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Abstract. The nonlinear vibration of a pendulum whose support undergoes arbitrary
rectilinear harmonic motion is studied. The main attention is paid to the resonant cases
and the stationary vibrations. The resonant conditions are explained. The amplitude -
frequency curves are plotted for various values of parameters and the stability of vibration
is investigated. The rotating motion of the pendulum and its stability are also considered.

1. EQUATION OF MOTION

Let us consider the vibration of a pendulum consisting of a negligible weight rod AM
of length and a load M of mass m. The pendulum support undergoes rectilinear harmonic
motion by means of a mechanism shown in Fig. 1 when the crank ON of length R rotates
around O with a constant angular velocity {2 and translates slotted bar BA of length L
along slides 1.1. We shall take the origin of the y axis vertically up. The position of the
pendulum will be specified by angle so that AM makes with vertical axis (Fig. 1). The
kinetic and potential energies of the pendulum, 7" and V respectively are:

T = % [(?2% + R?Q?sin? Qt — 2RO sin Ot sin(8 + )],

(1.1)
V =mg[(L + RcosQt) cos§ — £ cos p].

Using Lagrange’s equation, taking into account the damping force, the equation of
motion of the pendulum is obtained as

G+ w?sing + hp — %QQCOSQtSiD((S-l-(p) =10, (1.2)
where w? = g/¢, h is the damping coefficient.

We assume that R/¢ and h are small and we shall consider small vibrations of the
pendulum about the vertical axis, so that sinp =~ ¢ — (¢®/6), cosp ~ 1 — (p?/2). The
smallness of the mentioned quantities can be taken into consideration by introducing a
small dimensionless parameter £ which will be set equal to unity in the final results. Thus,
we are led to consider the following equation of motion:

; .
" +p=¢[—hy+ gtp?’ + Cy? cosyT 4+ Dy? - pcosT], (1.3)
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where

T =l C’zEsiné, D:Ecosé, hlzﬁ, 7:9 (1.4)
¢ 12 w w

and a prime denotes the derivative with respect to the dimensionless time 7.
In the following sections two resonant cases which cause intensive growth of the am-
plitude of vibration of the pendulum will be studied.

2. PRINCIPAL RESONANCE

We consider the cases when « differs a little from unity. We are interested in finding
out what happens close to resonance, that is to say when 2 — 1 is small, namely:

2 eA
=14 — 2.1
=14 (2.1)
where A is a detuning parameter.
Let us introduce in equation (1.3) the variables a and 7 as follows
p=acosl, ¢ =—aysind, O=v7+7 (2.2)
here the condition
a’cosf —an'sinf =0 (2.3)
is imposed. The equations for new variables will be
A
va' = —E(—2 o+ f) sin @,
w (2.4)

yay' = —e(‘% “p+ f) cos b,

whicvh is a set of equations in standard form with

f = hjaysinf + %a:s cos® @ 4+ Cv2 cosy7 + Dvy2acos@ - cosvr. (2.5)
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In the first approximation the right-hand sides of (2.4) may be replaced by their mean
values, regarding a and 7 as constants [1]:

va' = ~§(hwa + Cy*sinp),

4 1 (2.6)
yan' = —% (Ea + ga?’ + Cv2cos n).
The stationary amplitude ag and phase 7y are determined by
h1vao + Cy*sinng = 0,
g (2.7)
290 + gag + Cv2%cosmg = 0.
A simple calculation eliminating 7 leads to the response curve equation:
W (ao,7%) =0, (2.8)
1 452
W =a2 [h%'yQ + (72 — 14 gag) ] — 244, (2.9)

This relation is ploted in Fig.2 for the parameters:
R = 2cm, £ = 100cm, § = 0.78rad, g = 980cm/sec?, h = 2.47 - hy, w = \/g/¢ = 2.47,
w?=6.125,C=88:10"% 1. hy =102 and 2. h; =4:1072,

Fig. 2

Let us now discuss the stability of the possible stationary regimes. To do this we study
the eigenvalues of the matrix of coefficients of variational equations of (2.6):

G
—%hw —%’72003770

_E<£+32) LW
302 t§%8) s
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The equation defining these eigenvalue is

2 0W
a0 A% + ev2agh A + B 0 (2.10)
8 8(10
from which we obtain the condition for asymptotic stability
ow
= 0. 2.11
D (2.11)

It is noted that function W (ag,v?) is positive (negative) outside (inside) of resonant curve
and equal to zero on it. So, condition (2.11) shows that the upper branches of resonant
curves (heavy lines) in Fig. 2 correspond to stable stationary regimes and the broken lines
to unstable ones.

