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Abstract. The present paper deals with the problem on Lamb waves propagation in
periodically layered, compressible elastic media with initial deformations, in the case of
long wavelength approximation (i.e. £ = k.h << 1, where k is the wave number, h is
the thickness of one periodicity cell). With the assumption that ¢ << 1, the dispersion
equation is written as:
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The main aim of this paper is to find formulae for determining the coefficients €, (z > 1).
In particular, we prove that Q2, = 0 (n > 1), derive formulae for €, Q3, and construct
recurrent formulae for Q2,41 (n > 2). Based on these formulae, the solution with any
order of accuracy can be obtained. This research is an extension of the investigation by
Norris and Santosa [Norris A. and Santosa F., Wave Motion 16 (1992), 33-55] from SH
waves (one-component waves) to Lamb waves (two-component waves).

Keyword. Lamb waves, Wave propagation, Periodically layered media, Asymptotic ex-
pansion.

1. INTRODUCTION

Wave propagation in elastic media has received an intensive consideration because
of its wide range of applications in various fields in science such as seismology, acoustics,
material sciences, construction,... (see for example, [1], [2]). Since thin structures are often
encountered in engineering and technology, the wave propagation in thin layers, or long-
wave propagation, has been the subject of many investigations, see for instance [3]-[17]
and references therein.

In the wave propagation studies, it is important to derive dispersion equations being
of the form: w = w(k, p1, pa, ...), where w is the wave frequency, k is the wave number, and
pi (i=1, 2, ...) are the characteristic parameters of the material. The dispersion equations
can be used to solve the direct (forward) problems which study the effects of material
parameters on the wave velocity ¢ = w/k or to solve the inverse problems which determine
material parameters from the measured values of the wave speed c.
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When the layers are thin, or the considered wave is a long wave (low-frequency
wave), we have:

iLe=kh<< 1 (1)
where h is a typical length (it is the thickness of one periodicity cell for the periodi-

cally layered structures, for instance). Taking assumption (1) into account, the dispersion
equation can be expanded into a power series of the small parameter € as follows:
5 W’

c ZEIQ1+EQ2+€293+...:ng+15m (2)
m=0

here the coefficients €),,, need to be determined.

Norris and Santosa [6] studied the propagation of SH-wave (one-component wave)
in a periodically layered infinite elastic medium without initial deformations. They derived
the formulae of 21, Q3 and proved that Qo = 0.

In this paper, the results obtained by Norris and Santosa [6] are extended to Lamb
wave (two-component wave). In particular, we derive the expressions for Q;, 23 and demon-
strate €2y = 0. Moreover, we establish recurrent formulae for Q9,41 (n > 2) and prove
that 9, = 0,Vn > 1. The material is assumed with initial deformations.

The layout of the paper is as follows. The problem setting and mathematical formu-
lations are introduced in Section 2. The asymptotic analysis, the expressions for €, Q3
and the vanishing of ()5 are discussed in Section 3. Section 4 presents recurrent formulae
for calculating the higher-order coefficients €2, in the expansion (2).

2. PROBLEM SETTING AND MATHEMATICAL FORMULATIONS

Let us consider a periodically layered, infinite elastic medium. Each periodicity cell
consists of IV different layers (N > 2). Suppose that the material layers are compressible
isotropic and subject to homogeneous initial deformations (see [18], [19]). At the initial
state, we introduce a system of orthogonal Cartesian coordinates Ozjz22z3 in which the
coordinate plane Oz1z9 coincides with the bottom plane of the first material layer of the
periodicity cell (see Fig. 1). By h; and h we denote, respectively, the thickness of the i-th
layer (i = 1,..., N) and the thickness of one periodicity cell at the initial state, then we
have:

h=hi+hy+---+ hy. (3)
Let us consider a Lamb wave propagating along the layers, in the Oz;-direction, and
its displacement vector lies on the plane Oz z3. The components of the wave vector have
the form E(kl, ko, k3) = (k,0,0), and non-zero components of the displacement vector of
the Lamb wave are: uj = uj(21, 23, 7), ug = us(z1, 23, 7), where 7 is the time.
The following system of equations is used to study the problem (see [18], [19]):

