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1. INTRODUCTION

Thia paper presents our research on the interaction between nolinear oscillations,
Van-der-Pol’s systems subjected to complicated excitations and quasilincar oscillations in
systems with large static deflections [1-4]. It is well known that there is always an interac-
tion of some kind between nonlinear oscillations, namely, between the forced, parametric
and self-excited oscillators. Each of these oscillators demonstrates definite sustained os-
cillations, comprising one or a combination of several modes. The principal questions to
be answered are: What will happen if these oscillators are coupled in some manner? Does
a resultant nonlinear oscillation exist and is it stable? The satationary oscillations and
their stability have been paid special attentions.

2. INTERACTION BETWEEN EXTERNAL AND
PARAMETRIC EXCITATIONS

In this section, we examine some quasilinear oscillating systems subjected to external
and parametric excitations. We restrict ourselves to a class of quasilinear systems with
two excitations. The following systems have been considered:

The system with external excitations in principal resonance and parametric excitation
of the first degree in subharmonic resonance of the order one-half:

% +wlz = e{Azx — hi — y2® + 2pz cos 2wt + e cos(wt + o)}. (3.1)

The system with interaction between an external excitation and a parametric excita-
tion of the second degree, both in the principal resonance:

&+ w?x = e{Az — hi — vz 4 2pa® coswt + e cos(wt + 7)}. (2.2)

The system with interaction between an external excitation in principal resonance and
a parametric excitation in subharmonic resonance:

&+ wlr = e{ Az — hi — vz + 2pa® cos 2wt + e cos(wt + o)} (2.3}
The interaction between two parametric excitations of the first and third degree:

# 4 w?z = e{Ax — hi — y2 + 2pz cos 2wt + 2¢x> cos 2(wt + o) }. (2.4)
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The interaction between two parametric excitations of the first and sccond degree:
&+ wlx = e{Azx — hi — vz + 2px cos 2wt + 2qx? cos 2wt} (2.5)

We now examine in more detail the equation (2.3) for o = 0. Its solution is found in
the form [1]:

r=acosy, I =—awsiny, Y =wt-+ 0. (2.6)
The averaged equations are
- - 1
a = d—Efo = —E{hwa + =pa®sin 20 + esinO},
T 3] (27)
a = Ego = Z{(A - I’ycﬂ)a + pa® cos 20 + ¢ cos ()}.
The amplitudé and phase of stationary oscillations satisfy the equations:
f=¢efo—patfi=0, g=ego+2pa’g =0; (2.8)
where
1
fo = hwa+ =pasin26 + esinf = 0,
go = (A - T’yaz)a + pa3 cos 20 + ecos = 0, (2.9)
fi = focosl — gosinf, g1 = fosinf + ggcos0.
We can write
f = Asinf+ Bcosf — E =0, (2.10)
g =Gsinf+ Hcosf — K =0, -
where
3 :
A=e? —pat [pa2 — (A - %cﬂ)] =T+ pa*X,
37 o 2 2 2 6
X:A—Ia + 3pa®, T =e* —4p°a’,
3 ; ,
H:ez+2pa4[pa2+ (A— %aQ)] =T+ 2pa’X, (2.11)

B = ——2phwa4, E = —ehwa, G =d4phwa®, K = —caX.

The transformation of the original equations ( fo, go) into the associated ones ( f, g) has

the matrix:
{T} _ f[e—2pa®cos® pa® sin
B 4padsin® e+ 2padcosd |

The matrix has an important characteristic; its determinant denoted by 1" depends only
on a (and aloso A, in general)

T= |{r}| = &* = dp?a°.

Hence, in the plane R(A, a?) we can identify two regions:
2
- The equivalence region satisfying T' # 0 or a® # R
4p
.2 :
- The non-equivalence regions determined by T = 0 or a® = e e,
4p
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In the equivalence region, the original equations ( fo, go) and the associated equations
(f,g) arc equivalent. Therefore, the corresponding parts of the original resonance curve
Cy and the associated resonance curve C' coincide.

The non-cquivalence region is only a line. For the system under consideration, it is
a straight line which is parallel to the abscissa axis A with the ordinate (13,. The non-
equivalnce line is a branch of the associated resonance curve C. It is not a branch of the
original resonance curve. Almost all of this curve contains strange elements which belong
to C', but do not belong to Cy. The method for determining the original resonance curve
Cy is to determine the associated resonance curve C then exclude the strange clements.
Resonance curves for the systems with and without friction are presented in Fig. 1 (for
h = 0) and Fig. 2, 3 (for h = 0.003) and (h = 0.27). The amplitude curves in Fig. 1, 2 are
similar to those of the interaction between linearly parametric and forced osscillation [1].

a,
060 —
0.00 A
A=0 -0.10
Fig. 1. Resonance curves for the system with- Fig. 2.. Resonance curves for the system
out friction with friction h = 0.01

The amplitude curves in Fig. 3 characterize the nonlinear under consideration. For
small values of amplitude ag, the forced component dominated the other components and
the corresponding parts of resonance curves are similar to those of forced oscillation. For
large values of ag the influence of the parametric component is clear and as a result of

the interaction between two oscillations, the resonance curve has the form of a upward
parabola.

