
Vietnam Journal of Mechanics, VAST, Vol. 29, No. 3 (2007), pp. 167 - 175 
Special Issue Dedicated to the Memory of Prof. Nguyen Van Dao 

PARAMETRIC VIBRATION OF MECHANICAL 
SYSTEM WITH SEVERAL DEGREES OF 

FREEDOM UNDER THE ACTION OF 
ELECTROMAGNETIC FORCE 

NGUYEN VAN DAO 

Department of Methemathics and Physics Polytechnic Institute, Hanoi 

(This paper has been published in: 
Proceedings of Vibration Problems, 14, 1, pp.85-94, 1973 

Institute of Fundamental Technological Research, Polish Academy of Sciences) 

1. SYSTEMS WITH n DEGREES OF FREEDOM 

Let us consider a vibrating system with n degrees of freedom which consists of a 
weightless cantilever beam carrying n concentrated masses m1, m2, ... , mn (Fig. 1) . The 
elastic elements of the vibrating system have stiffness ki, k2, ... , kn. 

Fig. 1 

Supposing that some sth mass is subjected to electromagnetic force, the differential 
equations of motion of the system considered can be written, in accordance with [1] in the 
form: 

:t (Lq) + Rq + ~q = E sin vt, 
m1:h + k1(x1 - x2) = -h1±1 - ,61(x1 - x2)3, 

m2x2 + ki (x2 - x1) + k2(x2 - x3) = -h2±2 - ,61 (x2 - xi)3 - ,62(x2 - x3) 3, 
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msXs + ks-1(Xs - Xs-1) + ks(Xs - Xs+I) = -hsXs - f3s-1(Xs - Xs-1)
3 

3 1 .2 DL 
-f3s(Xs-Xs+l) +'i,q Dxs' 

mnXn + kn-1(Xn - Xn-l) + knXn = -hnXn - f3n-1(Xn - Xn-1) 3 - f3nx~. (1.1) 

Vve assume that 
L = L(xs) = Lo(l - a1Xs + a2x;), 

and that the friction forces and the non-linear terms in ( 1.1) are small with respect to the 
remaining terms. Then, Eqs. (1.1) can be rewritten as: 

1 
Loq + Cq = Esinvt - µ[Loq(-a1x2 + a2x;) + qLo(-a1±s + 2a2xs±x)], 

m1x1 + k1(x1 - x2) = µF1, 

m2x2 + ki (x2 - x1) + k2(x2 - x3) = µF2, 

where 

µFi= -h1±1 - f31(x1 - x2)3, 

µF2 = -h2±2 - f31(x2 - x1) 3 - f32(x2 - x3)3, 

µFn = -hn±n - f3n-1(Xn - Xn-1) 3 - f3nx~. 

We suppose that the characteristic equation of the homogeneous system 

m1i1 + ki(x1 - x2) = 0, 

m2i2 + k1(x2 - x1) + k2(x2 - x3) = 0, 

mnXn + kn-I(Xn - Xn-l) + knXn = 0, 

(1.2) 

(1.3) 

(1.4) 

has no multiple roots and that its roots w1, ... , Wn are linearly independent. Then, to 
study the system (1.2), we shall analyze its particular solution corresponding to the one­
frequency regime of vibrations [2]. To that end, we introduce the normal coodinates 
6, ... , ~n by means of the formulae: 

n 

Xs = L C~a)~a, s = 1, 2, ... , n, ( 1.5) 
a=l 
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where da) is algebraic supplement of the element placed in the s-th column and the lasrt 
line of the characteristic determinant of the system ( 1.4). 

\i\Te can easily verify that the normal coordinates 6, ... , ~n, satisfy the following equa­
tions: 

l n n 

L ·· _ - E · t _ r;i ( • •• ~ (a)c ~ (a)c ) oq+ Cq- smv µro q,q,Lcs <.,a,Lcs <.,a, 
a=l a=l 

(1.6) 

Here 

n 

Mj = L mici(j). 
i=l 

In the first approximation, the investigation of one-frequency regime in the system 
considered can be reduced to a study of two equations: the first of (1.6) and one of re­
maining n equations. The choice of the appropriate equation depends on the value of 
natural frequency w in the neighbourhood of which the parametric vibrations are exam­
ined. Supposing that the frequency v of external force is near the nartural frequency Wj· 

Then we shall investigate the equations: 

1 
Loq + C q = E sin vt - µF(j, 

(1. 7) 

where 

µh* = -
1
- ~ h c2(j) 

M·L s s ' 
1 s=l 

µ(3* = -1- [6 c(j) (c(j) - c(j) )3 + (3 c(j) (c(j) - c(j)) 3 (3 c(j) (c(j) - c(j) )2 + M· , 1 1 1 2 1 1 2 i 2 2 2 3 · · · 
J 

+ f3s-1C~j)(c~j) - c~~ 1 ) 3 + f3sc~j)(c~j) - c~~ 1 ) + ... 