3. PARAMETRIC RESONANCE
It is supported that 7 is approximately equal to 2, namely
7 =4a(1+5) (3.1)
w

The solution of equation (1.3) in this cases is found to be

b
wzbcos(%rJra), gl = —ifysin (%rJra). (3.2)

In the first approximation (1.3) can be replaced by the averaged ones:

yb = —gb'y(hl + Dvysin 2a),
(3.3)

2

. Eb(QAl

1
“— + 2b% + Dv%cos 2a).
w 4

05 ¢
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It is clear that b = 0 is a solution of equations (3.3), but as we shall show later, it may
happen that this solution is unstable and that the system begins to vibrate spontancously.
The stationary amplitude by is determined from equation b’ = o’ = 0 by elimination a:

2

b = 8(1 - ?/4—) + 4y4/D2%42 — h? . (3.4)

The response curves are ploted in Fig.3 for D = 8.8 1072 and 1) hy = 1.65- 1072, 2)
hy = 1.7-1072. The study shows that only the positive sign before the radical (3.4)
corresponds to the asymptotical stability of nontrivial stationary vibration; and that the
solution b = 0 is stable outside the resonant curve and unstable inside it. Thus, only the
heavy line (Fig.3) of the resonant curve correspond to stability of vibration.

4. ROTATING MOTION OF THE PENDULUM

Assuming that h and R/¢ are small we consider the rotating motion of the pendulum
governed by equation:

¢+wzsin<p:5F(<p,c,b,t), (4.1)
where
. ., R_o .
F(p,p,t) = —hp — 7(2 cos Qtsin(d + ). (4.2)

It is supposed that the energy of the system considered is high so that when € = 0 the
pendulum will be rotating (equation (4.1)).
We introduce the variable a and ¥ [2]:

=&+ asing,
(4.3)
¢ = v(a) + av(a) cosé,
where |
E=Qt+9, via)=1/Va, &=v(a) (4.4)
and ¢ is the solution of the degenerate equation € = 0 if a and v are constants; so that
—av?(a)siné + w?sing = 0. (4.5)
Equation (4.3) imply that
£(14 acos€) +asiné — v(a)(1+acosg) = 0. (4.6)

The second equation for f and a is obtained by substituting equation (4.3) into equation
(4.1):

—avésin€ + [Va(l +acosf) + ucosf]d + w?sing = eF(p, , t) (4.7)

here the subscript “a” or ( ), denotes the derivative with respect to the amplitude a. From
these equations we get:

a = —%Flp, ¢ 1)(1+acose),

. i (4.8)
Y =v(a) - Q+ < Flp, ¢, t)sing,
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where
—A = avsin? € + (14 acos€) [va(1 + acos) + veosé].
Substituting here v = 1/1/a we have

1
Z:2a\/5+ 0(va - a®). (4.9)
We shall consider the principal resonant case when the amplitude a takes values close
to ag determined by
1
Q= v(e) = — (4.10)

Jao

and use the Jacobie expansions of trigonometric functions in Bessel functions [3]:

sin(asing) = 2 Z Jon-1(a) sin(2n — 1)¢,

n=1

cos(asiné) = Jy(a) + 2 Z Jon(a) cos2né, (4.11)

=11

m+2k 0.1.2
Zk'm+k (3) m=o12..

Limiting by considering the vibration with small amplitude a we have in the first approx-
imation averaged equations of the form:

i == %hu(a)( a2 ) - -——QQ(al cosy + agsiny),
. (4.12)
Y =v(a—N)+ % 79 (agcostp + ay siny),
where
1 o .
g = [§(J0 + ) = S+ Jg)] sind,
1 o
iy [§(J0 — o)+ 7 (N + Jg)] cos
1
ag = —(J1 + J3) cos, (4.13)
4

Q4 = (J3—3J1)sm(5

R

Stationary regimes of resonant vibrations a, and 1, are determined by equations a@ = =
0:
R 2 * * . a’z
\/a_*-—g-ﬂ (0] cos 9y + g sint,) = h(l + 5),
1 -
Vax

(4.14)

R
25a*\/5;?§22(a§ cos s + ajsing,) = Q —
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1
B == 1 - * /)y ¥ 7 07 Q - =¢C t
o = mlo=a); Be T cons