0.00 F == ——pffmmmm = T=0
b
T

-0.10 0.10 A

Fig. 3. Resonance curves for the system with friction 2 = 0.027
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"

Typical resonance curves for oscillating systems are given in Fig. 4 (for equation (2.1)
Fig. 5 (for equation (2.2)), Fig. 6 (for equation (2.4)) and Fig. 7 (for equation (2.5)).

0 3
S . " 0.00
-0.01 0.01 A - 0.02
Fig. 6. Resonance curves for equation (2.4) Fig. 7. Resonance curves for equation (2.5)

3. VAN-DER-POL’S SYSTEMS SUBJECTED TO
COMPLICATED EXCITATIONS

Different kinds of resonance curves of stationary processes and the intermediate forms
of the resonance curves have been examined with the aid of a computer. The system under
consideration are:

Van-der-Pol’s system under the parametric excitation of the first degree and forced
external excitation described by d.e.:

2+ c_u‘?:v = e{Az + h(1 — kx?)z + 2px cos 2wt + e cos(wt + o)}. (3.1)
Typical forms of the resonance curves are shown in Figs. 8 and 9.

Van-der-Pol system subjected to the parametric excitation of the second degree and
external excitation:

&+ wlz = e{ Az + h(1 — kz?)i + 2pz? coswt + e cos(wt + o) }. (3.2)
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0.2
Fig. 8. Resonance curves for o = 0 and for Fig. 9. Resonance curves for o = g and for
e =0 (curve 0), e = 0.0150 (curve 1), e =0 (curve 0), e = 0.0400 (curve 1),
e = 0.0177 (curve 2), e = 0.0500 (curve 3), e = 0.0483 (curve 2), e = 0.0500 (curve 3),
e = 0.1000 (curve 4), e = 0.1200 (curve 5). e = 0.0516 (curve 4), e = 0.0550 (curve 5),

e = 0.0648 (curve 6), e = 0.0980 (curve 7).

Typical resonance curves are given in Figs. 10 and 11.

aOJ
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Fig. 10. Resonance curves for 0 = 7 and Fig. 11. Resonance curves for # # o
_ - - om 7
h = 0 (curve 1), h = 0.03 (curve 2), h = c {_7‘" _7r} and h = 0 (curve 1), h =

0.05 3
(e &) 0.006 (curve 2), h = 0.02 (curve 3), k =

0.05 (curve 4)
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Fig. 12. Resonance curves for p = 0.05, ¢ = Fig. 13. Resonance curves for k = 8 and
0.01, 4 < k < 8 and h = 0.300 (curve 1), h = 0.04 (curve 1), h = 0.05 (curve 2),
h = 0.0500 (curve 2), h = 0.550 (curve 3), h = 0.06 (curve 3)

h = 0.0666 (curve 4), h = 0.800 (curve 5)
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Van-der-Pol’s system subjected to the parametric excitations of the first and third
degrees:

i+ w?r = e{Ax + h(1 — kz®)& + 2px cos 2wt — 2qx> cos 2wt}. (3.3)

Some typical resonance curves are presented in Figs. 12 and 13.
Van-der-Pol’s system with variable nonlinear friction described by d.e.:

# 4 w?zx = {wAz + h[1 — k(zx + g coswt)?]i}. _ (3.4)

Typical resonance curves are shown in Fig. 14

Q=1.63

-150 T Lglso | I SR
-1.00

Fig. 14. Typical resonance curve of equation (3.4), where “st” is stable branch.

4. QUASILINEAR OSCILLATIONS IN SYSTEMS WITH
LARGE STATIC DEFLECTIONS

In mechanical systems the static deflection of the elastic elements is usually not ap-
parent in the equations of motion. The reason is that either a linear model of the elastic
elements or an assumption of too small static deflection was accepted. In the present
section both a nonlinear model of elastic elements and their large static deflection are
considered, so that the nonlinear terms in the equation of motion appear with different
degrees of smallness. In this case the nonlinearity of the system depends not only on the
nonlinear characteristic of the elastic element but on its static deflection.

