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Abstract. In the present paper the non-linear buckling analysis of functionally graded 
spherical shells subjected to external pressure is investigated. The material properties 
are graded in the t hickness direction according to the power-law distribution in terms 
of volume fractions of the constituents of the material. In t he formulation of govern­
ing equations geometric non-linearity in all strain-displacement relations of the shell is 
considered. Using Bubnov-Galerkin's method to solve the problem an approximated an­
alytical expression of non-linear buckling loads of functionally graded spherical shells is 
obtained , that allows easily to investigate stability behaviors of the shell. 

1. INTRODUCTION 

A new class of materials, called functionally graded materials (FGMs), has received 
considerable attention for improved structural efficiency in space structures and nuclear 
reactors. FGMs are microscopically inhomogeneous, in which the material properties vary 
smoothly and continuously from one surface of the material to the other surface. This is 
achieved by gradually varying the volume fractions of the constituent materials. These 
materials are made from a mixture of ceramic and metal, or combination of different 
materials [l]. 

In recent years, important studies have been researched about t he stability and vi­
bration of functionally graded plates and cylindrical shells. Birman [2] presented a formu­
lation of the slitability problem for functionally graded hybrid composite plates subjected 
to uniaxial compression. Feldman and Aboudi [3] studied elastic bifurcation of function­
ally graded plates acted on by compressive loading. Reddy et al [4] gave bending solution 
for FGM circular plates and annular plates. In the works [5, 6] a free vib-ration analysis 
of FGM cylindrical thin shells under various boundary conditions was inve~tigated .. Woo 
and Meguid [7] presented an analytical solution for non-linear analysis of FGM plates 
and shallow cylindrical shells. Yang and Shen [8], Shen [9] gave a large deflection and 
postbuckling analysis of FGM plates and cylindrical shells subjected to various loadings. 
Sofiyev [10] studied stability of FGM cylindrical shells under torsional loading and Naj et 
al [11] investigated conical shells under external pressure. However the non-linear buckling 
analysis of FGM spherical shells has received comparatively a little attention, this may be 
because of geometry complexity. Stability problems were investigated for isotropic elastic 
spherical shells in [12, 13, 14], for orthotropic elastic shells in [15] and for elasts-plastic 
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spherical shells in [16]. Ganapathi et al [17] and Ganapahi [18] presented non-linear buck­
ling analysis of laminated composite and FGM shallow spherical shells by using finite 
element method with three-noded shear flexible axisymmetric curved shell element , but 
geometric non-linearity is assumed in strain-displacement relations only on the meridional 
direction. 

In the present paper the non-linear buckling analysis of functionally graded spherical 
shells is developed based on the approximated analytical method. Geometric non-linearity 
is assumed in all strain displacement relations. The material properties are graded in the 
thickness direction according to power-law distribution in terms of volume fractions of 
the constituents of the material. The non-linear governing equations derived are solved 
employing Bubnov-Galerkin's method. An approximated analytical expression of buckling 
critical loads obtained can be used for analyzing stability behaviors of functionally graded 
shallow spherical shells. 

2. GOVERNING EQUATIONS 

Consider an axisymmetric functionally graded shallow spherical shell of thickness 
h, base radius ro, shell radius R, made of a mixture of ceramics and metals with the co­
ordinates <p, e and z along the meridional, circumferential and radial-thickness directions, 
respectively as shown in Fig. 1 

Fig. 1. Geometry and the coordinate system of a spherical cap 

The materials in outer (y = ~) and inner (y = - ~) surfaces of the spherical shells are 
ceramic and metal respectively. The ceramic constituent of the material provides the high­
temperature resistance due to its low thermal conductivity. The ductile metal constituent, 
on the other hand, prevents fracture caused by stress due to high-temperature gradient 
in a very short period of time. A such mixture of ceramic and metal with a continuously 
varying volume fraction can be easily manufactured. According to Javaheri and Eslami 
[19] assume that , the modulus of elasticity E changes in the thickness direction z, while 
Poisson's ratio v is assumed to be constant. 
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Denote, that Vm and Ve are volume-fractions of the metal and ceramic phases re­
spectively. They are related by Ve+ Vm = 1 and Ve is expressed as 

V,() = (2z+h)k 
c z 2h ' 

where k is the volume-fraction exponent (k ~ 0). Then the Young's modulus and Poisson's 
ratio can be evaluated as following 

