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Abstract. In the present paper the influence of the excitation frequency (v) and the 
forcing amplitude (e) on the chaotic behaviour of the system governed by equation 

x+w2 x=k(l-1x2 )x+/3x3 +esinvt (0.1) 

will be examined. This equation is a Van der Pol one with a forcing term e sin vl , where 
w, et,/, e,/3 and v are constants, overdot denotes the derivati ve with respect to time t. 
When e = 0, a > 0, I > 0 we have the classical Van der Pol equation which represents 
a self- excited oscillator with the amplitude a. = 2/ .j;;; and frequency w. Our discussion 
was focused upon variation of the excitation frequency v and the forcing amplitude e. 
The bifurcation diagrams for acquiring the overview of equation (0.1) and the Liapunov 
exponent method will be used [3, 4, 5, 6, 9]. 

For a concrete case, the parameter regions in which either periodic or chaotic motions 
exist were shown. In two preceding cases, the first case, when v is control parameter, 
it changes suddenly from periodic motion to chaotic motion , corresponding to llopf 
bifurcation. In the second case, it is the double- period process a nd leads to chaotic 
motion. Chaotic attractors illustrate the complexity of the motion of the system under 
consideration. 

1. SUMMARY OF THE CASE OF SMALL PARAMETERS 

First, we recall briefly some known results of deterministic motions in (0.1) for the 
case of smallness of the coefficients. It is supposed that v is close to the natural frequency 
w, namely: 

v2 = w2 + c:6. , (1.1) 

here 6. is a detuning parameter and c is a small positive one. Applying to (0.1) the 
asymptotic method [2] and using the amplitude and phase variables (a,()) given by 

we have 

x = acos(vt + ()), 
x =-av sin(vt + ()), (1.2) 
avcos(vt + e) - aBsin(vt + e) = o, 

va = -t:[6.x + k(l -1x2) x + {3x3 + esinvt] sin(vt + 0), 

vaiJ = -c[6.x + k(l -1x2 ) x + {3x3 + esinvt] sin(vt + ()). ( 1.3) 
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Since a and () are slowly varying functions of time, the change in their values during a 
time period T = 27f / v is very small. Hence, in the first approximation one may replace 
equations (1.3) by their time - averages over (t, t + T) assuming a and fJ to be constant: 

. E 1 2 
va = 2[akv(l - ;tya ) - ecosfJ], 

• E 3 3 . 
vafJ = -(-6.a - -{Ja + e.smfJ). 

2 4 
The steady-state equations are 

aokv(l - 2a5) = ecosfJo, 
3 4 

6. ao + - (3 a5 = e sin fJo. 4 . 
By eliminating the phase ()0 from these equations we obtain 

A[(l - A) 2 + a 2
] = E 2

, 

where 

A = 2a2 = a6 2 I 2 w [ a
2 

- 1 3(3 2] a = ::_ 
4 ·0 a;' E = 4k2w2 e ' a = k E + 4w2 ao ' w' 

( 1.4) 

(1.5) 

( 1.6) 

(1. 7) 

a* = 2/ ,;;y is the amplitude of the purely self~excited Van der Pol oscillator. Below 
only the behaviour of forced oscillations with the frequency v which is close to w will be 
considered. 

The oscillation described by the equation (0.1) with stationary amplitude a0 and phase 
fJo: x = ao cos(vt + fJ0 ) has the frequency of the external force v only. The self-excited 
oscillation is entrained by the external excitation. The synchronized oscillation (1.2) is 
characterized by the entrainment of the auto-periodic frequency by the external one. The 
synchronization effect is observed only when the exciting frequency v is close enough to 
the natural frequency w. 

The amplitude curves with various values of external excitation (E) are given in the 
Fig. 1 for the case (3 = 0 [1]. For E = 0, i.e. for the zero external excitation, we find the 
results for the classical Van der Pol oscillator: 

1) A = 0 with a arbitrary, 
2) a= 0, A= 1. 

Therefore, the resonance curves degenerate into the line A = 0 (a-axis) and the point 
a= 0, A = 1. 

If Eis small but different from zero, we expect A to be nearly 1 or nearly zero so that 
one of the response curves would be oval which is approximately the circle 

(A - 1) 2 + a 2 = E 2 

with centre at a = 0, A = 1. In addition, the other branch runs near the a-axis. The oval 
expands with increasing E. When E increases, the resonance curves first consist of two 
branches, up to the critical value E = 2/ J27 for which the two branches join at a = 0, 
A = 1 /3, then with further increa.se of E the resonance curves have only a single branch. 