+ (3 1 cUl (c(j) - c(j) ) 3 + (3 c4 (j)] 
n- n n n-1 n n ' 

µF0 = Loii(-a1c~j)~j + a2c;ul~J) + Loqc~j)~j(-a1 + 2a2cVl~j)· 
The remaining n - 1 normal coordinates ~1, .. . , ~j - 1, ~j+1, ... , ~n are far from the reso­
nance, their vibration will be small in comparison with the resonant vibration considered 
of the coordinate ~j, and in the first approximation they may be disregarded. 

Equations (1.7) describing the one-frequency regime of vibrations have the same struc­
ture as the equations of motion of the system with single degree of freedom [1]. This gives 
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reason to expect that in each resonant region the same peculiarities of motion will be 
displayed were found in the system with a single degree of freedom. 

Introducing the notations 

h* 
h = - , T = Wjt, 

Wj 

{3* 
f3= 21 

wj 

Lo n. - no 
HJ -

Wj 

2 1 
no= LoC' ej = --2' E0w. 

J 

Eqs. ( 1. 7) assume the form: 

II n2 · µ D* q + v jq = ej Slll/jT - --2 1'0, 
Low· 

J 

c" c he' {3t:3 * ,2 * i2c <,,j + <,,j = -µ <,,j - µ <,,j - cx1q + µcx2q <,,j· 

Now, we transform the system (1.9) by means of the formulae: 

q = ej sin/jT + Bsintp, 

q' = 11ej cos/jT + n1B costp, 

b . 
(j = -b- 2 cos 2/jT + A1 sm01, 

1 - 4/j 

2r-b (j = 1 
2 sin2/jT + An1 cos01, 

1 - 4/j 

where 

* ej 
ej = n2 - ,2' 

J J 

The transformed equations have the form: 

dB µ * n1- = ---F0 costp, 
dT Lowj 

n d<f> µ * . 
HjB-d = --2 = F0 smtp, 

T Low1 

' rj = -, 
w· J 

dA1 2 . 
/j dT =-Aj(l-11)sm01cos01-µScos01 + ... , 

A d~j A ( 2 ) . 2 0 S . O . j/j dT = j 1 - /j sm j + µ sm j + ... , 

S = h(j + f3(] - cx2q'2 
(, 

where the non-written terms vanish when B = 0. 

(1.8) 

( 1.9) 

(1.10) 

(1.11) 

We suppose that /j is in the neighbourhood of 1 and that /j and n1 are linearly 
indepenent. Then, in the first approximation the solution of the system (1.9) satisfies the 
equations obtained from (1.9) by averaging in time its right-hand part 

dB R 
[1 + 0(µ)] dT = -µ2,B, 
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(1.12) 

where 

Since B --; 0 when t --; oo, then below we shal take into account only the equations: 

dA1 h µ . 
'Y·- = -µ-'Y·A · + -c1A · sm 2°1• · 
I] dT 2 IJ J 2 J '+'Jl 

d't/Jj 1 2 3 3 µ 
11A1- = -(1 - r1- + µ~1)A1 + -µ(3A1- + -c1A1cos2·l/J1, 

dT 2 8 2 

(1.13) 

from which we obtain the amplitude Aj of vibrations: 

4 2 - 1 
A2 = -('!.L_- ~ ± Jc2 - h212) 

J 3(3 µ 1 J ' 
(1.14) 

and the phase 

. h 
Sm 2°1• · - - 'Y· '+'J - /]) 

c1 
(1.15) 

Equations (1.12)-(1.15) are different from the corresponding ones in the system with 
a single degree of freedom [1] only by the values of the constant coefficients. The method 
used enabled us to reduce the more complicated problem to the whole complex of n 
problems of the type considered earlier. In spite of this, in the first approximation each of 
such problems can be investigated independently of the others, because according to the 
conditions of the problem, the resonant processes cannot be developed at the same time 
in more than on resonant region. 