E(z) = EmVm +Ee Ve= Em+ (Ee - Em) ( 2Z2~ h) k, 

v(z) = v. 
(1) 

For a shallow spherical shell it is convenient to introduce an additional variable r 
defined by the relation r = R sin <p, where r is the radius of the parallel circle. If the rise 
of the shell is much smaller than the base radius r0 one can take cos <p ~ 1 and Rdcp = dr, 
such that points of the middle surface may be referred to coordinates rand e. According to 
the Kirchoff-Love's theory non-linear strain-displacement relations for a shallow spherical 
shell are of the form 

where 

0 
Cij = Cij - ZXij' 

0 av w 1 aw 
( )

2 

Er= ar - R + 2 ar ' 

E~ = ~ (au+ v) _ w + ~ (~ aw)
2

, 
r ae R 2 r ae 

0 a ( u) 1 av 1 aw aw 
lro = r ar -:;: + -:;: ae + -:;: ae ar ' 

a2w 
Xr = ar2' 

1 a2w 1 aw 
xo = r2 ae2 + -:;: ar ' 

1 a2w 1 aw 
XrO = -:;: ara() - r2 ae ' 

(2) 

(3) 

where u, v and w are displacements of the middle surface points along circumferential, 
meridional and radial directions, respectively; E~, E~, /~o and Xr , xo, Xro denote the strains 
in the middle surface and the changes of curvatures and twist, respectively. They must be 
relative in the deformation compatibility equation 

1 a2 E~ 1 ac~ 1 a ( 2 ac~ ) 1 a2 
0 f:l w 2 

r2 ae2 - -:;: ar + r2 ar r ar - r2 arae(rfro) = -R + Xro - XrXo, (4) 

a2 1 a 1 a2 

where f:l = ar2 + -:;: ar + r2 ae2 is a Laplace's operator. 
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In [18] geometric non-linearity is assumed only for strain component .::~, herein for all 
strain-displacement relations (2), therefore the compatibility equation (4) is more exact. 

The constitutive stress-strain equations for the shell material are omitted here for 
brevity, note however that the Young's modulus E(z) is a power function of z. Then 
integrating the stress-strain equations and their moments through the thickness of the 
shell ( - ~ ::; z ~ ~) we obtain the expressions of internal forces and moments resultants 

E1 o o E2 
Nr = 1- v2(.::r + v.::o)- 1- v2(Xr + vxo), 

E1 o o E2 
No= 1-v2(co +Ver)- l -v2(xo + vxr) , (5) 

N - E1 o - __!!_3_ 
rO - 2(l + v2) 'Yro l + vXrO, 

and 

where 

with 

h 
2 

J ( ) (Ee - Em)h * 
E1 = E z dz = Emh + k + l = E1 h, 

h 
-2 

h 

2 2 

E = J E(z)zdz = (Ee - Em)kh = E*h2 2 
2(k+l)(k+2) 2 ' 

h 
-2 

h 

/

2 

2 Emh
3 

3 ( 1 1 1 ) * 3 E3 = E(z)z dz= ~+(Ee - Em)h k + 
3 

- k + 2 + 4k + 
4 

= E3h , 
h -2 

E* _ E Ee-Em 
i - m+ k+l ' 

E* - (Ee - Em)k 
2 - 2(k+l)(k+2)' 

* Em ( 1 1 1 ) 
E3 = J:2 +(Ee - Em) k + 3 - k + 2 + 4k + 4 . 

(6) 

(7) 
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By use of Eqs. (5) relations (6) can be rewritten in form 

E2 EiE3 - Ei 
Mr= E1 Nr - E1(l - v2) (Xr + vxo), 

E2 EiE3 - Ei 
Mo= E1 No - E1(l - v2) (xo + vxr), (8) 

E2 E1E3 - Ei 
Mro = Ei Nro - Ei(l _ v2 ) XrO· 

Inversely from Eqs.(5) strains can be expressed through force resultants 

0 1 E2 
Er= Ei (Nr - vNo) + Ei Xr, 

o 1 E2 
Eo = Ei (No - vNr) + Ei xo, (9) 

0 2(1 + v) 2E2 
lro = Ei Nro + Ei XrO· 

The equations of equilibrium of a shallow spherical shell according to Love's theory are 
following 