From the Fig. 1 one can see that under certain conditions the frequency of the free os
cillation is canceled out and is replaced by a synchronized oscillation, i.e. by an oscillation 
whose frequency is that of the external force, namely: 
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1) For a given amplitude of the exciting force ( E), the synchronization effect is observed 
when the exciting frequency vis close enough to the natural frequency w of the oscillator. 
The larger the amplitude of the exciting force, the greater the frequency interval over 
which the synchronization occurs. 

2) For a given exciting frequency, the oscillator is synchronized when the exciting 
amplitude is large enough. The closer the exciting frequency is tow, the lower its threshold 
amplitude is. 

~-------2.0.----------~ 

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 

Fig. 1. Amplitude curves for the Duffing - Van der Pol oscillator ({3 = 0) 
with various values of external excitation 

2. THE CASE OF ARBITRARY PARAMETERS 

2.1. Some concepts connected to bifurcation 

Bifurcation is a concept used to indicate a qualitative change in the features of a 
dynamical system, such as the number and type of solutions, under the variation of one or 
more parameters on which the considered system depends. These parameters are called the 
control parameters, and parameter values at which bifurcations occur are called bifurcation 
values. A bifurcation diagram is a graph of the state variables versus the parameters [3, 
6, 9]. 

The bifurcation diagram provides a summary of the essential dynamics and is therefore 
an important tool for examining the prechaotic or postchaotic changes in a dynamical 
system under parameter variations. The Poincare map can be used to construct the 
bifurcation diagrams for continuous differential equations. \Vhen the data are sampled 
using a Poincare map, it is very easy to observe period doubling and Hopf bifurcations. 
It is useful because one characteristic precursor to chaotic motion is the appearance of 
subharmonic periodic vibrations. 

We'll examine two following concrete cases: a) The frequency v is the control param
eter, b) The forcing amplitude e is the control parameter. 

2.2. The frequency vis the control parameter 

We go back to the system (0.1) with w2 = 0.7, k = 1, I = 0.6, f3 = - 1, e = 5 and 
use the frequency v as a control parameter. Poincare sections for orbits of this system 
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are constructed by using the excitation frequency v. For each orbit of the system t he 
discrete points ( x( nT), x( nT)) are collected at time intervals of T = 27T / v (the period of 
the external excitation force). The bifurcation diagram shown in Fig. 2 was generated 
by incrementing the control parameter v in steps of 6.v = 0.0001. The graph consists of 
the points (x(nT) , v), where the values x(nT) correspond to the attractor realized at each 
value of v. 

Fig. 2. Illustration of bifurcations on the poincares section 

for w2 = 0.7, k = 1, / = 0.6, (3 = - 1, e = 5. 

From Fig. 2 it is clear that as v increased through vh ~ 0. 780895, there is an abrupt 
transition from the point attractor to an aperiodic one, so a Hopf bifurcation of a periodic 
solution (the Poincare section consists of only one point) occurs. For v < vh , the state 
of the system is periodic, when the control parameter exceeds the threshold value vh, the 
system evolution is attracted to chaotic attractor, then the system undergoes a subcritical 
Hopf bifurcation. The attractors, both before and after the bifurcation, are shown in Fig. 
3. Fig. 3a describes the periodic attractor with its Poincare section consisting of one point 
(*) connected to v = 0. 78. With v = 0. 782 a chaotic motion occurs, Fig. 3b describes its 
attractor. We'll consider this case more detail below. 

With the values of the frequencies v < vh, the Poincare sections consist of one point , 
the motions are periodic with the period equating the one of the external force. Beyond the 
periodic region occupying much of the interval 0. 76 :::;; v < vh , there exists a wide interval 
in which for certain ranges of the parameter v, the displacement x takes an infinite number 
of values; these states are aperiodic. 

It is also interesting to see that within the aperiodic regions there are narrow intervals 
in which the motion abruptly becomes periodic again, for example, the region around 
the value v = 0.8, v = 0.8054, v = 0.8138 ... In this interval, for every parameter v, x 
takes a finite number of values (more than one), so that the corresponding motions are 
subharmonic oscillations. 
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Fig. 3a. Periodic attactor (v = 0.78089) Fig. 3b. Chaostic attractor (v = 0.782) 

A concrete case of Chaotic motion. We consider a concrete case for the parameters 
w2 = .0.7, k = 1, 'Y = 0.6, /3 = -1, e = 5 and v = 0.782 > vh. The aperiodic appearance 
of x (see Fig. 4) suggests that the system under consideration is chaotic. 