Loty = 0 m,o=1,3, (4)

where:
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Fig. 1. The periodicity cell

o . 0 & g* :
L = 8_21 I:Wimaﬁ(z3)8_25:| _p(z3)5maﬁ s i, 8= L, 3, (5)

p(z3) is the mass density of the medium at the initial state. Note that @imag(23), p(23) are

periodic functions of period h. They are constant on each interval (b} ,h}),i=1,...,N
(see [19]), where:

h::h1+h2+'+h’l’ 'L:]-, 2,...,N, hS_—_O

The surface tractions per unit area f’m(m = 1,3) at the initial state at the plane z3 =
const are calculated as follows (see [19]):

~ OUg,

Py, = ‘DBma,@(zB)-%, m=1,3. (6)

Equations (4) are written in the matrix form as

_0%u
Lu = Pm, (7)

where:

0 ou
Lu= 52; (Ahk(‘)—zk> y (8)
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on i
|43
(@111 0 w3113 0
- | 0 Wiss } 33 { 0 w3333 ]
[0 @s311 0 w3z
A3 =|. , Az = | - .
= w3131 0 } & [w3311 0

It should be noted that when the medium is at the natural state, we have

W1111 = w3333 = A+ 24, W1331 = W3113 = W3131 = U, W3311 = A.

In the matrix form, formula (6) becomes

Ou ou
+ A
B2 385 "

P~ [

We find the solution of equation (7) in the form

= Ag1—

where:

n= U(Zg)ei(kzl —w'r).

Substituting (12) into (7) yields:

i A33d—U +1kA31U | + ’ikAlgig o ([)wQE = k‘ZAH)U = (),
dZ3 d dZ3

where

£=lp 3], v )

Substitution of equation (12) into equation (10) leads to

N A dU dU
P= P(Z3)ez(kz1—w7-)7 P=A31— + A33—

d d23
where
_ |7
P= |:P3:| .

Equation (13) can be rewritten as

2

d dU dU . w
2 (4 AU ) +iA 5
kdz:3( Bedzy T 3 )“ 3hds Pl

Denote Y7 = U, Y5 = A33m2—3 + 1A31U, then equation (15) yields

vy
kdz;g -

B'Y,

— Ap)U=

0.

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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where
2 il 5
—’LA33 A31 A33

- P " -
—(A13A53 A1 + p%r — A1) —iAi3A53

Introducing the new variable y3 = 2z3/h, then equation (16) is written as:

dY
— =eB-Y. 18
T (18)
where
b1 0 0 by
0 by by 0
in which
bia = byg = —iw;il?’l,
w1
i
b13 ===
w1
boy = b3 = —iw:i?’n,
3
1
by = —, (20)
w3
~9 o
@
31 = ( 21y pﬁ — w1111)
o
i = ‘U3131 e
bp = —(—=2* Bs + PkQ @3131),

W1 = W3113, W3 = W3333.

Note that B(ys) is a periodic function of period 1. In summary, we need to solve equation
(18) on the interval [0, 1], with assumption € = k.h << 1. The periodicity of the medium
leads to condition

Y(1) = Y(0). (21)

3. ASYMPTOTIC SOLUTION, EXPRESSIONS FOR (5, Q3

Suppose that the layers are all thin, or the Lamb wave is a long-wave (low-frequency
wave) which leads to 0 < € << 1. As mentioned above, when ¢ << 1, the dispersion
equation of the Lamb wave can be written as

w?

0
k2 =0 +e0s + 6293 = 63 1Q -+ - Z EQO+1. (22)
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Our task now is to determine the coefficients 1, Q9, Q3. ... Substituting equation (22)

into formulas (19), (20), matrix B can be expressed as follows

B=DBy+eBy +&’By+ - +e& Bj+---, (23)
where
B; =L, Vj=1,23., (24)
0000 0 b2 b1z 0
oo o0 o0 b 00 by
=1y ¢ o o Po= byt 0 0 by
0100 0 bga baz O
and
G311 | - D331 | - -
bs1 = — (=2 + pQ1 — D111, bag = — (=22 + % — @3131)- (25)
w3 w3