(10) 

(11) 

(12) 

where pis an external pressure acted on the shell. By use of Eqs. (10), (11) the equation 
(12) is rewritten as 

~ [ 8
2 

( M) 2 (8
2
Mro ~ 8Mo) ~ 82

Mo _ 8Mo] ~(N N) 
r 8r2 r r + arae + r [)() + r 8()2 or + R r + o 

82w Nro 82w No 82w No aw 2 aw 
+Nr ar2 + 2--;:- 8r8() + --;:2 [)()2 +-;:-or - r2Nro [)() + P = 0. (13) 

Equations (10), (11) are satisfied by introducing the stress function F 

(14) 

The substitution of Eqs. (9) into the compatibility equation ( 4) and Eqs . (8) into the 
equation (13), taking into account relations (14) yields a system of equations in terms of 
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the stress function F and the deflection w 

Eqs. (15), (16) combining with boundary conditions allow to analyse buckling state 
of functionally graded spherical shells. 

3. LINEAR BUCKLING ANALYSIS OF FUNCTIONALLY GRADED 
SPHERICAL SHELLS 

Consider a functionally graded spherical shell subjected to an external uniform 
pressure p. The pre-buckling state of the shell can be obtained as N~ = N2 = -p~ , N~8 = 
0, where N~, N2, N~8 are membrane forces for the condition with zero initial moments 
respectively. 

The linear stability equations may be derived by application of the adjacent equi­
librium criterion. In this purpose we put u = u0 + 8u v = vo + 8v , w = wo + 8w, where 
(uo, vo, wo) represent the equilibrium configuration whose stability is under consideration, 
(u, v, w) is an adjacent equilibrium configuration corresponding to the same value of ap­
plied load as configuration (uo, v0 , wo) and (8u, 8v, 8w) is an arbitrary small incremental 
displacement. Furthermore 8Nr, 8Ne, 8Nre, 8Mr, 8Me, 8Mre are generalized forces and 
moment increments corresponding to (8u, 8v, 8w). Generalized forces and moments incre­
ments 8Ni and 8Mi have the form such as (8) and (9). 

Omitting non-linear terms in governing equations and repeating the procedure as 
above from equations (13) and (15) the solvable equations for increments in this case can 
be obtained 

(17) 

(18) 

Suppose the shell is clamped at its edger= ro, boundary conditions are: 

8w = 0, 
0 1 0 1 o2 

or (8w) = 0 and 8Nr =-:;:or (8F) + r 2 0()2 (8F) = 0 at r = r 0 . (19) 

Taking the solution 

8w = L~nW(r) sinriB, 8F = L rJnf(r) sinne, 
n=l n=l 
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and substituting them into equations (17), (18) yields 

1 [lIV 2 l"' 1 l'' 1 l' 2 2 ( 1 111 1 l' 2 l) n
4 l] -ry + - - - + - - n - - - + - + -

E1 n r r2 r3 r2 r3 r4 r4 

1 ·( II 1 I n2 ) 
= - R~n W + ;:W - r 2 W ; 

E1E3 - Ei ~ [wIV + ~ w"' _ _!_ w" + _.!__ W' - 2n2 (_.!__ w11 - W' + _3._ w) + n4 w] 
E1(1-v2) n r r2 r3 r2 r3 r4 r4 

pR ( II 1 I n
2 

) 1 ( II 1 I n
2 

) + 2 W + ;:W - r 2 W ~n - RT/n l + ;:l - r 2 l = 0. 

Boundary conditions (19) are satisfied if chosen 

W(r) = r2 (ro - r) 2
, l(r) = r2 (ro - r) 2

. 
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(20) 

(21) 

Substituting these expressions into Eqs. (20), (21) and applying Bubnov-Galerkin's method 
in the range 0 :::; r :::; r 0 we obtain 

Eir6 2(3 + 2n2) 
T/n = ~· 7(38 + 5n2 + 12n4 ) ~n, 
EiE3 - Ei 2 4 2 2 2(3 + 2n2) 2 ( 2) 7(38 + 5n + 12n )~n - pR(3 + 2n )r0~n = - R ToT/n , 
Ei l -v 

from that 

Putting 

= ~ [E1E3 - Ei 7 R(38 + 5n2 + 12n4
) E (6 + 4n2)r6 ] 

p R2 Ei(l-v2)" (6+4n2)r6 + 17R(38+5n2 +12n4 ) · 

X = _7 R_( 3_8_+_5n_2-,,-+--=1_2_n
4
_) 

