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Abstract. The nonlinear vibration of a pendulum whose support undergoes arbitrary 
rect ilinear harmonic motion is studied. The main attention is paid to the resonant cases 
and the stationary vibrations. The resonant conditions are explained. The amplitude -
frequency curves are plotted for various values of parameters and the stability of vibration 
is investigated. The rotating motion of the pendulum and its stability are also considered. 

1. EQUA'J:'ION OF MOTION 

Let us consider the vibration of a pendulum consisting of a negligible weight rod AM 
of length and a load M of mass m. The pendulum support undergoes rectilinear harmonic 
motion by means of a mechanism shown in Fig. 1 when the crank ON of length R rotates 
around 0 with a constant angular velocity 0 and translates slotted bar BA of length L 
along slides 1.1. We shall take the origin of they axis vertically up. The position of the 
pendulum will be specified by angle so that AM makes with vertical axis (Fig. 1). The 
kinetic and potential energies of the pendulum, T and V respectively are: 

T = ; [ £2 <f'2 + R2 0 2 sin2 Ot - 2RO£<f' sin Ot sin( c5 + r.p)], 

V = mg [ ( L + R cos Ot) cos c5 - £cos r.p] . 
(1.1) 

Using Lagrange's equation, taking into account the damping force, the equation of 
motion of the pendulum is obtained as 

R 
i:p + w2 sinr.p + h<P - 1 0 2 cos0tsin(c5 + r.p) = 0, ( 1.2) 

where w2 = g / £, h is the damping coefficient. 
We assume that R/ £ and h are small and we shall consider small vibrations of the 

pendulum about the vertical axis, so that sin r.p ~ r.p - ( r.p3 /6), cos r.p ::::::: 1 - ( r.p2 /2). The 
smallness of the mentioned quantities can be taken into consideration by introducing a 
small dimensionless parameter£ which will be set equal to unity in the final results. Thus, 
we are led to consider the following equation of motion: 

r.p" + r.p = € [ - h1 r.p' + ~r.p3 + c1
2 cos f'T + n1

2 
. r.p cos 1~] , ( 1.3) 
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Fig.1 

where 

R R h n 
T=wt, C=esin8, D=ecoso, h1=~, r=w (1.4) 

and a prime denotes the derivative with respect to the dimensionless time T. 

In the following sections two resonant cases which cause intensive growth of the am­
plitude of vibration of the pendulum will be studied. 

2. PRINCIPAL RESONANCE 

We consider the cases when 'Y differs a little from unity. We are interested in finding 
out what happens close to resonance, that is to say when , 2 - 1 is small, namely: 

2 cf:i 
'Y = 1 + - (2.1) 

w2 

where ti is a detuning parameter. 
Let us introduce in equation (1.3) the variables a and T/ as follows 

e I • e c.p = a cos , c.p = -a"( sm , 0 = "(T + TJ 

here the condition 

a' cos e - arJ1 sine = 0 

is imposed. The equations for new variables will be 

,a'= -c(~. c.p + J) sine, 

1arl = -£(~. c.p + f) cose, 

whicvh is a set of equations in standard form with 

(2.2) 

(2.3) 

(2.4) 

f = h1 a, sine + ~a3 cos3 8 + c,2 cos "(T + Dr2a cos() . cos "(T. (2.5) 
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In the first approximation the right-hand sides of (2.4) may be replaced by their mean 
values, regarding a and T/ as constants [l]: 

1a' = -~(hna+C12 sinrt), 

1art' = - ~(~a+ ~a3 + c,2 cos rt). 
2 w2 8 

The stationary amplitude ao and phase T/o are determined by 

h1 /ao + C12 sin T/O = 0, 

.6. 1 3 2 
w2 ao + 8a0 + C1 cosrto = 0. 

A simple calculation eliminating T/ leads to the response curve equation: 

W(ao, 1 2
) = 0, 

w = a6 [ hb2 + ( 1 2 
- 1 + ~a6 )2] - C

2
1

4
. 