In order to solve the equation (18), we seek Y in the form

o0
Y =Yy +e' i+ +e%Ys+ 0= ) Y, (26)
n=0

We introduce new matrices Ry (ys) = [175(y3)]axa, Tn(ys) = [t7(ys)]ax4 and Sp = [s]i]axa

defined as follows

e Y3
Ru(ys) =) / BomBm1i S =Rl ¥m=0,12,... (27)
m=0"
s Y3 Y3
Tlys) = Z/ Bp-mBRm-1, ¥Yn=1,2,..; To—/ By, (28)
m=1
where
Ys ys
/ F:/ I'(z)dz; B 3 =diagll;1,1,1) = I, (29)
0

From the above definitions, R, (y3) relates to T,,(y3) by the relation

Ralts) =Tolw) + [ Bny  ¥n21 (30)

Lemma 1:
Y;(y3) = Rj—1(y3)Y (0), Vi=12,.... (31)
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Proof: Taking into account (23) and (26), we have from (18)

isjj—z = isi“BiiskYk. (32)
=0

=0 k=0

The coefficients of the same order of € on both sides in (32) must be the same. Therefore,

we have the following differential equations

dYp

3 _ g, 33

s (33)

dy;

d—y; = Bo¥e; (34)

dY:

d—yj = B,Ys + BoY4, (35)

dY-

d—y: = BYy + B1Yi + ByYa, (36)

gy, I

d—y; =Y Boy ¥ (37)
s=0

Taking integration of equations (33)-(36) leads to
Yoconst = Y (0);

Y3
% o) = { / Bo)Y (0) = RyY (0);
%o lge) = { / “ B+ / " BoSo)Y (0) = RyY (0);

Y3(ys) = (/y3 By +/y3 Blsl+/y3 ByS3)Y (0) = RY(0). (38)

Thus, the statement (31) holds true for j = 1,2, 3. Assume that the statement (31) holds
true for any j = 1,2,3...n— 1. We will prove that it also holds true for j = n. From (37),
we have:

-1
dY
P Bn—SA 8 39
dys ; ' (39)

From the inductive assumption: Yy = Rs_1Y (0) and the above equation, we have

n—1
aYy
o Bp_s— S—Y .
7 = LB Rt 0 (40)

Integration of this equation gives:
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n—1 3
Y, = (Z-O / ’ By s-1Rs_1)Y(0)  or Y, =R, 1Y (0) (41)

Thus, statement (31) holds true for j = n and it is valid for Vj = 1,2,. . ..

Substitution of (31) into (26) leads to
Y (y3) = [I + €' Ro(ys) +&*Ri(ys) + €3 Ra(y3) +---]Y(0)

=D e Ru1(u)] Y (0). (42)
=0

Taking the periodicity condition (21) into account and noting that S,, = R, (1), from (42)
we have

Y(1) = [I+€'So+ 251 +£Sa+ - ]Y(0) = [i €"Sn-1]Y(0)
n=0

or
Y (0) = ) e"8n1]Y(0). (43)
n=0
Equation (43) leads to
det[> " e"S,] = det[Sp+ 'S +&2Gp + - -+ 19+ -] =0. (44)
n=0

Equation (44) can be written as

det[ieiAi,ieij,iska,ishDh] ={l (45)
i=0 5=0 k=0 h=0

where A7, BY, C9, D7 is the 1st, 2nd, 3th and 4th column of matrix 855 = 0; 1,25,

Expansion of the first, second, third and forth column of the above determinant yields
oo (0.0} (e.@] o0
slelebel det{A* BYCR D* = 0. (46)
i=0 j=0 k=0 h=0

hence .
i+j+k+h=m

> det[A’BIC*DM =0, (m=0,1,2,..). (47)
0<i,5,k,h<m

Calculating Q;
Corresponding to m = 0, equation (47) gives

0 0 0 0
S S S S

det Sp = 0, & 321 524 312 553 =1 (48)
31 21 42 12
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. 1
From (27) it follows Sy = [~ By, thus we have

s = (Hid) i,j=1,2,3,4. (49)
where Sy = [si~ ] and ( f f= fO (y3)dys. From (48) it implies

ease 1: (59,)% = 581384 m—

Proving 2, = 0.
From the definition of S;, we have

511 0 0 8%4
3%2 3%3 0
S = Bo By + Bl 3%1 sh sl 0| (52)

