ( .6. - ~/' a2) 
2 

- h2
w

2 ( k:2 

- 1) 2 
= O, 

and satisfies: 
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+ The compatibility conditions 

D1 = 0 or(p + 6.. - l1a2
) sin CT+ hw ( k:

2 

- 1) cos CT= 0, 

D2 = 0 or (P - 6.. + l1a2
) cos CT+ hw ( k:

2 

- 1) sin CT = 0. 

+ The trigonometrical conditions 

{ ( 3 ) 2 ( ka 2 ) 
2

} A2 + B 2 :;?: E 2 or a
2 p - 6.. + :::(ya2 + h2w2 

4 - 1 :;?: e
2 sin2 

CT, 

{( 3 )2 (ka2 )

2

} G2 + H 2 :;?: K 2 or a
2 p + 6.. - :::(ya2 + h2w2 

4 - 1 :;?: e2 cos2 
CT. 

(2.11) 

It is easy to see that the critical region is the resonance curve of Van der Pol's oscillator 
under the action of the parametric excitation without the forced excitation ( e = 0). For a 
weak parametric excitation (p2 < h2 ), the resonance curve is an oval encircling the-point 

Ao ( 6.. = l1a2 , a 2 = a5 = ~) which is the representative point of the self-oscillation of 

Van der Pol's oscillator. This oval lies completely above the abscissa axis 6... When the 
parametric excitation is strong enough (p2 > h2 ), the critical oval enlarges and cuts the 
abscissa axis. 

From the compatibility conditions it follows that 

. 3 2 
6.. = pcos2CT + 41a , (

ka
2 

) hw 4 -1 = -psin2CT. 

Hence, the compatibility point has c9ordinates 

3 2 2 2 2 { p sin 2CT } 
6.. = 6..* = pcos2CT + 4,a*, a =a*= ao 1 - hyfl + pcos 2CT 

The existence condition of the compatibility point is 

2 p sin 2CT 
a*> 0 or < 1. 

hy'l + p cos 20-

Obviously, this condition is satisfied if 

sin 2CT < 0 i.e. 
7r 

2 <CT < 7r or 
37r 2 <CT< 27r. 

In the case 
7r 37r 

sin 2CT :;?: 0 i.e. 0 ~ CT ~ - or 7r ~ CT ~ -
2 2 

t he condition (2.13) can be transformed into 

A( cos 2CT) = p2 cos2 2CT + ph2 cos 2CT + h2 
- p2 :;?: 0. 

The left-handside of (2 .15) is a trinomial of cos 2CT E [-1 , 1] with the discrirninant 

r = p2 (h4 
- 4h2 + 4p4

) . 

(2 .12) 

(2.1 3) 

(2 .14) 

(2 .15) 
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7t +cr 2 

Fig. 1. The heavy arcs give the values <Y with which the compatibility point I* exists 

If h > 2 - 2vr=IJ (the case h2 > 2 + 2vr=IJ is not considered here) then r < 0 and 
the trinomial A( cos 2o-) always has the same positive sign as its first coefficient, and the 
condition (2.15) is satisfied with all values of a- in the interval (2.14). 

If h2 ~ 2 - 2vr=IJ, then r ~ 0 and the trinomial A(cos2o-) has either two ' simple 
roots or a double root. The simple roots cos 20-1,2 are 

cos20-1,2 = 2~2 (-ph2 ± vr). (2.16) 

It is noted that A(l) = h2(1 + p) > 0, A(-1) = h2(1 - p), (p = O(c)) and the numerical 
s ph2 

. s 
average of two roots: 2 = -

2
p2 satisfy -1 < 2 < 1. Hence, two roots (2.16) lie in the 

interval [-1, l]. The condition (2.15) leads to 

cos 2a- ~ cos 20-2 or cos 2o- ~ cos 20-1. 