The stability of stationary regimes of vibrations may be found by analysing Eqs. (1.12). 
The criteria of stability formed in [1] are: 

and 

aw 
oA. > 0 for A1 # 0, 

J 

W = (~µf3AJ + 1 - 1J + µ~) 
2 

- µ 2 (ci - h21J), 

µ2 (h21J - ci) + bJ - 1 - µ6.) 2 > 0 for Aj = 0. 

The study made in [1] concerning the stability of stationary regimes of motion will be 
suitable for the character of resonant processes described by Eqs. (1.12) in qualitative 
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relation. This removes the necessity of analysis in detail the criteria of stability. Here we 
note only that _for very slow change of frequency v in the systern considered, n resonant 
peaks corresponding to the values v = w1 (11 = 1), v = w2 (12 = 1) ... are observed (Fig. 
2). 

/xi 

\I lj 

Fig. 2 Fig. 3 

2. PARAMETRIC RESONANCE IN A SYSTEM WITH INFINITE 
NUMBER OF DEGREES OF FREEDOM 

We investigate in the Cartesian coordinates x, y, z a prismatic beam with length /I, 

whose cross-section is symmetrical with respect to two mutually perpendicular axes. We 
assume that the axis of the beam in the underformed state coincides with the axis x and 
that the symmetrical axes are parallel to the axes y and z (Fig. 3). 

The beam under certain conditions of strengthning of its end is subjected to the action 
of electromagnetic force which is £1 distant from the origin of the coordinates and directed 
to the axis y. We assume that the inductance Lis a function of distance YI = y(£1, t), 

L = L(y1) = Lo(l - n1y1 + n2y?), (2.1) 

and therefore the electromagnetic force depends on the location of the electromagnet and 

on the vibrations of the beam, and has intensity tq2 i~. 
We assume that the material of the beam follows the law [3] 

CYx = f(cx) = E(l - dE2c;)cx, 

where CYx is the longitudinal force and Ex is the longitudinal elongation. Then, the equation 
of motion of the beam is: 

(2.2) 

where pis the intensity of mass of the beam, y = y(x, t)-the deflection, P(x, t)-the intensity 
of external load, M(x, t)-the bending moment: 

M= ff J(y~:;)ydydz=E ff [1-dE2y2 (~:;fJy2 ~:;dydz. 
Substituting this expression into (2.2), we obtain: 

[J2y 84y 3 [84y [)2y (83y)2] [)2y 8y 
p 8t2 + EJ 8x4 = 3dE J1 8x4 8x2 + 2 fJx3 8x2 - H 8t + P(x, t), 
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where, 

J1 = j j y4 dydz, J = j j y2dyd;. 

We assume that the non-linear terms and the terms characterizibng friction are small 
in comparison with the linear terms. Then the equation of motion of the system considered 
can be represented in the form: 

where 

P(x, t) = 

a .. n2 . F ( Y1 ... ) q+Hoq=esmvt+µ 1 Yl1 at ,q,q' 

0 

0 

a2y 284y -
8t2 + b 8x4 - µF2, 

,\ 
for 0 (; x < £1 - 2 , 

,\ ,\ 
for £1 - m- (; x (; £1 + - , 

,\ 2 2 
for £1 + 2 < x (; £, 

(2.3) 

(2.4) 

(2.5) 

where ,\ is the length of that element of the beam is directly subjected to the action of 
electromagnetic force. 

To solve the system (2.3), we note first that the generative equations (µ = 0) 

q + D5q = e sin vt, ~:; + b2 ~:~ = 0 (2.6) 

have the solution: 

q = e* sinvt + Bsin<p, 
(2.7) 

CX) 2 

Y = LXn(x)cnCOS (~2nbt+1n), 
n=l 

where B, <I>, en, /n are arbitrary constants, Xn are the eigenfunctions which define the 
natural modes of vibrations of the beam and depend on the boundary conditions. 

Equations (2.3) are different from the corresponding ones of the systems (2.6) only by 
small terms µF1, µF2. Consequently, it is natural to propose the following form of solution 
of the system (2.3): 

CX) 

q = e*sinvt+Bsin<p, y = LXn(x)sn(t), (2.8) 
n=l 
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where cp = Oot +<I> and B, <I>, Sn are functions of time. 
Now, instead of determining the functions q and y, we determine the functions B , <I>, Sn. 