Sgg 0 Sy
where

2 [Ty = é’"’ [y (z1)dxy foxl Ta(z2)dzs,
¥ Ty [Ty [T3 = [ Ti(z1)dz 5 Ta(z2)das [y To(zs)des, ..., y3 € [0, 1].
Corresponding to m = 1, equation (47) gives
det[A B°CY DO + det[A°B'C°D°] + det[A°B°C'D°] + det[A°B°C®D'] = 0. (53)
Taking into account (52) and s}, = s}, = Q2 (), equation (53) provides
Qg (5) {534[(s32)® — s1350a] + s13[(521)* — 5515%4] } = 0. (54)

From (50) and (51): if (s95)% — s935% = 0 then (s3;)% — 53,53, # 0 or, if (s95)% — 9359 # 0

then (s9,)? — 3,59, = 0. Hence, we get from (54)

@=0) &
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Calculating €23

From the definitions of matrices S;, T;, we have

3 (2) sty sis (2)
0 0 s
S:T1+/B=821 3| 56
2 =T5(1) 2 2, 0 0 s, (56)
0 34212 523 0
where
t 5, 0
i 0 t%4 =
BO BO B()— 2 0 t§4 . (07)
t42 ti3 0

Corresponding to m = 2, equation (47) gives
det[A2B°CO DY + det[A°B2C° DY) 4 det[A°B°C%DP] + det[A°B°C° D?)
+ det[A'B'CODO) + det[A'B°C1 D] + det[A'B°C°D!] . (58)
+ det[A°B'C' D) + det[A°B1COD'] + det[A°B°C' D] = 0.
We introduce the quantities M, a, b defined as
M = det[A'B1CODY] + det[A' B°CI D) + det[A°B*C° D] + det[A°B°C' DY,
and

0 0 0 0
8y 8 8y &
12 513 21 S24
= : b= (59)

0 0 0 0|
S42  S43 531 S34

Taking into account Q9 = 0, from (52), (56) and (58) we have
Case 1: (s91)? = 53,83, then b =0 = det[AgB2Co Do) = det[AgByC2Dy] = 0, henceforth:

Q3 = (< p) $94) 7" [531594 — 131 (1)04 + 55489, — 53459 + Ma™"]. (60)

Case 2: (s95)? = 593535, then a = 0 = det[42B°CODY] = det[A°B°C®D?] = 0, hence:

Qs = ((p) 899) 7" [s30543 — sTasly + sigsly — th(1)shs + Mb7]. (61)
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4. CALCULATING COEFFICIENTS OF HIGHER ORDER

In this section, we will prove that €5, = 0 and construct recurrent formulae for
calculating €25,,11. Before doing that, some definitions and lemmas are introduced.

Definition 1: MT1, MT?2 are sets of matrices which are of the form:

x 0 0 x 0 x x 0
0 x X x 0 0. %

mitl = 0 x x 0l mit2 = X 0 0 x| (62)
x 0 0 x 0 x x 0

respectively.
Formulas (62) indicate entries being definitely zero of the matrices mtl and mt2.
From the definition of MT1 and MT?2, we immediately have the following lemmas:

Lemma 2: Summation of matrices in MT1 (MT2) belongs to MT1 (MT?2).

Lemma & Let mtl € MT1,mt2 € MT2, then: Bymt2 € MT1; Bymtl € MT?2 for all
720,5eN

Lemma /4: The determinant of a matrix which is formed by replacing any column of a
mtl-matrix (mt2-matrix) with the corresponding column of a mt2-matrix (mt¢l-matrix)
is equal to zero.

We now prove the following statement:

Qo =0, Vn=1,23.. (63)

Proof- It has been proved in the previous section that {29 = 0. Thus, the above statement
holds true for n = 1. Assume that statement (63) holds true for any j = 1,2,...,n — 1,
that means: Qy = Q4 = ... = Q9,9 = 0. We will prove (63) is true for j = n.
From the definition of matrix By, it is seen that By € MT2,Vk > 0. The inductive
assumption gives
szd]_ :ﬁQQjZO Vj:1,2,...n—1. (64)
We will show that

jofl EMTI,RQJ'GMTQ, Vi=0,1,...,n—1. (65)

Indeed, By € MT2 = Ry = [** By € MT2, and R_, = I € MT1. Hence (65) is
true for j = 0. Assume that (65) is true for every j =0,1,2,...,k— 1 with £ <n — 1, that
means:

(66)
Ry, Ry, ... Rop_o € MT?2, k<n-—1.