3 • x 

Ott-1-tttti-tt-tti-t-rH:ttt-t:tttiTffit-Tti-M-tti-tt-\-tt-H-f-ttTt-t:t->tti'.1-t:tT.t-lcrl'ltll-ti-t-rtti-t-~~X 
40 ,( 7 3 b 40470 

-3 

Fig. 4. Aperiode appearance of x(t) (v = 0.782) 

To verify that motion realized at v = 0. 782 is chaotic, we need to show the sensitivity 
to initial conditions on its attractor. We choose two points separated by do = 10-- 7 

close to the attractor and examine initiated evalutions from them. Fig. 5 illustrates the 
variation of the separation d with time t. The exponential growth of separation d for 
20 < t < 120 is clearly noticeable. The separation saturates the size of the attractor for 
t > 120. Therefore, there is a positive Liapunov exponent associated with t he chaotic 
orbit at v = 0.782 and its approximate value is ,\ ~ 0.0495. Much more insight can 
be gained from a Poincare section (Fig. 6) consisting of stroboscopic points at instants 
t = n(27r /0.782), n = 0, 1, 2 ... of the orbit of the system (2.1) in the space (x, i:). Fig. 6 
shows the next 10000 points after the transition decays about the first 1000 periods. The 
corresponding attractor of the chaotic solution is presented in Fig. 3b. 
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Fig. 5. Sensitivity to initial condition for v = 0. 782 Fig. 6. Poincare section for v = 0.782 

2.3. The forcing amplitude e is the control parameter 

We examine a graph of x versus the forcing amplitude e at w2 = 0.7, k = 1, 'Y = 0.6, 
/3 = -1, v = 0.837 in order to detect bifurcations. The bifurcation diagram is shown in 
Fig. 7. In this numerically constructed bifurcation diagram, the discrete points on the 
Poincare section of the attractor realized at each value e are displayed. 

0 
4.7208 

-1.82 ;I----------- ----·---...... ~·-iwi•-• 
Fig. 7. Illustration of bifurcations on the Poincae section 

for w2 = 0.7, k = 1, / = 0.6, /3 = -1, v = 0.837 

Obviously, from Fig. 7, we can observe the sequence of period-doubling bifurcations. 
First, with one of values e in the interval (4.7, 4.7645125) , the Poincare section consists 
of five points (five dark points in Fig. 8), so there exist the subharmonic motions with 
the period equaling five times of the period of the external force (Fig. 8). At the value 
e ;::::; 4.7645125, the first period-doubling bifurcation occurs. After the bifurcation, with 
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the values e which is in the right vicinity of the value e ~ 4.7645125, the subharmonic 
motions with the period equaling twice the period of the previous motions appear, the 
Poincare sections consist of ten points (Fig. 9), and so on. The chaotic attractor realized 
at e = 4.8042 appearing after a sequence of period-doubling bifurcations is shown in Fig. 
10, and Fig. 11 is corresponding attractor. The largest Liapunov exponent evaluated is 
positive ( >. ~ 0.0553) defines sensitivity to initial conditions on the chaotic attractor . 

-3 

7 

-7 

Fig. 8. Periodic orbit and its Poincre 
section (five points) fore= 4.7 

Fig. 10. Chaotic attractor for e = 4.8042 
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Fig. 9. Ten points in the Poincare section 
fore = 4.7682 
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Fig. 11. Poincare section fore = 4.8042 

The sequence of period-doubling bifurcations is one route to chaos and it is common 
in many dynamical systems. It is particularly interesting because it may be characterized 
by a certain universal constant (called the Feigenbaum's constant) that do not depend 
on nature of the concrete systems. This constant is considered as a specify criterion to 
determine if a system becomes chaotic by observing the prechaotic periodic behavior. 

If the first bifurcation occurs at parameter value e1 , the second at e2 , and so on, then 
this constant is defined as 

. ek - ek-l 
hm = 6 = 4.6692016 ... 

k-+oo ek+l - ek 

Table 1 shows a list of the parameters at which period-doublings occur in the Poincare 
map corresponding to the system (0.1) for w2 = 0.7, k = 1, I = 0.6 , {3 = - 1, v = 0.837 
and e is used as the control parameter. 
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Table 1. Feigenbaum 's constant in the Poincare map 

Period 
5 
10 
20 
40 
80 
160 

Parameter e 

4.7645125 
4.7717130 
4.77327499 

4.773611 
4.77368297 

Ratio 

4.600144 
4.656677 
4.668751 

Liapunov exponent. To determine the chaotic motion in the system described by 
(0.1) it is necessary to calculate the largest Lyapunov exponent. If do is a measure of the 
initial distance between the two starting points, at a small but later time the distance is 

The divergence of chaotic orbits can only be locally exponential, since if the system is 
bounded, as most physical experiments are, d(t) cannot go to infinity. Thus, to define 
a measure of this divergence of orbits, we must average the exponential growth at many 
points along a trajectory. One begins with a reference trajectory and a point on a nearby 
trajectory and measures d(t)/d0 . When d(t) becomes too large (i.e, the growth departs 
from exponential behavior), one looks for a new "nearby" trajectory and defines a new 
do(t). One can define the first Lyapunov exponent by the expression 

N 
,\ = 1 I: log2 d(tk) . 

tN - to k=l do(tk-1) 

The motion is chaotic if the corresponding largest Lyapunov exponent is positive. For 
this calculation ([7]), in the case of concrete case of Chaotic motion w 2 = 0.7, k = 1, t = 

0.6 , (3 = -1, e = 4.825 and v = 0.837, we represent the equation (0.1) in the form 

±1 = x2, 
±2 = -0.7x1 + (1 - 0.6xi)x2 - xr + 4.825 sin(0.837z), 
z = 1. 