The solution of these equation are found in the series:

a. = ag + €a; + 0(52),
, (4.15)
Vi = o + ey + 0(?),

where ag satisfies relation (4.10). Substituting equations (4.15) into equations (4.14) we
have: '
R o . ag
Vao - ZQ (a0 cos g + oo sinyyy) = h(l =+ 3),
- (4.16)
a« =ag+€ea; =ag + 45a8ﬂ2?(a30 cos Yo + ao Sin ),
here a0 = a;(a = ag). The first equation of (4.16) gives the phase displacement. Then,
the correction ea; to the stationary amplitude ag will be found.
We consider now the stability of stationary solution a, and ¢, determined by formulae
(4.14). For this purpose we write the variational equations for system (4.12). Let

a = a.+d0a, Y =1+ 0.

By putting these expressions into (4.12) and linearizing relative to da and 6 we obtain:

0= ] (5), - 55(() s (), e o

- %%QQ(—(M sin i, + g cos Yy )01,
q B (4.17)
L5 = Ta2((28 ‘b 24_]
dtmp {La + € 7 Q [( E )acos Vs + (A )abm Vs }()a
R
+ i—QQ(—Ozg sin ¥, + g cos Py ).
AL
where
a? .
H = hv(a) (1 + ?>, L(a) = v(a) — Q. (4.18)
The characteristic equation of this system is of the form
NLEA+G@=0 (4.19)
where
K= 5592{[(&) — (ﬂﬂ Cos Yy + [(—(2) + (OJH sinw} - 5<£) ;
é‘ A a A A a A A a (\/1 ()0>
e R ) . LN 2
G = —A_?Q Lo(as)(—aq sin gy, + ag cos i) + 0(£%),

and a prime denotes a derivative to a,.. The stability conditions will be

K>0, G>0. (4.21)
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As an example let us consider the case 6 == 0. Then
1 a? a
i =ar=10 am=cll==), ds= =4

and equation (4.16) are of the form:

R @y, , al
o2 0N Gy O 20
7 Q \/ao(l 3 >mn Vo Jz(l 1 5 >

3
| 1

1 K.
s = ag + 55?92 Sy COS Yy, ag = 02

Becanse a is small, the first equation of (4.22) shows that there arc two values of vy lving
on the first and sccond quadrants corresponding to two values of cos ¢y with opposite
signs. Thercfore the one of stationary amplitude corresponding to cos ¢y > 0 is large than
ap and the other corresponding to cos vy < 0 is smaller than ap. The expressions (4.20)
now are:

K = h+ 0(a?),

(4.23)
G = —E-EQQ Ccos Yy + ()(fz)
2¢ ) o
and the stability condition gives:
cos iy < 0. (4.24)
For the cases 6 = /2 we have
1 3a
as=a3 =0, a = E +4 ()((L), g = — g + 0(a),
3R _5 4 .
as« = ap +€a; = ag — 55—[1'-(22@01 sin )y,
-0 (4.25)
K = eh + 0(a?),
G = —RMsinvy + 0(<?),
24
and the stability condition is
siny > 0. (4.26)
So, in both cases (§ = 0 and § = 7/2) the stationary vibration with small amplitude

is stable and that with large amplitude is unstable (sce equations (4.22) and equations
(4.24). (4.25) and (4.26)).

5. CONCLUSION

1. The stationary nonlinear vibrations of the pendulum and its stability have been
considered.
2. To avoid resonance of the pendulum, the paramecters of the system considered

should be chosen so that w? difers from Q? and f§22 or
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3. The rotating motion of the pendulum may occur. Using the averaging method of
nonlinear mechanics and the Jacobie expansions, the small “vibration”™ of the pendulum
around the stationary rotation and its stability have been studied.
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DAO PONG PHI TUYEN CUA CON LAC CO DIEM TREO
CHUYEN DONG DIEU HOA

Dao dong phi tuyén cta con lic ¢é diém treo thwre hién chuyén dong dicu hod dwoce nghien
ciru. Dieu quan tam chinh 1a cdc trwong hop cong hwdng va dao dong binh én. Cdc dicu kien 6n
dinh sé duwoce trinh by chi tiét. Duwong cong bién do - tin s dwoc vé véi cde gid tri khide nhau
eia tham s6. Sw 6n dinh cla dao dong dwroe khao sat. Chuyén dong quay tron eia con lic va sur
on dinh twong g ciing dwoe xem xét.