We will prove that (65) is true for j = k, that means:

{R;l, Ri,R3,...Rop_3€ MT1,
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Rop_1 € MT1,Rop, € MT2, k<n-—1. (67)
Indeed, from (27) and (64) we have (noting that k <n — 1)

ys Y3 s
Rar—1 :/ BQk—2R0+/ sz—4Rz+...+/ BoRok—2

Y3 Y3 Y3 Y3
Ry = Boy + Bor_oR1 + ...+ / BoRop_3 + / ByRok_1. (68)

From Lemmas 2, 3, (66), (68) and noting that By € MT2,Vk > 0 it deduces (67), i. e.
(65) is proved. From (28) and (64) we have

Y3 Y3 Y3
Top—1 = By 2Ry + / Bop—aRs~-+»+ ByRop—2. (69)

Therefore, T5,—1 € MT1 according to Lemmas 2, 3, (65) and the fact that By €

MT2,Vk > 0. From (30), we have

Y3
Ry 1 = / Bon—1 + Ton-1, (70)
This yields
21 o 0 t2p !
0 fs 150 0
Rop—1 = ~ 2%7 227 71
al Q272Lfylsp t§2 1~ t%a 1 201 (7)
tay Qon f “p 0 tay
Since Sy, = Rgn_l(l), it follows
o OV I S )
0 s (1) #58 (1) 0
Ssii= | ,. - 33 _ 72
S T e O VI (72)
tir (1) (p) Qs 0 ty (1)
On view of (65) and S,—1 = R,,—1(1) for every n > 0, it is clear that
S_1,51,83,...,89,_3€ MT1 (73)
So, S, veey Sop_o0 € MT?2.

With m = (2n — 1), equation (47) is

det[42*~1 B DY + det[A" BP0 DY 4 det[A° B G DY 4
utv+s+t=2n—1
+det[A°BOC'D™ |+ )" det[A"BC*D']=0. (74)

0<u,v,s,t<2n—1
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Since u+v+s+t=2n—1 — u+ v+ s+t is an odd number. Therefore, either one
of u,v, s,tis odd and the others are even or three of them are odd and the remainder is
even. In both cases

det[A*B*C*D' =0, u+v+s+t=2n—1, 0<u,v,st<2n-1
according to Lemma 4 and taking into account (65). Thus we have

utv+s+t=2n—1 )
> det[A*B°C* D] = 0. (75)

0<u,v,s,t<2n—1

From (72), it follows

det[A*" ' BYCOD°] = —s3,551 7" [(s12)” — sissial,
det[A°B**1C°D°) = —34213_15(1)3[(3(2)1)2 — 5515%4), (76)
det[A°B°C?"~1 D = 0, det[A°B°C°D?" 1] = 0.
Substituting (75) and (76) into (74) yields
Qan (B) {594[(s32)” — s135%2] + s95[(551) — s515%4] } - (77)
Noting that if (s95)% — 59559 = 0 then (59;)% — 3,59, # 0, or if (s95)% — 5935, # 0 then
(591)% — %159, = 0, from (77) it deduces

B =0) (™

The proof of the statement (63) is finished.

