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Abstract. In the paper, it is introduced a method to det ermine joint reaction forces, 
constraint forces and internal forces at the cross section of linkages. Based on the principle 
of compatibility and the ideality of constraints, the methodology is presented to analyze 
and determine reaction forces in planar mechanisms. 

1. INTRODUCTION 

There are two main objectives in Dynamics. One is to determine the motion of 
dynamic systems, and the other is to specify forces exerted on that system. Determining 
reaction forces is part of the latter. It is important not only to the dynamics analysis of 
systems and its endurance but also to its control problems, especially the program motion 
one. In the program motion problem, reaction forces are considered as control inputs 
whereas constraints can be understood as the program to be realized. Generally, reaction 
forces are determined based on d'Alembert principle by solving the equations of dynamic 
equilibrium. The principle reduces the problem of dynamics to a problem in statics by 
adding the forces of inertia. The forces of inertia combine with the externally applied 
forces to produce dynamic equilibrium. However, this approach is not always easy to 
apply for complicated systems, especially for mechanisms. In the paper, another approach 
to determine reaction forces is presented based on the principle of compatibility and the 
ideality of constraints . It is a matrix-based approach so that one can easily use common 
sctftware such as Mathlab, Maple, and MathCad to assist the calculation process. 

2. BACKGROUND 

Let's consider a dynamic system whose positions are located by t he generalized 
coordinates Qi ( i = 1, m). It assumes that all the constraints are stationary and ideal. The 
kinetic energy of the whole system has the form 

(1) 
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where aij is a function of the generalized coordinates qi(i = 1, m). Equation (1) can be 
expressed in the matrix form as follows. 

T-~·TA· - 2q q, (2) 

where q is a column vector of m x 1 size of generalized velocities, A is a matrix of inertia
a square symmetric nonsingular one, 4r is the transpose of q. 

Let's define the generalized forces correcponding to the generalized coordinates as 
Qi (i = 1, m) or in the vector form as QT= II Qi Q2 . Qm II· The dynamic system 
is subject to r constraints as follows 

(3) 

Based on the principle of compatibility [1, 2], the equations of motion of the dynamic 
system are given by 

d8T 8T -
-d ~ - -

8 
= Qi +Ri; i = 1,m, 

t uqi qi 
(4) 

where Ri (i = 1,m) are the generalized forces of reaction forces m the constraints (3) 
corresponding to the generalized coordinates qi ( i = 1, m) 

N 3-
~ - rk 

Ri = L.....,Nk~, 
k=l qi 

(5) 

where Nk are reaction forces of the constraints exerted on a point mass Mk of the system. 
Equation ( 4) can be expressed in the matrix form as 

d 8T 8T 
dt 8q - 8q = Q + R , (6) 

where R is a column vector of m x 1 size whose elements are the generalized forces of 
reaction forces. The constraints (3) are assumed ideal so that the generalized forces of 
reaction forces Ri(i = 1, m) must realize the condition [1, 2] 

m 

LdikRi = O; 
i=l 

k = 1,n, (7) 

where dik(i = 1, m; k = 1, n) are elements of transformation matrix which maps the 
independent generalixed accelerations qk(k = 1, n) into the generalized accelerations qi(i = 
1, m). Expression (7) can be given in the matrix form as 

DR =O, (8) 

where D = lldkill, the matrix of n x m size. Equation (6) can be rewritten in a new form 
as 

(9) 

where Q 0 , Qgare determined through the matrix of inertia A [6]. Given on (8), and (9), 
the reaction forces of constraints of the system are specified. 
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3. TWO PROBLEMS OF DETERMING REACTION FORCES 

3.1. Problem 1 

Assuming that the dynamic system is subject to the constraints of the form 

(a= 1, r = m - n). (10) 

It means that some generalized coordinates of the system are constrained and the 
system's order of fn:~edom is n . For convenience, let 's define some new variables as 

uk, = qk(k = 1, n); Va= qa(a = 1, r = m - n). (11) 

Based on ( 11), ( 9) can be expressed 

II 
R(k) II II Ai A 3 1111 ii(k) II II Q(k) II II Qo(k) II II Qg(k) II R(a) = Aj A2 v(a) + Q(a) + Q0 (a) - Qg(a) ' (12) 

where: R(k), ii(k), Q(k), Q0 (k) , Qg(k) are column vectors of nxl size, but R(a) , v(a) , Q(a ), 
Q0 (a), Qg (a) are ones of r x 1 size. 

Rn II; R(a) = \I Rn+l R n+2 Rm II · (13) 

Due to (10), the matrix D has the form D = llD(k) D(a)JJ, where D(k) is a square 
matrix of n size as 

D(k) = 

and D(a) is a zero matrix of nxr size. 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

The condition of ideality (8) can be written in a new form as 

II D(k) D(a) 11 II ~~:~ II = 0. 