(6 + 4n2)r6 

(22) 

An approximate expression for the critical pressure may be obtained by minimization of 
p with respect to X. The smallest p is found as following 

= _±_ (E1E3 - Ei)1/2 = 4 (!!_)2 (EiE3 - g:;,2)1/2 
Per R2 1 - v2 R 1 - v2 (23) 

In particular case, the shell is made of homogeneous elastic material Ee = Em = E, so 

that Ei =Eh, E2, = 0, E3 = ~~
3

, the equation (23) gives 

2E (Rh) 2 

Per = )3(1 - v2) 
(24) 

This is the result given in Timoshenko [13]. 
The expression for the critical pressure in (23) and (24) is the same as that given 

for a complete spherical shell. As shown in [14] the critical pressure given by equation (24) 
is in poor agreement with test data. The discrepancy is due to the neglect of non-linearity 
in the analysis. 
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4. NON-LINEAR BUCKLING ANALYSIS OF FUNCTIONALLY 
GRADED SPHERICAL SHELLS 

Taking into consideration of geometrical non-linearity the system of governing equa-
tions has of the form (15) and (16) 

__!__~~F = _ ~w + (~ 8 2
w _I_ 8w)

2 
_ 8

2
w (I_ 82

w +~aw) (25) 
E1 R r 8r80 r 2 80 8r2 r 2 802 r or 

E1E3 - Ei ~~ 1 ~F (18F 1 8
2F) 8

2
w (1 8

2
F 1 8F) 8

2
w 

E1(l - v2) w - R - ;: or + r 2 802 8r2 + 2 
;: 8r80 - r 2 80 r8r80 

82 F 82 w 1 82 F aw 2 ( 1 8 F 1 82 F ) aw 
- 8r2 r 2802 - ;: 8r2 or + r 2 r 2 80 - ;: 8r80 80 = p, (26) 

with boundary conditions at clamped base of the shell 

aw = O 1 8 F 1 8 2 F 
w = 0, or , Nr = ;: or + r 2 082 = 0 at r = ro. 

An approximation is acceptable in the vicinity of the buckling load. The boundary condi­
tion can be satisfied if the buckling mode shape is represented by 

w = er2(ro - r) 2 sin nO, F = T/r 2(ro - r) 2 sin nO. 

Applying Bubnov-Galerkin's method to Eqs. (25) and (26) in the range O :S 0 :S 7r, 
0 :S r :S ro yields the set of two non-linear algebraic equations with respect to e and Tl 

(27) 

(28) 

Substitution of expression Tl in Eq. (27) into Eq. (28) leads to a non-linear algebraic 
equation for the pressure p 

- 7rn (AC - BC2 cc3) 
p - 8(38 + 5n2 + 12n4) "' "' + "' ' (29) 

where denote 

A= E1E3 - Ei (38 + 5n2 + 12n4)2 + E1(6 + 4n2)2r6 
E1(1-v2) . (7R)2 ' 

B = 3E1r8(6 + 4n2)(1600 - 284n2) 
631r.7R.n ' 

C = 2E1r~(l600 - 284n2)2 

(637r) 2.n2 

The equation (29) represents the load-deflection curve of a functionally graded shallow 
spherical shell. The extremum buckling load of the shell can be found from Eq. (29) using 

the condition ~~ = 0, i.e. 

3Ce - 2Be + A = 0, 
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that gives the solution 

97r(6 + 4n2 )n ( 
6 '2 = 2(1600 - 284n2)Rr6 

1 
=f 

Suppose ro = aR, where a is the ratio of the base radius and the shell radius and use of 
notation (7), Eq. (30) can be rewritten 

, 97r(6 + 4n2 )n {, 1 98 Ei E3-E22 (38 + 5n2 + 12n4
)

2 
1 ( h )

2
) 

6,2 = 2(1600 - 284n2)a2 R 3 ~ =f 3-3 Ei2 (1 - v2 ) · 6 + 4n2 a 4 R · 

(31) 

Substitution of (31) into equation (29) yields the buckling critical loads. We can show that 

