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DETERMINING REACTION FORCES
IN PLANAR MECHANISMS
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Abstract. In the paper, it is introduced a method to determine joint reaction forces,
constraint forces and internal forces at the cross section of linkages. Based on the principle
of compatibility and the ideality of constraints, the methodology is presented to analyze
and determine reaction forces in planar mechanisms.

1. INTRODUCTION

There are two main objectives in Dynamics. One is to determine the motion of
dynamic systems, and the other is to specify forces exerted on that system. Determining
reaction forces is part of the latter. It is important not only to the dynamics analysis of
systems and its endurance but also to its control problems, especially the program motion
one. In the program motion problem, reaction forces are considered as control inputs
whereas constraints can be understood as the program to be realized. Generally, reaction
forces are determined based on d’Alembert principle by solving the equations of dynamic
equilibrium. The principle reduces the problem of dynamics to a problem in statics by
adding the forces of inertia. The forces of inertia combine with the externally applied
forces to produce dynamic equilibrium. However, this approach is not always easy to
apply for complicated systems, especially for mechanisms. In the paper, another approach
to determine reaction forces is presented based on the principle of compatibility and the
ideality of constraints. It is a matrix-based approach so that one can easily use common
software such as Mathlab, Maple, and MathCad to assist the calculation process.

2. BACKGROUND

Let’s consider a dynamic system whose positions are located by the generalized
coordinates q;(i = 1, m). It assumes that all the constraints are stationary and ideal. The
kinetic energy of the whole system has the form

1 m
T=3 Y aijdid, (1)

,5=1
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where a;; is a function of the generalized coordinates ¢;(¢ = 1,m). Equation (1) can be
expressed in the matrix form as follows.

T = 24"Aqg, 2)

where q is a column vector of m x 1 size of generalized velocities, A is a matrix of inertia-
a square symmetric nonsingular one, g’ is the transpose of q.
Let’s define the generalized forces correcponding to the generalized coordinates as

Qi (i = 1,m) or in the vector form as QT = H Qi Q . . Qn H The dynamic system
is subject to r constraints as follows
faltis @y Bl =06 w=11n . (3)

Based on the principle of compatibility [1, 2], the equations of motion of the dynamic
system are given by

where R; (i = 1,m) are the generalized forces of reaction forces in the constraints (3)

corresponding to the generalized coordinates ¢;(i = 1,m)

M o BF
e S Rm B 5
k; P (5)

where Nj, are reaction forces of the constraints exerted on a point mass My, of the system.
Equation (4) can be expressed in the matrix form as

doT oT
Eia_q_a_q_Q+R’ (6)

where R is a column vector of m x 1 size whose elements are the generalized forces of
reaction forces. The constraints (3) are assumed ideal so that the generalized forces of
reaction forces R;(i = 1, m) must realize the condition [1, 2]

m .
ZdikRi =0; k=1,n, (7)
i=1

where dix(i = 1,m; k = 1,n) are elements of transformation matrix which maps the

independent generalixed accelerations gi(k = 1, n) into the generalized accelerations §; (i =
1,m). Expression (7) can be given in the matrix form as

DR =0, (8)
where D = ||dg;||, the matrix of n x m size. Equation (6) can be rewritten in a new form
as

A§=Q+Q°-Q+R, (9)

where Q°, Q8are determined through the matrix of inertia A [6]. Given on (8), and (9),
the reaction forces of constraints of the system are specified.
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3. TWO PROBLEMS OF DETERMING REACTION FORCES
3.1. Problem 1
Assuming that the dynamic system is subject to the constraints of the form
i = 0, (a=1,7r=m—n). (10)

It means that some generalized coordinates of the system are constrained and the
system’s order of freedom is n. For convenience, let’s define some new variables as

ui = ek = 1,n); va =qo(a=1,r=m —n). (11)
Based on (11), (9) can be expressed

R(k) |_|| Ar As u(k
AT A,

l&a e |- &@ ]

where: R(k), ii(k), Q(k), Q°(k), Qg(k) are column vectors of nx1 size, but R(«a), V(a), Q(a),
Q° (o), Q® () are ones of r x 1 size.