Combining (2.17) with (2.14) we obtain 

7r 37f 
0 ~ a- ~ 0-1 or 0-2 ~ a- ~ 2, or 7r ~ a- ~ 7r + 0-1 or 7r + 0-2 ~ a- ~ 2 · 

In summary, we have 
+If h2 > 2 - 2~, then the compatibility point I* exists for every a- . 
+ If h2 ~ 2 - 2 J1 - p2, then the compatibility point I* exists only for 

(2.17) 

(2.18) 

In Fig. 1 the heavy arcs give the values a- with which the compatibility point I* exist s 
when h2 ~ 2 - 2~. Since 2 - 2J1 - p2 is approximately equal to p2, then 

+ If p2 < h2, i.e. when the parametric excitation is weak in comparison with self­
excitation, the critical oval D = 0 lies completely above the abscissa axis ~. The critical 
point I* always exists. 

+ If p2 ~ h2, i.e. when the parametric excitation is strong enough, t he cri t ical oval 
D = 0 cuts the abscissa axis~. The critical point I* exists only wit h the values of a- lying 
in the interval (2.18). 
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Verifying the trigonometrical conditions by substituting (2.12) into (2.11) we obtain 

(2.19) 

Because the right-hand sides of (2.19) are not equal to zero simultaneously, from (2.19) 
we find 

or 
e2 

a2 >- - . 
* ~ 4p2 (2.20) 

Hence, the compatibility point I* is only a critical point when the amplitude a is large 
enough, i.e. when the forced excitation is still not too strong in comparison with the 
parametric one. 

2.3. Forms of resonance curves 

To identify the forms of resonance curves we give in advance the values h k, then for 
each chosen value p we change e and O' to have the resonance curves. For example, with 
h = 0.1, k = 4, w = 1, the self-excited oscillation of Van der Pol's original systern has an 

amplitude a6 = 1 and is represented by the point Ao ( .6. = !1, a6 = 1). 
a) The case of weak parametric excitation (p2 < h2 ) 

As it is known, in this case the critical oval D = 0, i.e. the resonance curve of Van der 
Pol's oscillator under the parametric excitation, runs around the point Ao and lies entirely 
above the abscissa axis .6.. We take p = 0.05, and O' = 0. For a weak forced excitation, 
i.e. when e is small enough, the condition (2.20) is satisfied and the critical point I* with 

3 
coordinates ( .6.* = p + 41, a; = a6 = 1) exists. For enough strong forced excitation, 

i.e. when e is large enough, point I* is only a trivial compatibility point which does not 
belong to the resonance curve. 

In the Fig. 2 the resonance curves 'O', '1 ', '2', '3', '4 ', '5' correspond to the linear case 
l' = 0, fore= O; 0.015; 0.017; 0.050; 0.100; 0.120, respectively. The curve 'O' is a critical 
oval. The curve '1' has two branches: branch C' lies near abscissa axis, branch C" lies 
higher and consists of two cycles, one of them C~' is outside and the other C~ is inside 
the critical oval. These cycles are connected to one another at the critical node I* on the 
critical oval. 

Increasing the forced excitation (e), the lower branch C' moves up. The inner loop C~ 
of the upper branch is pressed while the outer loop Ci' is expanded, but both loops are 
tied at the node I*. Fore~ 0.0177, the lower branch C' is connected with the outer loop 
C~' at the node J and we have the curve '2', where J is a singular point belonging to the 
regular region DI- 0. Fore larger than 0.0177, the singular point J disappears. Then the 
lower branch and the outer loop are unified into one branch which lies outside the critical 
oval. We have the resonance curve '3'. Increasing e further, the inner loop C~ continues 
to be pressed into I* and disappears when e = 0.1 (see the resonance curve '4'). At this 
moment I* is a returning point. The curve '5' corresponds to a very large value of forced 
excitation; the point I* is a trivial compatibility point which lies outside the resonance 
curve and does not belong to it . 

