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1. INTRODUCTION 

Thia paper presents our research on the interaction between no linear oscillations, 
Van-der-Pol 's systems subjected to complicated excitations ancl quasilinear o::;cillations in 
systems with large static deflections [1-4]. It is well known that there is always an interac­
tion of some kind between nonlinear oscillations, namely, between the forced, parametric 
and self-excited oscillators. Each of these oscillators demonstrates definite sustained os­
cillations, comprising one or a combination of several modes. The principal questions to 
be answered are: \Vhat will happen if these oscillators arc coupled in some manner? Docs 
a resultant nonlinear oscillation exist and is it stable? The satationary oscillat ions and 
their stability have been paid special attentions. 

2. INTERACTION BETWEEN EXTERNAL AND 
PARAMETRIC EXCITATIONS 

In this section, we examine some quasilinear oscillating systems subjected to external 
and parametric excitations. \Ve restrict ourselves to a class of quasilinear systems with 
two excitations. The following systems have been considered: 

The system with external excitations in principal resonance and parametric excitation 
of the first degree in subharmonic resonance of the order one-half: 

i + w2x = E{b.x - hx - 1x3 + 2pxcos2wt + ecos(wt +CT)}. (2.1) 

The system with interaction between an external excitation and a parametric excita­
tion of the second degree, both in the principal resonance: 

x + w2x = E{b.x - hx - 1x3 + 2px2 cos wt+ e cos(wt + 1) } . (2.2) 

The system with interaction between an external excitation in principa.l resonance and 
a parametric excitation in subharmonic resonance: 

x + w2 x = E{ b.x - hx - 1x3 + 2px-3 cos 2wt + e cos(wt +CT)}. (2.3) 

The interact ion between two parametric excitations of t he first and third degree: 

x + w2x = E{b.x - hx - 1x3 + 2pxcos2wt + 2q::c3cos2(wt +CT)}. (2 .4) 
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The interaction between two parametric excitations of the first and scco!ld degree: 

x + w2 x = c{ .6.x - hi: - 1x3 + 2px cos 2wt + 2q.r2 cos 2wl}. (2.!J ) 

We now examine in more detail the equation (2.3) for CJ = 0. fts solution is found in 
the form [1]: 

x =a cos 1/;, i: = -aw sin 1/;, 1/; = wt+ 0. 

The averaged equations are 

2w 2w 
3 

2 
{

a =d-EJo= -E{hwa+~pa3 sin20+esin0} , 

ae =~~go= ~~{(.6.- 4
1

a 2)a+pa3 cos20+ccos0} . 

The amplitude and phase of stationary oscillations satisfy the equations: 

where 

We can write 

where 

J = EJo - pa3 Ji = 0, g =ego+ 2pa3g1 = O; 

Jo = hwa + -pa3 sin 20 + e sinB = 0, 

{ 

1 

g0 = (.6.- ~1 a2)a+pa3 cos20+ecosB = O. 
Ji = Jocose - go sine, 91 = Jo sine+ 90 cos 0. 

{ 
J = A sin B + B cos 0 - E = 0, 
9 = G sin 0 + H cos B - K = 0, 

A = e2 
- pa4 [pa2 - ( .6. - 3

: a2) J = T + pa4 X, 

X = .6. - 3
4
1 a2 + 3pa2, T = e2 

- 4p2a6
, 

H = e2 + 2pa4 [pa2 + ( .6. - 3

4
1 

a2) J = T + 2pa'1 X, 

B = -2phwa4
, E = -ehwa, G = 4phwa4 , K = - caX. 

(2.G) 

(2.7) 

(2. 8) 

(2.9) 

(2.10) 

(2.11) 

The transformation of the original equations (Jo , g0 ) into the associ ated ones (J , g) !ins 
the matrix: 

{ } {
e - 2pa3 cos0 pa3 sin0 } 

T = 4pa3 sin{;) e + 2pa3 COS() . 

The matrix has an important characteristic; its determinant dellotcd by 7' depends only 
on a (and aloso .6., in general) 

T = l{T}I = c2 - 4p2a0. 

Hence, in the plane R(.6., a 2 ) we can identify two regions: 
2 

- The equivalence region satisfying T # 0 or a6 # c 
2

. 
4p 

e2 . 
- The non-equivalence regions determined by T = 0 or a6 = -

2 
:--c. u.~. 

4p I 
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In th(' cqiiivalence region, the original equations (fo, go) and the associated equations 
(f , g) an' cqui valc11t. Therefore, the corresponding parts of the original resonance curve 
Co and the associated resonance curve C coincide. 