R(k) = H R1 R2 Rn H, R = H n+1 n+2 Rm H (13)
Due to (10), the matrix D has the form D = |D(k) D(«)||, where D(k) is a square

matrix of n size as

1 000
0100
DE =10 0 1 0 (14)
0 0 01
and D(«) is a zero matrix of nxr size.
The condition of ideality (8) can be written in a new form as
R (k)
I 269 D I 5 | =o (15)
Obviously, given on (15), one realizes
R,=0; k=T,n (16)

In this case, some conditions are applied as

Vo =Ug=1a =0; a=lr=m—-n; =@ =G;th=0¢ ; k=1n (17)

Based on (12), one can derive that

R(a) = Azii(k) + Q(a) + Q°(a) — Q(a)®, (18)
where @17 (k) = ||G1Ga - . . Gn|| which can be determined through
A1 =Q(k) + Q° (k) — Q5 (k). (19)

Through this approach, reaction forces of (10) are specified by (18) and (19).
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3.2. Problem 2

Assume that the dynamic system is subject to the constraints (3). Let’s apply the
mapping from the current coordinates (g;,7 = 1, m) into the new coordinates (ug, vy) as
u,=qx (k=1,n); va=ga(a=1,7r=m—n). (20)

Let’s define K as a transformation matrix from the current coordinates to the new
coordinates. The kinetic energy of the system in the new coordinates now has the form
(2) in which the matrix of inertia A is defined as

A =KTA(uy,v,)K. (21)
The generalized forces Q has the form
= T
Q=K Q. (22)

By doing that, the problem 2 can be converted into the problem 1 where A and Q
take place of A and Q, respectively. In this case, let’s notice the conditions as

U =g jln = G U SEes Ve S050= 00, = O (23)

The following section illustrates the two above approaches by some simple examples.

4. ILLUSTRATIVE EXAMPLES
4.1. Example 1

Determine the reaction forces between joint A of the double pendulum OAB. Link
OA of length L, of mass my, pivots about the fixed point O. Its center of mass locates
at C; and moment of inertia to Cy is J;. Link AB of length Ly, of mass ms rotates about
the joint A. Its center of mass locates at Co and the moment of inertia to Cq is Jo. The
motion of the dynamic system is analyzed in the field of conservative forces. From now
on, some notations are used for convenience

cosip; =Cy; sing; =8 cos(pi+ ;) =Gy sinp; + ;) = Sy (24)

Fig. 1. The internal forces at the cross section

The order of freedom of the system is 2. Choose the generalized coordinates are ¢
and @9, where @ is the inclined angle between link OA and the vertical, 5 is the angle
between link OA and link AB, see Fig. 1. This system is considered as the origin one.
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In Fig. 1, joint A is released and two more coordinates (u,v) are used to describe
the system’s position. The number of coordinates of the new system is now 4. Let’s apply
the following conditions to make the new system coincide with the previous one.

fi=u=0; fo=v=0 (25)

Finding the matrix of inertia A of the constraint-released system can be carried out
through the method of transmission matrix [4, 5] or the direct approach. The matrix A
of 4x4 sizes is given as follows -

= mg(L% +u? + 0% + a2 4 2010205 + 2L1v + 2a2S9u + 2a2Cov) + Ji + Jo;
a1z = m(L1Cy + az + uSs + vCa)ag; age = Ja + mga%; a1y = ma(Ly + a2Cs + v);
azu = M2a2C3; Quy = Ma; a1y = —Ma(a2S2 + u); aze = —M2a25%; Gpy = 0; ayy = M.
(26)
The potential energy has the form
7= —m19a1Cy — mag(L1Cy — uS1 + vC1 + a2Ch2). (27)
The matrix Q of generalized forces is of the form

—mygai1S1 — mag(L1S1 — uCi + vS1 + a2S12
0= —magazSia

_mggl (28)
magCh
The matrix Q° and QY can be derived
0 —mgL1a252(2¢1 + ¢2)¢1
Q° — —magL1asSa (1 + 2)¢1 QY= maL1S2a291 fpo . (29)
maagSa(P1 + P2)P1 : —maa2S2(P1 + P2)¢1

| ma(L1 + 2a2C2) (01 + ¥2)é1 —maazCy (1 + P2)P1

To determine reaction forces R, (perpendicular with OA) and R, (along OA) at
joint A, one uses (18) and (19). For this case, A, Ao, and A3 are 2 x 2 matrices. Equations
(18) and (19) have the forms