To find the different eq1mtions for these variables, we represent F2 in the form of a series: 

00 

F2 = LXnVn(s1,s2, ... ,s1,s2, ... ,t). (2.9) 
n=l 

To seek the functions of time Vn, we multiply both sides of the equality (2.9) by Xi , and 
integrate the result over the total length of the beam; due to the orthogonality of the 
eigenfunctions there remains only term on the right-hand side which corresponds to the 
number n, so that 

e e 

Vn = J F2Xndx I J x;dx. (2.10) 

0 0 

Substituting (2.8), (2.9) into (2.3) and equating the coefficients Xn, we arrive at: 

ij + 05q = e sin vt + µF1 , 
(2.11) 

where Kn are polynomials of third degree, relatively of s1, s2, . . . 
We consider now parametric resonance when the frequency of the electric circuit 11 

is in the neighbourhood of Wj assuming that the natural frequencies w1, w2, ... are inde­
pendent . Then we retain in (1.1) only the coordinates Sj· The remaining coordinates 
s 1 , . . . , Sj-l i Sj+l i ••• are far from the resonance and their values will be small in compar­
ison with Sj and in the first approximation we can disregard them. Thus, following the 
expressions (2.4), (2 .8), we have: 

H . IV 112 1112 II 3 p 
µF2 = --s1·X1· + ,B[X x. + 2X· X ]s + -p J J J JJ (} 

Therefore, from (2.10), (2.11) we obtain the equations for q, sn: 

ij + Ooq = esinvt + µF1, 

.. 2 H . ,6 3 b ·2 ·2 s·+w·s·=--s·+ as·+ ·qs·-cq 
J 11 PJ JJ J J ' 

where 

e e 

aj = J (Xjv X'/2 + Xj"2 
Xj')Xjdx / J XJdx, 

0 0 

e1+~ e 

bi= Loo:2Xj(f1) j Xjdx / >..p j XJdx, 

i1 - ~ 0 

(2.12) 

(2.13) 
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It is easily seen that the system of Eqs. (2.12) is the complete analogy of the differential 
equations of vibrations of a system with single degree of freedom. To avoid repetition, we 
shall refer below to the paper [1], where the problem of construction of a solution of the 
system of equations of the form (2.12) is considered in detail. 

Thus, following the results of [1], we conclude that when the frequency v of an elec­
tric circuit is near to w1 , then the beam considered vibrates strongly with frequency v 
(parametric resonance). This type of resonance takes place also when the frequency v is 
near to w2 , w3, ... However, it must be emphasized that in the system with distributed 
parameters the vibrations with the lowest frequency (w1) play the main role. 

Some experiments were performed with beams and systems of several degrees of free­
dom. The experimental results in the cases considered were in good agreement with the 
theoretical results. This fact testifies to the acceptability of the limitations used is the 
problem and shows that the approximate solutions found by using the assumption con­
cerning the one-frequency regime of vibrations in the regions of resonance can be adopted 
for practical purpose. 

For the cantilever beam with parameters E = 2 · 107 N/cm2 , J = 16 · 10-3 cm4 , 

c.p = 10-4N · s2 /cm2 , £ = 46 cm; therefore, w 1 = 14.8, w2 = 93.7, strong vibrations with 
frequency of electric circuit v when v is in the region 13.5-14.3 Hz ... , were very small. 
For the same beam, but when£= 58 cm and therefore w1 = 26.3, substantial parametric 
resonance when vis the region 27.1-29.4 Hz was observed. 
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DAO DONG THAM s6 c.A.c HE ca Hoc NHIEU BAC TU Do GAY NEN BOI 
. T.AC DVNG cu.A LVC Dl~N °TU . 

Cong trlnh nay Ia S\f tiep t9c cua cong trlnh dii dtrqc cong bo [l]. Trang cong trlnh nay ket 
qua nghien ci'.ru dao d(mg cua h~ ca h9c v&i n b~c t\l' do vacua dam khi chung chju tac d9ng v&i 
l\fC ai~n tir CUa dao a(mg kich a(mg tham SO ttremg t\l' nhtr trong [l] dao ac)ng tham SO atrqc khao 
sat c6 tan so bang tan so dao dc)ng trong khung di~n. Xac dinh bien de) dao d(mg va nghien cuu 
on djnh cua chUng. 