The 11011-cq11ivalcncc region is only a line. For the system under consideration, it is 
a straight line which is parallel to the abscissa axis 6. with the ordinate a; . i'he non­
cquivalnce line is a branch of the associated rcsonm1ce curve C. It is not a branch of the 
original resonance curve. Almost all of this curve contains strange clements which bcloug 
to C, bnt do not belong to Co. The method for determining the original resonance curve 
C0 is to cktcrmine the associated resonance curve C then exclude the strange clements. 
Ticsonance curves for the systems with and without friction are presented in Fig. 1 (for 
h = 0) and Fig. 2, 3 (for h = 0.003) and (h = 0.27). The amplitude curves in Fig. 1, 2 are 
simi lm to those of the interaction between linearly paramctricandforccdosscillation[l] . 
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Fig. 1. Resonance curves for the system with­
out friction 
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Fig. 2.. Resonance curves for tii<' system 
with friction h = 0.01 

The amplitude curves in Fig. 3 characterize the nonlinear under consideration. For 
small values of amplitude ao, the forced component dominated the other components and 
the corresponding parts of resonance curves are similar to those of forced oscillation. For 
large values of ao the influence of the parametric component is clear and as a result of 
the interaction between two oscillations, the resonance curve has the form of a upward 
parabola. 
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Fig. 3. Hcso11anc<' curves for the system with fri ction h = 0.027 
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Typical resonance curves for oscillating systems arc given in Fig. 4 (for equation (2.1) , 
Fig. 5 (for equation (2.2)), Fig. 6 (for equation (2.4)) and Fig. 7 (for equatio11 (2.5 )). 
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Fig. 4. Resonance curves for equation (2.1) Fig. 5. Resona nce curves for equation (2.2) 
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Fig. 6. Resonance curves for equation (2.4) Fig. 7. Resonance curves fo r equat ion (2.5) 

3. VAN-DER-POL'S SYSTEMS SUBJECTED TO 
COMPLICATED EXCITATIONS 

Different kinds of resonance curves of stationary processes and the intermediate forms 
of the resonance curves have been examined with the aid of a computer. The system under 
consideration arc: 

Van-der-Pol's system under the parametric excitation of the first degree and forced 
external excitation described by d.e.: 

i + w2x = c{ 6. x + h(l - kx2 )i: + 2px cos 2wt + e cos( wt + O")}. (3.1) 

Typical forms of the resonance curves are shown in Figs. 8 and 9. 
Van-der-Pol system subjected to the parametric excitation of the second degree and 

externa l excitation: 

i + w2x = c{ 6.x + h(l - kx2 )i: + 2px2 cos wt+ e cos(wt + O")} . (3.2) 
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Fig. 8. Resonance curves for a = 0 and for 

e = 0 (curve 0), e = 0.0150 (curve 1), 
e = 0.0177 (curve 2), e = 0.0500 (curve 3) , 
e = 0.1000 (curve 4), e = 0.1200 (curve 5). 

Typical resonance curves are given in Figs. 
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Fig. 10. Resonance curves for a = 7r and 
h = 0 (curve 1), h = 0.03 (curve 2), h = 
0.05 (curve 3) 

Fig. 12. Resonance curves for p = 0.05, q = 

0.01, 4 < k < 8 and h = 0.300 (curve 1) , 
h = 0.0500 (curve 2) , h = 0.550 (curve 3) , 
h = 0.0666 (curve 4), h = 0.800 (curve 5) 
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Fig. 9. Resonance curves for a = 4 and for 

e = 0 (curve 0), e = 0.0400 (curve 1) , 
e = 0.0483 (curve 2) , e = 0.0500 (curve 3), 
e = 0.0516 (curve 4), e = 0.0550 (curve 5) , 
e = 0.0648 (curve 6) , e = 0.0980 (curve 7). 
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Fig. 11 . Resonance curves for 7r =/= a 
. 57r 77r 

E { 6, 6 } and h = 0 (curve 1) , h = 

0.006 (curve 2), h = 0.02 (curve 3), h = 
0.05 (curve 4) 

Fig . 13. Resonance curves for k = 8 and 
h = 0.04 (curve 1), h = 0.05 (curve 2), 
h = 0.06 (curve 3) 
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Van-der-Pol's system subjected to the parametric excitations of the first and third 
degrees: 

x + w2x = c:{6.x + h(l - kx2 )± + 2px cos 2wt - 2qx 3 cos 2wt}. 

Some typical resonance curves are presented in Figs. 12 and 13. 
Van-der-Pol's system with variable nonlinear fri ction described by d.e.: 

x + w2 x = {w6.x + h[l - k(x + qcoswt) 2]±}. 

Typical resonance curves are shown in Fig. 14 
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Fig. 14. Typical resonance curve of equation (3 .4), where "st" is stable branch. 

4. QUASILINEAR OSCILLATIONS IN SYSTEMS WITH 
LARGE STATIC DEFLECTIONS 

(3 .3) 

(3.4) 

In mechanical systems the static deflection of the elastic elements is usually not ap­
parent in the equations of motion. The reason is that either a linear model of the elastic 
elements or an assumption of too small static deflection was accepted. In the present 
section both a nonlinear model of elast ic elements and their large static deflection are 
considered, so that the nonlinear terms in the equation of motion appear with different 
degrees of smallness. In this case the nonlinearity of the system depends not only on the 
nonlinear characteristic of the elastic element but on its static deflection. 