Let us consider the simplest oscillatory system which consists of a mass M and a
spring as shown in Fig. 15. The spring supporting the mass is assumed to be nonlinear
with the characteristic

f(u) = cou + Bou®, (4.1)
so that the spring force acting on the mass M is

co(& — @) + Bo(A — z)?,
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where A is the deformation of the spring in the static equilibrium position. When z = 0,
the spring force coA + BoA3 is equal to the gravitational force Mg. That is:

coA + BoAd = Mg.
We have the equation of the mass M in the form:

M3 + cox + 380A%x — 38oAz? + Bozd =

unstreched .
“position &~ 77 reference ’ )
= =i P
posmon

Fig. 15. Oscilatory system with large static deflection

It is supported that A is large and z small enough, so that in comparision with the
linear term, Box® is a small quantity of second degree and ByAz? is of the first degree of
smallness:

K =00, foz®=0(?), BoAa® =0(e),

where ¢ is a small positive parameter. In this case fpAz? is finite. Taking into account the
viscous damping hod and the exciting force P(t,x) which are both assumed to be small
quantities of second degree and introducing the notation:

2 o+ 3BA? _ 36A 2 BO
g2h = h—o, et x) = —P(t %,
M
we can write the equation of motion of the mass in the form:
&+ w? = eya? — E2(hi + Bz — f(t,x)). (4.3)

In comparision with the classical Duffing’s equation, in equation (4.3) the small terms
appear with different degrees; most of them are of second degree of smallness. From the
structure of the equation (4.3) one can predict that the influence of the force on the motion
of the mass M can be found in the second approximation of the solution. A more general
equation has also been investigated:

&+ w?x = eyx® + 2 F (1, (1), T, &). (4.4)

The most interesting phenomenon in the systems under considerations is that their
nonlinearity depends not only on the nonlinear characteristic of the spring as in the classi-
cal theory, but also n the static deflection A. Namely, if the spring has soft characteristic
(8 < 0) (curve 3, Fig. 16), then the system under consideration also belongs to the soft
type with more soft characteristic, because
2

3 S5y
=3P s
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When the spring has hard characteristic (3 > 0), the system under consideration belongs
to the hard type if & > 0 or cg > 7ByA? (curve 1, Fig. 16) and to the soft type if
co < TBoA? and to the neutral type if co = 78p6% (cureve 2, Fig. 16)

In addition to (4.4) the following problems have been considered:

The effect of e2-order due to the interaction between the excitation of e-order in
systems described by the equations:

i+ w?z = e{h(1 — k2®)2 + e cos Bwt} + e2(Az — ya?), (4.5)

& + w?x = elecos(2wt + x) + 2px coswt] + e2(Az — 2hi — vad), (4.6)

&+ w’z = g(e + 2px coswt) + £2(Az — hi — yz3). (4.7)
2

2
099 1 o1 ]
Fig. 16. Stationary resonance curves of equation (4.3).

The effect of £2-order caused by the interaction between the nonlinear restoring element
and parametric excitation of e-order in systems:

%+ w?x = (Bx? + 2px coswt) + e2(Ax — hi — yz3), (4.8)
&+ w?x = e(Bx? + ecos 2wt) + €2(Ax — hi: — yz3), (4.9)
&+ w?z = e(Ax — yx® + ecos3wt) + e2(—hi). (4.10)

The interaction of elements with two different orders in systems:
i+ w?z = eh(l — kx?)i + ?[Ax — v + fi(t, z)], (4.11)

f1 = 2pt cos2wt, fo = ecoswt;

& + w’z = 2epx coswt + e*[Ax — vz + h(1 — kx?)], (4.12)
i+ w?z = e(aa® + g cos2wt) + e*[Az + D(1 — 6x%)i — B3], (4.13)
& + w’z = 2pex coswt + €2[Ax — h + 2qx cos 2(wt + o)), (4.14)
&+ w’r = e(ax® + qcos2wt) + e2[Ax — 2hi — Bz + r cos(wt — n)], (4.15)
& + w?z = epz coswt + 2[Az — 2ht — Bz + r cos(wt — 1)), (4.16)

# + z = e[ax?® + g cos2p(t)] — €2(2hi + Bz®). (4.17)
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5. CONCLUSION

In this report, the interaction between external and parametric excitations, Van-der-
Pol’s systems subjected to complicated excitations and quasilinear oscillations in systems
with large static deflections have been studied. The asymptotic method in combination
with the numerical method and a computer have been used to study the stationary os-
cillations and their stability. The amplitude frequency curves (resonance curves) of the
systems under consideration are various, and the nonlinear characteristics are markedelly
changed in both -quality and quantity in comparision with classical systems.
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