Obviously, given on (15) , one realizes 

Rk=O; k=l,n. 

In this case, some conditions are applied as 

(14) 

(15) 

(16) 

Va= Va = Va = 0 ; a= 1, r = m - n ; Uk= qk ; Uk= Qk ; Uk= ih k = 1, n . (17) 

Based on (12), one can derive that 

R(a) = Arii(k) + Q(a) + Q0 (a) - Q(a )g , 

where iiT(k) = llii1 ii2 ... iinll which can be determined through 

Ai ii= Q(k) + Q0 (k) - Qg(k). 

Through this approach , reaction forces of (10) are specified by (18) and (19). 

(18) 

(19) 
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3.2. Problem 2 

Assume that the dynamic system is subject to the constraints (3). Let's apply the 
mapping from the current coordinates (qi, i = 1, m) into the new coordinates (uk, va) as 

Uk= qk (k = 1, n); Va = qa(a = 1, r = m - n). (20) 

Let's define K as a transformation matrix from the current coordinates to the new 
coordinates. The kinetic energy of the system in the new coordinates now has the form 
(2) in which the,rnatrix of inertia A is defined as 

- T A= K A(uk , va)K. (21) 

The generalized forces Q has the form 

Q = KTQ. (22) 

By doing that, the problem 2 can be converted into the problem 1 where A and Q 
take place of A and Q, respectively. In this case, let's notice the conditions as 

(23) 

The following section illustrates the two above approaches by some simple examples. 

4. ILLUSTRATIVE EXAMPLES 

4.1. Example 1 

Determine the reaction forces between joint A of the double pendulum OAB. Link 
OA of length L1, of mass m1, pivots about the fixed point 0. Its center of mass locates 
at C1 and moment of inertia to C1 is J1. Link AB of length L2, of mass m2 rotates about 
the joint A. Its center of mass locates at C2 and the moment of inertia to C2 is J2. The 
motion of the dynamic system is analyzed in the field of conservative forces. From now 
on, some notations are used for convenience 

COS<(Ji =Ci; sin<pi =Si; cos(<pi + 'Pj) = Cij; sin(<pi + 'Pj) = sij· (24) 

0 

u .... ' .... ' 
' v 

A ' 
' B 

~ 
Fig. 1. The internal forces at the cross section 

The order of freedom of the system is 2. Choose the generalized coordinates are <p1 
and <p2, where <p1 is the inclined angle between link OA and the vertical, <p2 is the angle 
between link OA and link AB, see Fig. 1. This system is considered as the origin one. 
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In Fig. 1, joint A is released and two more coordinates ( u, v) are used to describe 
the system's position. The number of coordinates of the new system is now 4. Let's apply 
the following conditions to make the new system coincide with the previous one. 

Ji = u = O; h = v = 0 (25) 

Finding the matrix of inertia A of the constraint-released system can be carried out 
through the method of transmission matrix [4, 5] or the direct approach. The matrix A 
of 4x4 sizes is given as follows 

au= m2(LI + u2 + v2 +a~+ 2L1a2C2 + 2L1v + 2a2S2u + 2a2C2v) + J1 + J2; 

a12 = m(L1C2 + a2 + uS2 + vC2)a2; a22 = J2 + m2a~; a1u = m2(L1 + a2C2 + v); 

a2u = m2a2C2; auu = m2; a1v = -m2(a2S2 + u); a2v = -m2a2S2; avu = O; avv = m. 

The potential energy has the form 

Jr= -m1ga1C1 _.:__ m2g(L1C1 - uS1 + vC1 + a2C12). 

The matrix Q of generalized forces is of the form 

-m1ga1S1 - m2g(L1S1 - uC1 + vS1 + a2S12 
-m2ga2S12 
-m~S1 

Q= 
m2gC1 

The matrix Q0 and Q9 can be derived 

0 
-m2sL1a2S2(01 + 02)01 
m2a2S2(01 + 02)01 
m2(L1 + 2a2C2)(01 + 02)01 

-m2L1a2S2(201 + 02)01 
m2L1S2a201 iP2 
-m2a2S2 ( 01 + 02)01 
-m2a2C2 ( 01 + 02)01 

(26) 

(27) 

(28) 

(29) 

To determine reaction forces Ru (perpendicular with OA) and Rv (along OA) at 
joint A, one uses (18) and (19). For this case, A1 , A2, and A3 are 2 x 2 matrices. Equations 
(18) and (19) have the forms 

ll
Rull 11 -m2gS1 + m2a2S2(01 + 02)

2 
II llm2(L1 + a2C2) 

Rv = m2gC1 + m2L10I + m2a2C2(01 + 02) 2 + -m2a2C2 m2a2C2 II II 01 II 
-m2a2S2 02 ' 

(30) 
where 01 , and 02 are calculated from the following equation 

m2(L1C2 + a2)a2 m2a2 + J2 cp2 II 
m1LI +a~+ 2L1a2C1 m2(L1Ci + a2)a2 II II ~1 II 

= II -m1ga1S1 - m2g(L1S1
8
+ a2S12) -Lm82a~f1 (201 + IP2)01 II · 

-m2ga2 12 - m2a2 1 2cp1 

(31) 

It is easy to see that the above example is of the problem of determining the internal 
forces at the cross section located at the distance of 11 with respect to the point 0, where 
the reaction forces corresponding to (25) are the tension and shear forces. For the aim of 
computing the bending moment at the cross section under consideration, it is necessary 
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to introduce t he constraint equation of the form f = c.p2 = 0: The reaction force of this 
constraint is just the bending moment at the cross section of interest. 