Let us consider the simplest oscillatory system which consists of a mass Jd and a 
spring as shown in Fig. 15. The spring supporting the mass is assumed to be nonlinear 
with the characteristic 

( 4.1) 

so that the spring force acting on the mass M is 

co(6. - x) + f3o(6. - x) 3
, 
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where 6. is the deformation of the spring in the static equilibrium position. When x = 0, 
the spring force c06. + {306. 3 is equal to the gravitational force Mg. That is: 

co6. + f3o6. 3 =Mg. 

\Ve have the equation of the mass M in the form: 

Mi+ cox+ 3f3o6.2 x - 3f3o6.x2 + f3ox 3 = 0. 

unstreched l 

- positTOn£ _ t_ !Ml reference 

- ~ - position -

Fig. 15. Oscilatory system with large static deflection 

-.t= O 

It is supported that 6. is large and x small enough, so that in comparision with the 
linear term, {30x 3 is a small quantity of second degree and f3o6.x 2 is of the first degree of 
smallness: 

~ = O(c:), f3ox 3 = O(c:2
), f3o6.x 2 = O(c:), 

where c: is a small positive parameter. In this case f3o6.x 2 is finite. Taking into account the 
viscous damping h0x and the exciting force P(t, x) which are both assumed to be small 
quantities of second degree and introducing the notation: 

2 co + 3f3o6. 2 3f3o6. 2{3 f3o 
w = M ey = ~ ' c: = A1 ' (4.2) 

2 ho 2 1 
c: h = M, c: f(t,x) = MP(t,x), 

we can write the equation of motion of the mass in the form: 

x + w 2 = qx2 
- c:2 (hx + {3x 3 

- f(t, x)). (4.3) 

In comparision with the classical Duffing's equation, in equation ( 4.3) the small terms 
appear with different degrees; most of them are of second degree of smallness. From the 
structure of the equation ( 4.3) one can predict that the influence of the force on the motion 
of the mass M can be found in the second approximation of the solution. A more general 
equation has also been investigated: 

x + w2x = qx2 + c2 F(T, cp(T), x, x). (4 .4) 

The most interesting phenomenon in the systems under considerations is that their 
nonlinearity depends not only on the nonlinear characteristic of the spring as in the classi­
cal theory, but also n the static deflection 6.. Namely, if the spring has soft characteristic 
({3 < 0) (curve 3, Fig. 16), then the system under consideration also belongs to the soft 
type with more soft characteristic, because 

3 512 

a= 4!3 - 6w2 < 0. 
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When the spring has hard characteristic ((3 > 0), the system under consideration belongs 
to the hard type if a > 0 or co > 7(30 t::.2 (curve 1, Fig. 16) and to the soft type if 
co< 7f3ot::.2 and to the neutral type if c0 = 7f3o82 (cureve 2, Fig. 16) 

In addition to ( 4.4) the following problems have been considered: 
The effect o(c:2-order due to the interaction between the excitation of c:-order 111 

systems described by the equations: 

x + w2x = c{h(l - kx2 )± + ecos3wt} + c:2 (t::.x - 1x3
), 

x + w2x = c[e cos(2wt + x) + 2px cos wt]+ c:2 (t::.x - 2h± - 1x3
), 

x + w2x = c:(e + 2px cos wt)+ c:2 (t::.x - h± - 1x3
). 
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Fig. 16. Stationary resonance curves of equation ( 4.3). 

(4.5) 

(4.6) 

(4.7) 

The effect of c:2-order caused by the interaction between the nonlinear restoring element 
and parametric excitation of c:-order in systems: 

x + w2 x = c:((3x2 + 2pxcoswt) + c:2 (t::.x - h± - 1x3
), (4.8) 

x + w2 x = c((3x2 + e cos 2wt) + c:2 (t::.x - h± - 1x3
), 

x + w2 x = c:(t::.x - 1x3 + e cos 3wt) + c:2 (-hx). 

The interaction of elements with two different orders in systems: 

x + w2 x = c:h(l - kx2 )± + c: 2 [~x - 1x3 + fi(t, x)], 

Ji = 2pt cos 2wt, h = e cos wt; 

x + w2x = 2c:px cos wt+ c:2 [t::.x - 1x3 + h(l - kx2 )±], 

x + w2 x = c:(ax2 + q cos 2wt) + c:2 [t::.x + D(l - 8x2 )x - (3x3
], 

x + w2x = 2pc:x cos wt+ c:2 [t::.x - hx + 2qx cos 2(wt +a)], 
x + w2x = c:(ax2 + q cos 2wt) + c:2 [t::.x - 2hx - (3x3 + r cos(wt - 77)], 

x + w2x = c:px cos wt+ c:2 [t::.x - 2hx - (3x 3 + r cos( wt - 77)], 

x + x = c[ax2 + qcos2cp(t)] - c:2 (2h± + (3x 3
). 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 
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5. CONCLUSION 

In this report, the interaction between external and parametric excitations, Van-der­
Pol's systems subjected to complicated excitations and quasilinear oscillations in systems 
with large static:: deflections have been studied. The asymptotic method in combination 
with the numerical method and a computer have been used to study the stationary os­
cillations and their stability. The amplitude frequency curves (resonance curves) of the 
systems under consideration are various, and the nonlinear characteristics are markedelly 
changed in both quality and quantity in comparision with classical systems. 
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