R, _ —megS1 + m2a252(<,2>1 + @2)2 4 mQ(Ll + GQCQ) moasCo p1
Ry || || m2gCh + maL1$? + maasCa(p1 + ¢2)? —mgazCs —maazSsa|||| P2 ||’
30
where @1, and ¢9 are calculated from the following equation
miL? + a3 + 2L1a2C1 ma(L1Cs + az)as P1
mg(L102 + ag)ag mga% + Joy ) (31)

_ || =magaiSi — mag(L1S1 + a2S12) — moas L1 (201+ fp2)¢n
—magasSia — maag Ly S2p3

It is easy to see that the above example is of the problem of determining the internal
forces at the cross section located at the distance of L1 with respect to the point O, where
the reaction forces corresponding to (25) are the tension and shear forces. For the aim of
computing the bending moment at the cross section under consideration, it is necessary
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to introduce the constraint equation of the form f = s = 0. The reaction force of this
constraint is just the bending moment at the cross section of interest.

4.2. Example 2

Assume that the non slipping homogeneous disk of radius r and of mass m in Fig. 2
rolls inside the circular cylindrical surface of radius R of a box of mass M. The box slides
on the perfectly smooth horizontal floor under the influence of force F' parallel with the
floor and pointed to the right side. Determine the reaction forces between the disk and
the box.

The order of freedom of the system is equal to two. The generalized coordinates
are chosen as x, ¢1, and @2, where x is coordinate of the box’s center of mass along the
horizontal direction. ¢;, and 2 are the angles between OC and the vertical direction and
a radius line CA, respectively. Obviously, the generalized coordinates are dependent. The
system’s constraint is given by

f=Rp1+r92 =0. (32)

The kinetic energy of the system can be displayed as (2), where

mo m(R — r)Ci 0
A=| mR-r)C; 05mr?’+m(R—-r)? 0.5mr? |. (33)
0 0.5mr? 0.5mr?

The matrix Q of generalized forces corresponding to the generalized coordinates
X,1, and 9 can be derived as

Q=| —mg(R—r)5 (34)

Applying a new set of generalized coordinates x, ¢; and s into the system

s = Ry + 7192 (35)

T T T

Fig. 2. Example 2
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The transformation matrix K is given as

1 0 0

0 1 0
K =

1

g = 1

r T

The new matrix of inertia can be derived as

mo m(R—r)C .0
A=KTAK=| m(R-r)C 15m(R-r)2 —05m(R—r)
0 —0.5m(R —r) 0.5m
Based on matrix A, other matrices such as Q, Q°, and Q* can be derived as
10 O
B - R F r
Q=K'Q=|0 1 r —mg(R—1)81 || = || —mg(R—7)S1
00 = 0 0
-
0 ~m(R ~)514]
Q=| —-m(R-1)S2o || ; Q" =| —m(R—7)S12¢;
0 0
In the new coordinate system, the constraint now has the form
» s =0.
Based on the ideality of constraints, matrix D is given as
1 00
b= 010 H ’

From (15), we have
R, =0; R, =0.
Note that matrix A is of 2x2 size

mo m(R — T)Cl
m(R—1r)C; 1.5m(R—r)?

A3 and A, are matrices of 2x1 size and 1x1 size, respectively:
Ay =05m| ; AT =] 0 —05m(R—r) |

Rs = Qs + ag5% + apsp1 = —0.5m(R — )¢
where (7 is calculated through (19) as

A=

7

mo# +m(R — r)C1$1 = m(R — r)S1p2 + F;
m(R —r)C1i + 1.5m(R —r)%2$; = —mg(R — )51
From (44), and (45), the reaction force R is derived as
0.5m

R, =
mCl2

[m(R = r)0181¢2] + FCy +mgSi.
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(36)

(38)

(39)

(40)

(41)

(42)

(43)
(44)

(45)

(46)
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5. CONCLUSIONS

In the paper, a new approach of determining reaction forces of planar mechanisms is
presented. The approach can be applied to dynamics and endurance analysis of machines.
The method can also be used for the problems of stability and control. The advantage of
the method is matrix-based so that complicated problems can be solved easily by using
such software as Mathlab, Maple, and Mathcad.
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XAC DINH PHAN LUC TRONG CO CAU PHANG

Trong bai bao dé xuit mot phuong phap xac dinh phan lic trong co ciu phang va
trang thai noi lyc (dong lyc) tai cac mat cit clia cac khau. Y tudng ctia phuong phap dua
trén nguyén ly phit hgp véi viéc tao ra nhitng lien két mdi va diéu kién ctia lien két 1y
tudng.