4.2. Example 2 

Assume that the non slipping homogeneous disk of radius r and of mass m in Fig. 2 
rolls inside the circular cylindrical surface of radius R of a box of mass M. The box slides 
on t he perfectly smooth horizontal floor under the influence of force F paraller with the 
floor and pointed to the right side. Determine the reaction forces between the disk and 
the box. 

The order of freedom of the system is equal to two. The generalized coordinates 
are chosen as x, c.p1, and c.p2, where x is coordinate of the box's center of mass along the 
horizontal direction. c.p1, and c.p2 are the angles between OC and the vertical direction and 
a radius line CA, respectively. Obviously, the generalized coordinates are dependent. The 
system 's constraint is given by 

f = Rcp1 + rcp2 = 0. 

The kinetic energy of the system can be displayed as (2), where 

A= 
mo 

m (R-r)C1 
0 

m(R-r)C1 
0.5mr2 + m(R- r) 2 

0.5mr2 

0 
0.5mr2 

0.5mr2 

(32) 

(33) 

The matrix Q of generalized forces corresponding to the generalized coordinates 
x,c.p1, and c.p2 can be derived as 

F 
Q = -mg(R- r)S1 

0 

Applying a new set of generalized coordinates x, 'Pl and s into the system 

Fig. 2. Example 2 

(34) 

(35) 
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The transformation matrix K is given as 

K= 

1 
0 

0 0 
1 0 
R 1 

0 -- -
r r 

The new matrix of inertia can be derived as 

- T 
A=K AK= 

mo 
m(R- r)C 

0 

m(R- r)C 
1.5m(R- r)2 

-0.5m(R-r) 

. o 
-0.5m(R-r) 

0.5m 

Based on matrix A, other matrices such as Q, Q0
, and Q* can be derived as 

1 0 0 
R F F 

- T 0 1 -mg(R- r)S1 -mg(R- r)S1 Q=K Q= 
{ 

0 0 0 0 
r 

0 -m(R - r)S1<Pi 
Qo= -m(R - r)S1x<P 

' 
Q*= -m(R - r)S1x<P1 

0 0 

In the new coordinate system, the constraint now has the form 

s = o. 
Based on the ideality of constraints, matrix D is given as 

D =II ~ ~ ~ II· 
From (15), we have 

Rx = O; R'P1 = 0. 

Note that matrix A 1 is of 2x2 size 

A - II mo m(R - r)C1 II; 1 - m(R - r)C1 1.5m(R- r)2 

A 3 and A 2 are matrices of 2x1 size and 1x1 size, respectively: 

A2 = ll0.5mll ; Af =II 0 -0.5m(R- r) II 
Rs= Qs + axsX + a<ps<f>I = -0.5m(R- r)<P1 

where <f>1 is calculated through (19) as 

moi + m(R - r)C1<f>1 = m(R- r)S1<PI + F; 
m(R- r)C1i + 1.5m(R - r) 2 <f>1 = -mg(R - r)S1 

From (44), and (45), the reaction force Rs is derived as 

0.5m .2 
Rs= --02 [m(R- r)C1S1cp ] + FC1 + mgS1. 

ml 
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(36) 

(37) 

(38) 

(39) 

(40) 

( 41) 

(42) 

(43) 

(44) 

(45) 

(46) 
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5. CONCLUSIONS 
" In the paper, a new approach of determining reaction forces of planar mechanisms is 

presented. The approach can be applied to dynamics and endurance analysis of machines. 
The method can also be used for the problems of stability and control. The advantage of 
the method is matrix-based so that complicated problems can be solved easily by using 
such software as Mathlab, Maple, and Mathcad. 
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xAc D~NH PHAN LQC TRONG cd c.A.u PHANG 

Trong bai bao d@ xu§.f mQt phu'ong phap xac dinh phan l\l'C trong CO c§.u ph~ng Va 

tri;tng thai nQi lvc ( dQng lvc) ti;ti cac mi;it ciit cua cac khau. y tu'dng cua phu'ong phap dva 
tren nguyen ly phu h<;Jp vai vi~c ti;to ra nhU'.ng lien k@t mai va di@u ki~n cua lien k@t ly 
tudng. 