6 with sign minus before square root corresponds to the upper buckling load pg) 

97r2 (6 + 4n2
) 3n 2 E* (1) - 1 

Per - 16(1600 - 284n2)(38 + 5n2 + 12n4 ) 

[
EiE3 - Ei (38+5n

2
+12n

4
)

2 (!!_) 3 
01 a

2 !!_(20 _ 302 03)] 
x Ei2(1 - v2) 6 + 4n2 R a 2 + 98 R 1 1 + 1 ' 

(32) 

1 98EiE3-E2
2
(38+5n

2
+12n

4
)

2
1 (h) 2 

.. where denote 0 1 = 1- - - - 2( 2) 
6 4 2 4 R and 6 with sign 

3 3 Ei 1- v + n a 

plus before square root corresponds to the lower buckling load p~;) 
(2) - 97r2(6 + 4n2)3n2 Ei 

Per - 16(1600- 284n2)(38 + 5n2 + 12n4 ) 

x [EiE3-Ei (38+5n
2

+12n
4

)
2 (!!_) 3

02 a
2!!_(20 _ 302 03)] 

Ei2(1 - v2) 6 + 4n2 R a 2 + 98 R 2 2 + 2 ' 

-1_98 EiE3-E2
2 

(38 + 5n
2 

+ 12n
4

)
2
_1 (-h )2 

where 02 = 1 + 
3 3 Ei2(1 - v2) 6 + 4n2 a 4 R 

(33) 

The minimum value of buckling critical loads may be obtained by chosen appropriate 
value n. 

The condition provides the existence of upper and lower buckling loads is 

98 1 3 2 - - < 1 E*E*-E*
2
(38+5n

2
+12n

4
)

2 
1 ( h) 2 

Ei2(1 - v2) 6 + 4n2 a 4 R · 
(34) 

If the inequality (34) is satisfied, the load-deflection curve has following behavior: 
from the beginning the deflection increases gradually and when it reaches the value 6, 
corresponding to the upper buckling load, the active load p becomes decreasing while the 
deflection continues increasing. It means that at this position the equilibrium shape of 
the shell becomes unstable and the shell is buckling. Then increasing slightly active load 
the deflection increases with sudden change to the other value corresponding to the new 
equilibrium shape. This new shape is stable and increasing active load leads to increasing 
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deflection; the sign of the shell curvature has been changed. Here occurs the snap-through 
phenomenon of the shell. If from this position decreasing active load the deflection will 
decrease to the value 6, corresponding to the lower buckling load. 

But in this case the active load can not keep the curvature center from above, the 
lower buckling load is the smallest theoretically possible load corresponding to snap-though 
of the shell. Consequently, there exists a domain limited by the upper and lower buckling 
loads, inside which the shell has two equilibrium shapes. This domain is called unstable 
domain of the shell. 

If the shell dimensions and material moduli are such that the expression (34) be­
comes an equality the load deflection curve has only one stationary point at 

91m(3 + 2n2 ) 

~o = (1600 - 284n2)a2 R3 

and 
97r2 (3 + 2n2 )n2 Ei E3 - E22 (38 + 5n2 + 12n4

) 

Po = p(~o) = 8(1600 - 284n2 ) Ei(l - v2)a2 

It can be seen that this is an inflection point. It means that the load-deflection curve 
has an inflection point ~o corresponding to the change of the sign of the shell curvature. 
This change occurs smoothly without suddenly increasing the deflection when slowly in­
creasing active load. In this case the unstable domain gets narrow to one line and there 
exists an indifferent equilibrium of the shell. 

If the inequality (34) is not satisfied the shell has only one equilibrium shape. 

5. NUMERICAL EXAMPLE 

Consider a ceramic-metal functionally graded shallow spherical shell subjected to 
uniform external pressure p. The combination of materials consists of aluminum and alu­
mina. The Young's modulus of alumina and aluminum are Ee= 380 GPa and Em= 70 
GPa, respectively. The Poisson' ratio is chosen to be 0.3 for simplicity. The spherical shell 
is of uniform thickness and is clamped at its edge. As seen at Eqs. (32) and (33) the 
critical buckling loads correspond to n = 1, which is the first mode of buckling. For the 
shell material we can see that the variation of the composition of ceramics and metal is 
linear when k = 1. The value of k equal to zero represents a homogeneous (fully ceramics) 
shell. 