Recurrent formulas for Qopy1.
On view of (63) it follows that Ba,—; = 0V n > 1. Therefore, from (28) we have

Y3

y3 Y3
Ton = Bon—2R;y + / Bon—4R3+ -+ + BoR2p—1, n > 0. (79)
Since Bg,—1 = 0V n > 1, according to the proof of the statement (65), it is clear that

Ron—1 € MT1, Ry, € MT2, ¥ n > 0. Thus, from (79) it deduces T, € MT2 (VY n > 0)
according to Lemmas 2, 3 and By, € MT2,Vk > 0. From (30), we have

v3
Rop = Bop + Top.
This and T3, € MT'2 lead to
o I )
O PR B I |

0 35+ Qony1 [%5 155 O



44 Bui Thanh Tu, Pham Chi Vinh, Nguyen Thi Khanh Linh

Since Sy, = Ra,(1), we have:

20( ; t35(1) t35(1) 20( ;

251 0 0 2l

Ban= | g - - . 81

’ 37 (1) + Q2n41 () 0 D D (81)
0 t35(1) + Qons1 (B) t33(1) O

Corresponding to m = 2n, equation (47) is
det[A?"B°C? D] + det[A°B2"C° D]
+det[A°B°C?*" D] + det[A° B°C° D*"]

utv+s+t=2n (82)
+ > det[A*B'C°D'=0.
0<u,v,s,t<2n
From (81), we have
det[A*" B°COD°] = a(s37's34 — s37'554),
det] AV B2 CO D) = b(s3gsly — s5els),
det[A°B"C*" D] = b(s}ps35 — siasi5),
det]A"BPCP D] = al(s), 858 — 53,500
It follows from (82) that
Case 1: (83,)% = 53,83, = b=10=> det[A°B?*"C°DP] = det[A°BIC?* D] = O, then
u+v+s+t=2n .
sty e+ s~ e+ >, 4B O o,
0<u,v,s,t<2n
This provides
TR BR )+ o — Bt
Qony1 = ((P) 524)~ - ; (83)
. Yt e det[ABUC* D']a~!

for every n > 1

Case 2 (8% = 81583, = 8 = 0= de[A2*BYCP DY) = det[A° BCO D] = 0, theu
. utv+s+t=2n
sT3503 — 515502 + 545512 — 3513 + Z det[A"B"C*D']b~! = 0.
0<u,v,s,t<2n
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This yields

2n .0 27,0 2n .0 2 0
815843 — S15849 + 815812 — t4a(1)s13+

Qont1 = ((p) s42) ! w , (84)
Y e det[A“BUC* Db~

for every n > 1. The formulas (83) and (84) are the recurrent formulas for determin-
ing an+1, = 1

5. CONCLUSIONS

In this paper, we consider the long-Lamb wave propagation in a periodically layered,
compressible elastic medium subject to a homogeneous initial deformation. Taking the
assumption € = k.h << 1, the dispersion of the wave is expressed as a power series of
the small parameter ¢ whose coefficients are €2,,, m > 1. We have derived the expressions
for €24, 3, and proved that 29 = 0. We have also established the recurrent formulae for
calculating the non-zero higher-order coefficients 11, k£ > 2, and proved that Qg =
0 Vk > 1. Based on these formulae, the solution with any order of accuracy can be
obtained.
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KHAI TRIEN TIEM CAN CUA PHUONG TRINH TAN SAC CUA SONG
LAMB TRONG CAC MOI TRUOGNG DAN HOI PHAN LOP TUAN HOAN

Bai bao nghién cttu sy truyén clia séng Lamb trong cac moi trudng dan hodi nén
duge, phan 16p tuan hoan, c6 bién dang trude, trong truong hop xap xi séng dai (tic 1a
khi 0 < € = k.h << 1, trong dé k 1a s6 séng, h 1a do day ctia mot chu ky). V6i gia thiét
€ << 1 phuong trinh tan sic ctia séng dude viét dudi dang:

w?

[0 o]
ﬁ =0+ + 8293 + .= Z EQO—H
m=0
Muc dich chinh ctia bai bdo 1a tim céc cong thiic x4c dinh cac he s6 ; (7 > 1) ... Cac
tac gid da ching minh dude rang Qs, = 0 v6i moi n > 1, tim ra cic cong thic xac dinh
01, Q3, va xay dung duge cac cong thiic truy hoi dé tinh Qg,41, n > 2. Stt dung cac cong
thitc nay, ta c6 thé tim dudc nghiém véi do chinh x4c tiy §. Bai bao 13 sy mé rong clia
nghién citu thye hién béi Noris va Santosa [Norris A. and Santosa F., Wave Motion 16
(1992), 33-55] tit song SH (séng mot thanh phan) sang séng Lamb (séng hai thanh phan).