This relation is plated in Fig. 2 for the parameters: 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

R = 2cm, f, = lOOcm, o = 0.78rad, g = 980cm/sec2
, h = 2.47 · h 1 , w = V97f, = 2.47, 

w2 = 6.125, C = 8.8 · 10-3 • 1. h1 = 10-2 and 2. h1 = 4 · 10- 2 • 
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Fig. 2 

Let us now discuss the stability of the possible stationary regimes. To do this we study 
the eigenvalues of the matrix of coefficients of variational equations of (2.6): 

( 

c 
--hn 

-~( ~ + ~a2) 
2 w2 8 ° 

c;C 
2 

) -2/ COST/o 

c;C 2 . 
2' SinT/o 
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The equation defining these eigenvalue is 

2 2 2 E2 aw 
ao"( >. +q aoh1>.+ 8 aao = 0 

from which we obtain the condition for asymptotic stability 

aw -a >0. ao 

(2.10) 

(2.11) 

It is noted that function W(a0 , 1 2 ) is positive (negative) outside (inside) of resonant curve 
and equal to zero on it. So, condition (2.11) shows that the upper branches of resonant 
curves (heavy lines) in Fig. 2 correspond to stable stationary regimes and the broken lines 
to unstable ones. 

3. PARAMETRIC RESONANCE 

It is supported that 'Y is approximately equal to 2, namely 

1
2 = 4(1 + :2~1) 

The solution of equation (1.3) in this cases is found to be 

cp = bcos (~r +ex), cp
1 = -t1sin (~r +ex). 

In the first approximation (1.3) can be replaced by the averaged ones: 

1b' = -~b1(h1 + D1sin2ex), 

a 
.... 

0.5 

1 E (2~1 1 2 2 ) 1bex = --b -
2
- + -b + D1 cos 2ex . 

2 w 4 
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Fig. 3 

(3.1) 

(3.2) 

(3.3) 
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It is clear that b = 0 is a solution of equations (3.3) , but as we shall show later, it may 
happen that this solution is unstable and that the system begins to vibrate spontaneously. 
The stationary amplitude bo is determined from equation b' = c/ = 0 by eliminat ion a : 

2 

b
2 = 8(1 - : ) ± 41Jn21 2 

- hi. (3.4) 

The response curves arc plated in Fig. 3 for D = 8.8 · 10- 2 and 1) h 1 = l.G5 · 10- 2 , 2) 
h1 = 1.7 · 10- 2 . The study shows that only the positive sign before the radical (3.4) 
corresponds to the asymptotical stability of nontrivial stationary vibration; and t hat t he 
solution b = 0 is stable outside the resonant curve and unstable inside it. Thus, only t he 
heavy line (Fig. 3) of the resonant curve correspond to stability of vibration. 

4. ROTATING MOTION OF THE PENDULUM 

Assuming that h and R/ £ are small we consider the rotating motion of the pendulum 
governed by equation: 

cp + w2 sin<p = i::F(<p, cp, t) , ( 4.1) 

where 
R 

F(<p , cp, t) = -hep - 7 0 2 cos0tsin(<5 + cp). (4.2) 

It is supposed that the energy of the system considered is high so that when c = 0 the 
pendulum will be rotating (equation ( 4.1)). 

We introduce the variable a and 'lj; [2]: 

<p = ~ + a sin ~, 

cp = v(a) + av(a) cos~, 
(4.3) 

where 

~ = Ot + 1./;, v(a) = 1/va, ~ = v(a) ( 4.4) 

and <p is the solution of the degenerate equation c = 0 if a and 't/J are constants ; so that 

-av2 (a) sin~+ w2 sin<p = 0. (4.5) 

Equation ( 4.3) imply that 

~ ( 1 + a cos 0 + a sin~ - v( a) ( 1 + a cos 0 = 0. (4.6) 

The second equation for ~ and a is obtained by substituting equation ( 4.3) into equation 
( 4.1): 

-av~sin~ + [va(l +a cos~)+ vcos~]a + w2 sin<p = i::F(<p, cp, t) (4.7) 

here the subscript "a" or ( )a denotes the derivative with respect to the amplitude a. From 
these equations we get: 

a= - ~ F(<p, cp, t)(l +a cosO, 

,(;; = v(a) - 0, + ~ · F(<p, cp, t) sin~, 
(4.8) 



182 Nguyen Van Dao 

where 
-~ = avsin2 ~ + (1 +a cosO [va(l +a cosO + vcos~J. 