Fig. 3a, Fig. 3b show the resonances curves in the nonlinear case 1x3 , I I- 0 with 
/ = -0.l (a) and/= 0.1 (b). The curves 'l', '3', '5' in these figures have the same values 
of parameters (except 1) of the curves '1', '3', '5' in Fig. 2. 
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Fig. 2. Resonance curves for / = 0, e 0 (curve 0), e = 0.115 (curve 1) 
e = 0.0177 (curve 2), e = 0.050 (curve 3), e = 0.100 (curve 4), e = 0.120 (curve 5) 
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Fig. 3. Resonance curves for/ = 0.1 (a), / = 0.1 (b), u = 0, e = 0 (curve 0), 
e = 0.015 (curve 1), e = 0.050 (curve 3), e = 0.12 (curve 5) 
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With the negative value of/ (see Fig. 3a) resonance curves lean toward the left in 
comparison with the case / = 0 (Fig. 2). Otherwise, resonance curves lean toward the 
right for the positive value of/ (see Fig. 3b). This situation is common for nonlinear 
Duffing's systems. 

b) The case of strong parametric excitation (p2 > h2 ). 

As before we take h = 0.1, k = 4 but p = 0.12. In this case the critical oval 'O' is 
enlarged and cuts th~ abscissa axis D.. 

In Fig. 4a (r =
1

0) and Fig. 4b (r = 0.1), the resonance curves 'l' correspond to 
~ = 0, e = 0.06. The curve 'l' has a cycle lying inside the critical oval and is connected 
with the outside branch by the critical point I*. If only e increases, the inside cycle is tied 
and then disappears. The critical point I* first becomes a returning point and then an 
isolated trivial compatibility point. The resonance curve is the only outside branch which 
is moving up. 
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-0.2 0.0 0.2 -0.2 0.0 0.2 

Fig. 4. Resonance curves for/ = 0 (a), / = O.l(b), and u = O(curves 1), u = 
7r 7r 7r 

12 
(curves 2), u = "6 (curves 3), u = 4 (curves 4) 

Changing a, the critical point moves along the critical oval '0'. In Fig. 4a, Fig. 4b the 
7r 7r 

resonance curves '2', '3', '4' correspond to the values/= O(a), / = O.l(b) and a= 
12

; G; 
7f 

4 respectively. We see that , when a increases the critical point moves down, the critical 

point I* becomes a returning one and then disappears. Then the resonance curves separate 
into a cycle lying inside the oval 'O' and a branch lying outside this oval (curves '3', '4 ' ). 

2.5. Stability conditions 

To have the stability condition we use the variational equations by putting in (2.4) 
a = a0 + <5a, fJ = ()0 + <5() and neglecting the terms of higher degrees with respect to c5a and 
<5() 

!!:_ (c5a) = _ _!__ (afo) <5a _ _!__ (afo) <5fJ, 
dt 2w aa 0 2w afJ 0 

ao!!:_ (<5fJ) = _ _!__ (ago) c5a _ _!__ (ago) <5fJ, 
dt 2w aa 0 2w afJ 0 

(2.21) 

where ao, fJo are stationary values of the amplitude a and phase fJ - the roots of equations 
(2.5). The characteristic equation of the system (2.21) is 

aop2+_!_ {ao (afo) +(ago) } p+~ { (afo) ' (ago) _ (afo) (ago) } = 0 
2w aa 0 afJ 0 4w2 aa 0 afJ 0 afJ 0 8a 0 · 

Hence, the stability conditions for stationary solutions ao , fJo is 

81 = ao ( C:::) 
0 
+ ( i;) 

0 
= ao { hw ( k:~ - , 1) + ~kw a6 + p sin 2()0 } -

(2.22) 

- {2pao sin Wo + e sin( fJo - a)} > 0 . 

From the first equation of (2.5) we find sin Wo, then by substituting into (2.22) we get 

2 2 2 
81 = hwao(ka0 - 2) > 0 or a0 > k' (2.23) 

This condition means that only the oscillations with large amplitudes may be stable. 
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The second stability condition still has the abbreviated form [1, 4] 

S - ao 8W(6., a6) > 0 (2.24) 
2 - D 8a5 . 