(2.1) 

Let u = (x1 , x2 , z) is a three dimension vector and u* = u*(t , uo) is a reference tra
jectory of the system (1.2), where u0 is the initial condition. The variational equation 
corresponding to this reference trajectory is 

where T/ = u - u* and the matrix A depends on u*. 

A= [ [ -0.7 ~ l.2xix2 - 3xi2 1
1
- 0.6xi2 ] 

0 0 
4.03~ cos ( 0.837 z') ] · (2.2) 

If this initial condition is chosen at random, then it is likely to have a component that lies 
in the direction of the largest positive eigenvalue of A. It is the change in length in this 
direction that the largest Lyapunov exponent measures. 



A numerical approach of chaotic motions ... 

After a given time interval tk+l - tk = T, take 

l7J(T; tk)I 

17J(O; tk) I 
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The time evolution of the Lyapunov exponent is presented in Fig. 12. The largest Lya
punov exponent value is a positive number >. ;:::::: 0.0698 > 0, which shows the chaotic 
character of the motion of the system (2.2). This means that two trajectories starting 
closely one to another in the phase space will move exponentially away from each other 
for small times on the average 

where do is the initial distance between two adjacent starting points at t = t0 and d is 
the distance between two these points at the moment t. In Fig. 13, we show how the 
distance d between evolutions initiated from two points separated by do = 10- 7 varies 
with time. Both of the initial points are located close to the attractor. The separation 
clearly grows exponentially in the range 10 < t < 125. The separation saturates at the 
size of the attractor for t > 125. 

,\ 
0.2 ----------------------------

0 15 ----------·--·------- -------------- ·--

0.1 

0.05 

cycle 

500 1000 1500 2000 2500 

Fig. 12. Time evolution of the largest Liapunov 
exponent (one cycle = 27r / v, v = 0.837) 
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Fig. 13. Sensitivity to initial conditions 
on the attractor 

3. CONCLUSION 

The bifurcation diagrams and Liapunov exponent have been used for detecting chaotic 
regimes in the system described by equation (0.1). Our discussion was focused upon vari
ation of the excitation frequency v and the forcing amplitude e. For a concrete case, the 
parameter regions in which either periodic or chaotic motions exist were shown. Chaotic 
attractors (Fig. 5, 10) illustrate the complexity of the motion of the system under con
sideration. The bifurcation diagram shows so clearly the motions of system (0.1) with 
respect to the observed parameters. In two preceding cases, the first case, when v is 
control parameter, it changes suddenly from periodic motion to chaotic motion, corre
sponding to Hopf bifurcation. In the second case, it is the double - period process and 
leads to chaotic motion. Lyapunov exponent value and some other criterions have used to 
determine chaotic motion of a solution. 
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CHUYEN DQNG HON DQN TRONG CHAN TV 
DUFFING -VAN DER POL 

Bai bao nghien ClrU anh hu&ng cua tan so va bien de) cua h;t'C kfch d<)ng len ung XU 
hon d<)n cua m<)t chan tu mo ta b&i phmmg trlnh Duffing - Van der Pol: 

x + w2x = k(l - ')'x2 )i: + f3x 3 + esinvt 

. Khi e = 0 , o > 0, /' > 0 ta c6 m<)t phmmg trlnh Van der Pol co dien bieu <lien cho 
m<)t dao <;i<)ng tv kfch v&i bien de) a* = 2/ fi va tan sow. Cac tfnh toan so da duc;rc thvc 
hi$n de nghien ClrU chuyen d<)ng hon d<)n xay ra khi thay doi tan SO kfch d<)ng ll va bien 
de) e. Cac S<J do phan nhanh va phuang phap so mu Liapunov da duc;rc Slr d\mg de nghien 
ClrU cac tr~ng thai chuyen tiep tu chuyen d(mg tuan hoan sang chuyen d<)ng hon d<)n khi 
v thay doi ( 1mg v&i m<)t d~ng phan nhanh Hopf) va khi e thay doi ( ung v&i m<)t qua trlnh 
nhan doi chu ky trong sa do phan nhanh). 