Substituting here v = 1/ Va we have 

1 
~ = 2ava + 0( Va. a

3
) . (4.9) 

We shall consider the principal resonant case when the amplitude a takes values close 
to ao determined by 

1 
0::::::: v(ao) = -

Fa 
and use the Jacobie expansions of trigonometric functions in Bessel functions [3]: 

00 

sin(asinO = 2Lhn-1(a)sin(2n-1)~, 
n=l 

00 

cos( a sinO = Jo(a) + 2 L hn(a) cos2n~, 
n=l 

= (-l)k (a)m+2k 
Jm(a) = L k!(m + k)! 2 ' 

k=O 

m = 0, 1, 2, ... 

(4.10) 

(4.11) 

Limiting by considering the vibration with small amplitude a we have in the first approx­
imation averaged equations of the form: 

where 

. E ( a2) E R 2 a= ~ hv(a) 1 + 2 - ~ £0 (0:1 cos'lj.; + 0:2 sin 'lf.;), 

. c R 2 
'lf.;=v(a-0)+ ~ ·£0 (0:3cos'lf.;+0:4sin'lj.;), 

0:1 = [~(Jo+ h) - J(J1 + h)] sinJ, 

0:2 = [~(Jo - h) + J(J1 + h) J cos J, 

1 
0:3 = 4(J1 + h) cosJ, 

1 . 
0:4 = 4(h - 3J1) smJ, 

Jo= 1 - (~)2, 1 (a)2 
h= 2 2 ' h =0. 

(4.12) 

( 4.13) 

Stationary regimes of resonant vibrations a* and 'lj.;* are determined by equations a = ,0 = 

0: 

yfa;:"~02 (o:i cos 1/J* + o:; sin 'lf.;*) = h( 1 + ~;), 

2rn*yfa;:"~02 (o:3cos'lj.;* + o:~sin'lf.;*) = 0- ~, 
(4.14) 
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1 
0 = -- =canst. 

Fa 
The solution of these equation are found in t he series: 

a* = ao + rn 1 + O(c:2
) , 

'l/J* = ·!/Jo+ c:t/J1 + O(c:2
) , 
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where a0 satisfies relat ion (4.10). Substituting equations (4.15) ii1to equations (11.14) we 
have: 

2 

y'aQ · ~02 (cx1ocos'l/Jo + cx20sil1'!/Jo) = h(l + a
2
°), 

a* = ao + rn1 = ao+4rn602 ~(et3ocos ·!/Jo + et110Si11'!/Jo), 

(4 .lG) 

here aw= cxi (a = a0 ). The first equation of (4.16) gives t he phase di splacernent. Then. 
the correction c:a1 to the stationary amplitude ao will be found. 

'vVe consider now the stability of stationary solution a* and !/J* determined by formu lae 
(4.14). For this purpose we write the variational equations for system (4.12). Let 

Dy putting these expressions into ( 4.12) and linearizing relative to fJa au cl 6·!/J \Ve obtain: 

:t/ja = c:{ (~) a - ~02 [ (~)a cos'ljJ*+ (~t sin 'l/J*]}/ja 

- ~ ~02 (-cx 1 sin 'l/J* + cx2 cos ·t/J*)fJ'ljJ, 

:t fJ 'ljJ = {La + E ~ 0 2 
[ (~)a cos 'ljJ* + (~)a sin •!/J*] } fJa 

+ ~ ~02 (-cx3 sin 'ljJ* + et4 cos'ljJ*)fJ'ljJ . 

where 

H = hv(a) ( 1 + a;) , L(a) = v(a) - 0 . 