The curves D(6., a6) = 0 and W(6., a6) = 0 divide the plane P(6., a6) into regions. 
In each region the functions D(6., a6) and W(6., a6) have a determined sign. Moving 
upwards along a straight line, parallel to the ordinate axis a6 and cutting the resonance 
curve at a point M, if we go from the region DW < 0 (> 0) to the region DW > 0 ( < 0) 
then point M corresponds to the stable (unstable) oscillation. Therefore, basing on the 
sign distribution of the functions D and W in the ?-plane, we can identify the stable and 
unstable branches of the resonance curve. 

3. THE CASE OF ARBITRARY PARAMETERS. REGULAR AND 
CHAOTIC SOLUTIONS 

Les us go back to the equation (2.1), ignoring the assumption on the smallness of the 
parameters, i.e. we will consider the following differential equation 

x +w2 x = 6.x -1x3 + h(l - kx2 )i: + 2pxcos2wt + ecos(wt +er). (3.1) 

We fix the parameters: w = 0.83, 6. = 0.01, / = 1, h = 1, k = 0.6, p = 0.001, er = 0 
and use e as a control parameter. With different values of e, solutions of the equation (3.1) 
can be regular or chaotic. To identify the regular or chaotic character of a solution, we can 
use various methods, such as consideration of the sign of the largest Lyapunov exponent, 
or building the Poincare sections [4, 10]. To construct a Poincare section of an orbit , we 

use the period T = 
2

7f of the external excitation force. Then, the Poincare section acts 
w 

like a stroboscope, freezing the components of the motion commensurate with the period 
T. If we have a collection of n discrete points on the Poincare section, the corresponding 
motion is periodic with the period nT. For example, for e = 5.09, the Poincare section 
consists of three points (Fig. 5a), the motion is periodic with the period 3T; fore= 5.116, 
the Poincare section consists of six points (Fig. 5 b), the motion is periodic with the period 
6T. When the Poincare section does not consist of finite number of discrete points, the 
motion is aperiodic, it may be chaotic (Fig. 6). 

x • (a) • • (b) 
0 0 

.J.5 "1.5 

• •• 

-3 • x -3 • • 
1.5 1.5 

Fig. 5. Poincare section: e = 5.09 (a), e = 5.116 (b) 
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I 

S.r(w) 
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(al 0 0.5 

x 
-4 4 

-7 (b) 0 0.5 Q) 

Fig. 6. Periodic attractors and associated power spectra: e = 5.09 (a) , e = 5.llG (b) 

The periodic attractors and the corresponding power spcctrums realized at e = 5.09 
and e = 5.116 are illustrated in Fig. 6a, Fig. Gb. The aperiodic attractor and its power 
spectrum realized at e = 5.15 arc illustrated in Fig. 8. In this case the power spectrum 
has a continuous broadband character. The Poincar6 sectioll has a distinctive form showll 
in Fig. 7, it consists of about 8000 points after the transition decays (the first 500 periods) 

To verify that the motion realized ate = 5.15 is chaotic, we need to show the se11sitivity 
to initial conditions on this attractor. \Ve choose two points separated by do = 10- 7 

close to the attractor and examine evolutions initiated from them. Fig. 9 illustralc:'s 
the variation of the separation d with time t. The exponential grovvlh of separntion for 
20 < t < 300 is clearly noticeable. The separation saturates at the size of the attractor for 
t > 300. Therefore, there is a positive Liapunov exponent associated with the chaotic orbit 
at e= 5.15. The evaluated largest Lyapunov exponent is,\::::::: 0.062 > 0 (Its rnlculation 
will be mentioned below). 