Table 1. Variation of upper critical buckling load versus R/h and k 

~ ) 100 200 300 400 500 

P1)x10\k = 0) 5 .1394 2.1812 1.4091 1.0452 0.8318 

P1) x!O+(k= I) 29419 1.2800 0 .8310 0.6174 0 .4918 

P1)x!O+(k= 2) 2 .2717 0.9867 0 .6403 0 .47 57 0 .3789 

Fig. 2 highlights the typical load-deflection curves for the functionally graded spher­
ical shell parameter ( ~ = 100, r0 = aR with a = 0.6) with different power law indices 
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Table 2. Variation of lower critical buckling load versus R/h and k 

RJh 
p~)~--- 100 200 300 400 500 

p~l xlOJ(k = 0) - 6. 538 - 16.205 - 12.4 3 - 9 .750 - 7.96 

p~l xlO\k= 1) - 7. 061 - 10.005 - 7.481 - 5.825 -4.739 

p~) xlO\k = 2) - 5.270 - 7. 686 - 5.7573 - 4.485 - 3.649 

x 10·4 p 
18~~~~~~~~~~~~~~~~~~~~~ 
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Fig. 2. Load-deflection curves for clamped FGM spherical shell with ratio R/h = 

100, o: = 0.6 and various k 
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k. It shows that the load-deflection curve generally decreases by increasing the power law 
index k . 

According to relation (32), (33) calculated values of the upper and lower critical 
buckling loads of a FGM spherical shell with ro = 0.6R, corresponding to different dimen­
sion ratios R/ h and power law indices k, are given in the Tables 1 and 2 and are plotted 
in Fig. 3 and 4, respectively. 

From obtained results one can see that the upper critical buckling load decreases 
with increasing the dimension ratio R/ h and also with increasing the power law index 
k. When k = 0, representing full ceramic shell, the buckling load is considerably larger 
than the buckling load of the FGM shells. The reason is the higher value of the assumed 
modulus of elasticity of the ceramic constituent. What is concerned with lower critical 
buckling load of FGM spherical shell it requires more detailed investigations. 
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Fig. 3. Upper critical buckling load of FGM spherical shell versus R/h and power 
law index k 
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Fig. 4. Lower critical buckling load of FGM spherical shell versus R/h and power 
law index k 

6. CONCLUSIONS 

The governing equations for non-linear buckling analysis of functionally graded 
spherical shallow shells, including geometric non-linearity, are derived. Derivations are 
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based on the classical shell theory and with the assumption of power law composition 
for the constituent materials. The load-deflection curve of the shell is investigated. The 
approach to non-linear buckling analysis presented in this paper allows to obtain analyt­
ical expressions of critical buckling loads of a clamped FGM spherical shell subjected to 
external pressure load that provides easily to investigate stability behaviors of the shell. 
Illustrating numerical results obtained here show that the critical buckling load for the 
functionally graded spherical shell decreases with increasing dimension ratio R/ h and also 
with increasing the power law index k. 
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PHAN TiCH PHI TUYEN v:E 6N D~NH cuA v6 cA.u THOAI 

BANG VA.T LI~u c6 cd TiNH BIEN DOI 

Phan tfch phi tuyfo 6n dinh cua VO du thoai bllng v~t lii;\u c6 CCI tfnh bifo d6i chiu 
tac dvng cua ap sufi,t ngoai dlfQC d~ c~p nghien cU'u trong bai nay. CCI tfnh cua v~t lii;\u 
bifo d6i theo chi~u day cua VO theo quy lu~t phan b6 phv thuQC vao th~ tfch thanh ph§,n 
cua cac v~t lii;\u tham gia t:;i,o thanh v~t lii;\u VO. Da thi~t l~p cac phuClng trlnh CCI sCI cua 
bai toan khi tfnh d~n phi tuy~n hlnh hQC trong tfi,t ca CaC lien hi;\ giU'a bi~n d:;tng va chuy~n 
vi . SU' dvng phuClng phap Bubnov-Galerkin d~ giai bai toan da nh~n du9c bi~u thU'c giai 
tfch g§,n dung cua Ive tdi h:;i,n, di~u nay cho phep de dang khao sat cac tfnh chfi,t 6n dinh 
cua. VO. 