The characteri stic equation of this system is of the form 

..\
2 + K>. +G= O 

where 

and a prime denotes a derivative to a*. T he stability conclitiolls will be 

J( > 0, c > 0. 

(4.18) 

(4.19) 
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As nu example let us consider the case 6 == 0. 'fhcn 

Oj = O .J = 0, 02 =-•. ·~(] - (/
2

) . 
2 8 . 

a11d C'qua1 ion (-1.16) arc of the form: 

(/, 

O :.i =- -·-
8 

1
/ n2 jaO ( 1 - ~J) sill J•o - 2/i ( 1 + ~f) . 

1 un2 l . 
a* = a 0 + 2t>z H · u. 0 cos c·o, no === -02 · 

( l.2 2 ) 

Bcrnusc o is snrnll, the first equat ion of (4 .22) slimvs that tl1cre arc l\\'O rnltH':-i of V'1J ly ing 
011 the first and second quadrants correspouding to two values of cos ~·o \l'i1h opposi t l' 
sig11s. Tliercforc tl ic one of stationary amplitiidv rnrrcspo11di ng to cos v u > U is Ln gc 1 lirni 
oo ni id tl ic other corresponding to cos 4Jo < 0 is sum] lcr t.liau uo. Tl 11· <'xprcs:-;ions ( 1. 2l I) 
nuw are: 

I< = h + O(o. 2
), 

R 2 I 2 G = -c:-n cos l/Ju + O(c: ), 
2€ 

and the stability condition gives : 

cos ·1/Jo < 0. 

For the cases 6 = 7r /2 we have 

1 
01 = 2 + O(o.), 

3 R 2 4 . I 

a* =Cl() -t- Ea1 = llQ - 2Ef 0 llo Sll1 '1/)() , 

I<= c:h + O(a2
) , 

G = ;€R02 sin Vio + O( c:
2
), 

and the stabilit,y condition is 

sin ·l/Jo > 0. 

(d.23) 

( 4.2 l) 

(4. 25 ) 

(4.26) 

So, in bot h cases (o = 0 and o = 7r /2) t he stationary vibration witli small amplitude 
is stable and that with large amplitude is unstable (sec equations ( 4 .22) and equations 
(4.24). (4.25) and (4.26)). 

5. CONCLUSION 

1. The stationary nonlinear vibrations ()f the pendulum and its stability have been 
considered. 

2. To avoid resonance of the pendulum, the parameters of the system considered 

should be chosen so that w2 <lifers from n2 and ~n2 or 

g ·;1- 0 2 ,~n2 . (s.1 \1 r I 
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3. Tl1e rotat ing motion of the pendulum may occur. Using t he averaging n1ct liod of 
nm1 liuear rnechanics and t he Jacobie expansions, t he small "vibration" of tlie pc11dul11m 
around the st ationary rotat ion and its st abili ty have been studied. 
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DAO DQNG PHI TUYEN co A coN LAC c6 DIEM TREO ,, - ,_ ' 
CHUYEN DQNG DIEU HOA 

DR.o df,mg phi tuyen cua con lac c<'> d iem t rco tin.re hi ~~ 1t cltuyc1t c1(m g c1icu ho<\ dmn: ng hicn 

cfr1i. Dicu quan tam chinh la cac t nr(m g h<!P c9ng lm&ng va ci ao di?ng blnh c)1i. C<ic dic u k i ~ll Oil 
c1jnh SC c1rn7c trlnh bay chi t ict . Duerng cong bicn c19 - ta n so cfo\)'C ve v&i cac g ilt tri kh;\c nl1au 

C'l'ia t ham so. S1.r on (1inh cua ci ao c19ng c1m;rc khao s<.it. C huycn dong quay tr(m ci'w. COll !{LC \';\ Sl.r 

011 d\n h tmrng frng cling c1 trqc xcm xct. 