0 0.5 Q) 

Fig. 'l. Chaotic attractor and associated power spectra at e = .5.15 
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1 1.5 2 2.5 0 200 400 600 800 

Fig. 8. Poincare section realized at e = 5.15 Fig. 9. Sensitivity to initial condition ate= 5.15 

The evaluation of the largest Liap·unov exponent 
To evaluate the largest Lyapunov exponent in the case w = 0.83, 6 = 0.01, r = l, 

h = 1, k = 0.6, p = 0.001, rJ = 0 and e = 5.15, we represent the equation (3.1) in the form 

.Z:J - X2, 
±2 = -0.6889 X1 + O.Olx1 - xi+ (1 - 0.6xr)x2 + 0.002 X1cos2z + 5.15 cosz' (3.2) 
z = 0.83. 

Let u = (x1, x2, z) is a three dimensional vector and u* = u*(t, uo) is a reference tra­
jectory of the system (3.2), where uo is the initial condition. The variational equation 
corresponding to this reference trajectory is 

i/ = Ary, 

where ry = u - u* and the matrix A depends on u* 

[ 
[ 

0 
A _ -0.6789 - 3 xi2-

- -l.2;ix2 + 0.002 cos2 z* 1-:G(xj)2 l 
0 

0 
-0.004xi sin 2z•-

-5.15sin2 z* 

0 

(3.3) 

1 · (3.4) 

The time evolution of the Lyapunov exponent is presented in Fig. 10. The largest 
Lyapunov exponent is a positive number >. ~ 0.062, which shows the chaotic character of 
the motion of the system (3.2). This means that two trajectories starting closely one to 
another in the phase space will move exponentially away from each other for small times 
on the average 

(3 .5) 

where do is the initial distance between two adjacent starting points at t = to and dis the 
distance between two these points at the moment t. \Ve return again to Fig. 9, it shows 
how the distanced between evolutions initiated from two points separated by do = 10 - 7 

varies with time. The separation grows exponentially in the range 20 < t < 300 before 
leveling off at the size of the attractor. 
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0.1 

0.05 

cycle 
0 +--~~~~~~~~~~~~~~~~~~~~ 

0 2500 5000 

Fig. 10. Time evolution of the largest Lyapunov exponent (one cycle= 27r/w, w = 0.83) 

4. CONCLUSION 

The first section of the paper shows how the asymptotic method created by Krylov, 
Bogoliubov and Mitropolskii is effective in solving a complicated nonlinear problem. Fig. 2 
presents different resonance curves in "linear" case I= 0. There exists a special returning 
point I* on the resonance curves. In the "nonlinear case" I -1- 0, the resonance curve leans 
toward to the right for I > 0 (Fig. 3b), and to the left for 1 < 0 (Fig. 3a), which is 
common for nonlinear Duffing's systems. 

In the second section it is seen that chaotic phenomenon occurs in a deterministic 
system described by (3.1). Poincare section, chaotic attractor and associated power spectra 
of the nonlinear oscillator (3.1) have been found. The Fortran and Matlab softwares were 
used for calculating data and building the graphs. 

This work is completed with the financial support of the Council for Natural Science 
of Vietnam. 
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Bai nay trlnh bay cac nghien cuu ve chan ti'r Van der Pol chju cac kich a(mg tham so va cuang 
buc. Dii nghien cuu twang hqp tl!a tuyen tinh khi h~ chua m<)t tham so be va tmang hqp tong 
quat (khong c6 gia thiet be ve so h?-ng phi tuyen va nhieu). Trong tmang hqp aau, cac plmang 
trlnh xap xi thu nhat thu auqc bang phtrcrng phap Krylov-Bogoliubov-Mitropolskii, aii xay dvng 
CaC trung blnh, aa nghien CUU quan h~ tan SO - bien a<) Va cac QU'CJl1g Cong c<)ng Jmc'rng, Va Ve Sl! 
on djnh cua h~. Trong tmang hqp thu hai, dii chi ra kha ni"i.ng xuat hi~n hon d<)n trong cac h~ tat 
djnh thu<)c d?-ng chan ti'r nay. 


